Diurnal Harvest Cycle and Sap Composition Affect Under-Skin Browning in 'Honey Gold' Mango FruitExport / Share PlumX View Altmetrics View AltmetricsSan, A. T., Hofman, P. J., Joyce, D. C., Macnish, A. J., Marques, J. R., Webb, R. I., Li, G. and Smyth, H. E. (2019) Diurnal Harvest Cycle and Sap Composition Affect Under-Skin Browning in 'Honey Gold' Mango Fruit. Frontiers Plant Science, 10 . p. 1093. ISSN 1664-462X (Print)1664-462x
Article Link: https://doi.org/10.3389/fpls.2019.01093 Publisher URL: https://www.frontiersin.org/articles/10.3389/fpls.2019.01093/full AbstractUnder-skin browning (USB) is an unsightly physiological disorder that afflicts 'Honey Gold' mango fruit. Under-skin browning symptoms develop after harvest upon the interaction of physical abrasion and physiological chilling stresses. Less understood preharvest and/or harvest factors may also influence fruit susceptibility to USB. In this study, we examined the impact of harvest time during the diurnal cycle and fruit sap components on USB development. Fruits were harvested at 4- to 6-h intervals, lightly abraded with sandpaper to simulate vibration damage during refrigerated road transport, held at 12 +/- 1 degrees C for 6 days, transported to the research facilities and ripened before USB assessment. Spurt and ooze sap from the fruit were collected at each harvest time. The samples were separated and analysed by gas chromatography-mass spectrometry. Fruit harvested at 10:00, 14:00 and 18:00 h had 3- to 5-fold higher incidence of USB than did those picked at 22:00, 2:00 and 6:00 h. Sap concentrations of the key aroma volatile compounds 2-carene, 3-carene, alpha-terpinene, p-cymene, limonene and alpha-terpinolene were higher for fruit harvested at 14:00 h compared to those picked at other times. In the fruits harvested in the afternoon, abraded skin treated with spurt sap sampled at 14:00 h had 14.3- and 29.0-fold higher incidence and severity, respectively, of induced browning than did those treated with sap collected at 6:00 h. The results showed that fruit harvested in the afternoon were more susceptible to USB than those picked at night or in early morning. The diurnal variation in fruit sensitivity was evidently associated with specific compositional differences in sap phytotoxicity. Topical application to the fruit skin of pure terpinolene and limonene resulted in induced USB damage, whereas pure carene and distilled water did not. Microscopy examination showed that while skin damage caused by pure terpinolene and limonene was not identical to USB per se, similarities suggested that sap components cause USB under inductive commercial conditions. Considered collectively, these findings suggest that night and early morning harvesting will reduce USB and thus improve the postharvest quality of Honey Gold mango fruit.
Repository Staff Only: item control page Download Statistics DownloadsDownloads per month over past year |