Login | Request Account (DAF staff only)

Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

Wei, L., Jian, H., Lu, K., Filardo, F. F., Yin, N., Liu, L., Qu, C., Li, W., Du, H. and Li, J. (2016) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnology Journal, 14 (6). pp. 1368-1380. ISSN 1467-7652

Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link.

Article Link: http://dx.doi.org/10.1111/pbi.12501

Abstract

Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.

Item Type:Article
Business groups:Crop and Food Science
Keywords:association mapping differential expression Sclerotinia sclerotiorum Brassica napus
Subjects:Science > Botany > Genetics
Plant culture > Field crops > Other field crops
Plant pests and diseases
Live Archive:04 Feb 2016 03:01
Last Modified:13 Apr 2023 03:30

Repository Staff Only: item control page