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Abstract
Managing the nutritional status of strawberry plants is critical for optimizing yield. This study evaluated the potential of 
hyperspectral imaging (400–1,000 nm) to estimate nitrogen (N), phosphorus (P), potassium (K), and calcium (Ca) concen-
trations in strawberry leaves, flowers, unripe fruit, and ripe fruit and to predict plant yield. Partial least squares regression 
(PLSR) models were developed to estimate nutrient concentrations. The determination coefficient of prediction (R2

P) and 
ratio of performance to deviation (RPD) were used to evaluate prediction accuracy, which often proved to be greater for 
leaves, flowers, and unripe fruit than for ripe fruit. The prediction accuracies for N concentration were R2

P = 0.64, 0.60, 
0.81, and 0.30, and RPD = 1.64, 1.59, 2.64, and 1.31, for leaves, flowers, unripe fruit, and ripe fruit, respectively. Prediction 
accuracies for Ca concentrations were R2

P = 0.70, 0.62, 0.61, and 0.03, and RPD = 1.77, 1.63, 1.60, and 1.15, for the same 
respective plant parts. Yield and fruit mass only had significant linear relationships with the Difference Vegetation Index 
(R2 = 0.256 and 0.266, respectively) among the eleven vegetation indices tested. Hyperspectral imaging showed potential 
for estimating nutrient status in strawberry crops. This technology will assist growers to make rapid nutrient-management 
decisions, allowing for optimal yield and quality.
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Introduction

Global demand for food is increasing due to the continued 
rise in the world population (Godfray et al. 2010). Fertilizers 
play an important role in maximizing food production but 
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fruit, nut, and seed yields are often sustained by excessive 
fertilizer use (Islam et al. 2022; Trejo-Téllez and Gómez-
Merino 2014). Non-optimal fertilizer applications cause neg-
ative impacts on plant growth and development (Kulkarni 
and Goswami 2019). Over-fertilization, for example, can 
reduce yield and have negative impacts on the environment, 
while insufficient fertilization can also reduce yield and 
decrease product quality (González et al. 2015; Hapuarach-
chi et al. 2022; Pereira et al. 2015; Trejo-Téllez and Gómez-
Merino 2014). Farmers often make decisions on nutrient 
amendments without full knowledge of the nutrient status 
of their crop (Bindraban et al. 2015; Islam et al 2022; Sheriff 
2005) because current methods to examine plant nutrient 
status are laborious, costly, and time consuming (Yanli et al. 
2015). Knowledge of plant nutrient status in real time would 
allow timely decisions on how much fertilizer needs to be 
added to a crop.

Hyperspectral imaging has been applied widely in agri-
culture, food, medicine, and other fields to estimate the inter-
nal qualities of scanned objects (Bai et al. 2018; Davur et al. 
2023; ElMasry et al. 2012; Farrar et al. 2023; Gowen et al. 
2007; Han et al. 2021; Huang et al. 2014; Malmir et al. 2020; 
Moscetti et al. 2015). Hyperspectral imaging combines spec-
troscopy with imaging techniques to acquire both spectral 
and spatial information simultaneously (ElMasry et al. 2012; 
Huang et al. 2014). Hyperspectral imaging is potentially non-
destructive, low-cost, and reliable and has been applied to 
fruit, nuts, grains, and vegetables to estimate internal qualities 
such as total soluble solid concentration and moisture con-
tent, as well as firmness, ripeness, and shelf life (Bai et al. 
2018; Davur et al. 2023; Gómez et al. 2006; Han et al. 2021; 
Han et al. 2023; Peng and Lu 2008; Pérez-Marín et al. 2009; 
Rajkumar et al. 2012; Ravikanth et al. 2017). Hyperspectral 
imaging allows the estimation of mineral nutrient concentra-
tions such as nitrogen (N), phosphorus (P), potassium (K), and 
calcium (Ca) in the soil and leaves of many crops (Ferwerda 
et al. 2005; Mahajan et al. 2017; Pacumbaba and Beyl 2011; 
Pandey et al. 2017; Rodriguez et al. 2006; Tahmasbian et al. 
2018; Yu et al. 2014). Hyperspectral imaging can also be used 
to estimate the concentrations of mineral nutrients including 
N, P, K, and Ca in avocado fruit (Kämper et al. 2020). Hyper-
spectral images obtained from the canopy or leaves have also 
been used to predict crop yield (Aparicio et al. 2000; Babar 
et al. 2006; Cao et al. 2015; Prasad et al. 2007; Xie et al. 
2020). For example, grain yields have been predicted using 
vegetation indices that are based on canopy hyperspectral 
imaging (Cao et al. 2015).

Strawberry is a valuable fruit crop that is produced in 
many countries (FAOSTAT 2021). Strawberry fruit are 
beneficial for human health because of their high nutrient 
and antioxidant concentrations (Giampieri et al. 2012; Han-
num 2004; Mahmood et al. 2012). Strawberry yield and 
fruit quality, e.g., fruit size, sweetness, firmness, and shelf 

life, are influenced by the concentrations of macronutrients 
such as N, P, K, and Ca in leaves (Chen et al. 2011; Nestby 
et al. 2005; Trejo-Téllez and Gómez-Merino 2014). Hyper-
spectral imaging that encompasses visible and near infrared 
wavelengths has been used to estimate total soluble solid 
concentration, acid concentration, and moisture content of 
strawberry fruit (ElMasry et al. 2007; Nagata et al. 2004; 
Shao and He 2007). Nitrogen concentrations in the straw-
berry canopy have been estimated with a portable field spec-
troradiometer (350–1,050 nm) (España-Boquera et al. 2006). 
However, hyperspectral imaging using visible and near infra-
red wavelengths has not been tested for its potential to esti-
mate N, P, K, and Ca concentrations in strawberry leaves, 
flowers, unripe fruit, and ripe fruit or to predict strawberry 
fruit yield.

Machine vision technologies, including mobile hyper-
spectral cameras developed for use on farms, are usually 
complicated and not easily operated by farm managers (Tian 
et al. 2020). Hence, most machine vision technologies devel-
oped for agricultural systems remain underutilized. Labo-
ratory-based hyperspectral imaging that is easy to operate 
could be a breakthrough for adapting the technology to plant 
nutrient assessment (Farrar et al. 2021; Malmir et al. 2020). 
We aimed specifically to determine the accuracy of hyper-
spectral imaging to estimate N, P, K, and Ca concentrations 
in strawberry leaves, flowers, unripe fruit, and ripe fruit. We 
also aimed to evaluate the potential of hyperspectral imaging 
to predict strawberry fruit yield and one of its main compo-
nents, fruit mass.

Materials and methods

Plant samples

We established 100 pots, each pot containing one rooted 
runner, for undertaking a series of experiments to under-
stand the effects of pollination on fruit quality, shelf life, 
and yield under different levels of calcium nutrition (Dung 
et al. 2021, 2022, 2023). We used the subtropical strawberry 
cultivar, Redlands Joy. The plants had been established from 
rooted runners that were transplanted in May 2018 into 4.5 
L pots containing coco-peat (EC < 1 mS/cm, pH = 5.5–7.0) 
and perlite (4:1, v:v) with 2.5 g of Osmocote fertilizer 
(N:P:K = 19.6:16.0:5.0% w/w, plus trace elements) (Scotts 
International, Heerlen, The Netherlands). The potted plants 
were placed in a glasshouse at the University of the Sunshine 
Coast, Sippy Downs, Australia (26° 43′ S 153° 03′ E). The 
daily temperature and photosynthetic photon flux density in 
the glasshouse were described previously (Dung et al. 2021). 
We top-dressed each plant monthly with 15 g of Osmocote 
fertilizer and applied a supplementary 5 mL of 1% (v/v) 
aqueous PowerFeed® foliar fertilizer (Seasol International, 
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Bayswater, Australia) weekly during the first 10 weeks from 
transplanting. Sixty of the 100 plants were then sprayed fort-
nightly with eight sprays of Ca as Grotek Cal-Max (GS Dis-
tribution, Langley, Canada) at either 1, 2, or 4 kg elemental 
Ca ha−1 spray−1. Each plant received approximately 5 mL 
of solution at each spray. The other 40 plants received no Ca 
sprays. Water was manually supplied daily to plants, with 
approximately 150 mL applied per potted plant.

Sample collection and preparation

We collected fruit, leaf, and flower samples from July 
to October 2018 as described previously by Dung et al. 
(2021, 2022, 2023). All 100 plants were used for nutri-
ent prediction in leaves and fruit, 30 plants were used for 
nutrient prediction in flowers, and 30 plants were used for 
yield and fruit-mass prediction (Figs. 1 and 2). In brief, 
ripe fruit were collected from 40 plants that did not receive 

Ca sprays and 60 plants that received Ca sprays. Unripe 
fruit were harvested at 7, 14, and 21 d after pollination 
from 30 plants that received Ca sprays. We harvested five 
leaves per plant when the leaves opened fully, with each 
of the five leaves being sampled at monthly intervals over 
5 months from 60 plants that received Ca sprays. We har-
vested four flowers (with sepals) per plant when the flow-
ers opened fully from 30 plants in the third study, with 
each of the four flowers being sampled at monthly inter-
vals over 4 months. Harvested samples were transferred 
immediately to the laboratory for hyperspectral imaging. 
The fresh leaves and flowers were imaged, dried at 70 °C 
for 24 h, and then used for N, P, K, and Ca analyses. The 
unripe fruit and ripe fruit were imaged without sepals and 
pedicels, stored fresh at − 20 °C, and then also used for 
N, P, K, and Ca analyses. The total number of samples 
included 620 ripe-fruit samples, 180 unripe-fruit samples, 
300 leaf samples, and 120 flower samples (Fig. 1).

Fig. 1   Summary of strawberry fruit, leaf, and flower samples for prediction of nutrient concentrations, fruit yield, and fruit mass

Fig. 2   Strawberry a ripe fruit; b unripe fruit harvested at 7, 14, or 21 d after first pollination; c flower; and d leaf used for developing models to 
estimate nitrogen, phosphorus, potassium, and calcium concentrations. Scale bars = 1 cm
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Hyperspectral imaging

We used a laboratory-based hyperspectral imaging system 
(Benchtop System, Resonon, Bozeman, MT) with a 12-bit 
line scanner camera (Pika XC2, Bozeman, MT) to capture 
images (Farrar et al. 2021). The system comprised a hyper-
spectral camera with a 23-mm focal-length lens, a linear 
transition stage operated by a stepper motor, four current-
controlled wide-spectrum quartz-halogen lights, and a main-
control computer (Fig. A1).

We placed the samples on a black background on the 
transition stage of the camera. Images were captured using 
a visible/near-infrared hyperspectral imaging system in the 
spectral range of 400–1,000 nm. The spectral resolution was 
1.3 nm, producing a total of 462 grayscale images that can 
be generated to form 462 bands of each hyperspectral image. 
The exposure time was adjusted to 27.3 ms and the stage 
moved at 1.23 mm s−1.

SpectrononPro software package (Version 2.94, Resonon, 
Bozeman, MT) was used to extract reflectance data (spectral 
information) of the acquired leaf, flower, unripe, and ripe 
fruit images. The mean corrected relative reflectance (R) 
was calculated from the raw spectral reflectance, R0, within 
SpectrononPro as shown in Eq. 1 (ElMasry et al. 2007):

where R0 was the raw spectral reflectance, D was the reflec-
tance of a dark image (camera lens covered), and W was the 
reflectance of a white Teflon board that reflected approxi-
mately 99% of incident light. This corrected for the spectral 
curve of the leaf, flower, or fruit surface. The 100% reflectiv-
ity was scaled to 10,000 (integers) by default. The mean cor-
rected relative reflectance was used for model development.

Nutrient analysis

Nitrogen concentrations of leaf, flower, unripe-fruit, and 
ripe-fruit samples were determined by combustion analy-
sis using a LECO 928 analyzer (LECO, Saint Joseph, MI) 
(McGeehan and Naylor 1988; Muñoz-Huerta et al. 2013; 
Rayment and Higginson 1992). Calcium, phosphorus, and 
potassium concentrations were analyzed by using induc-
tively coupled plasma–atomic emission spectroscopy on 
samples that were open-vessel digested with a 5:1 mixture 
of nitric and perchloric acids (Munter and Grande 1980).

Data analysis and model development

Image acquisition and data extraction were conducted 
using SpectrononPro software (Version 2.94, Resonon, 

(1)R =
R
0
− D

W − D

Bozeman, MT). The mean raw reflectance was extracted 
by marking a region of interest (ROI) for each image. The 
ROI for leaf, flower, unripe-fruit, and ripe-fruit images 
contained the surface of one side of the leaf, flower, unripe 
fruit, or ripe fruit, respectively (Fig. A2). We mixed three 
fruit together for nutrient analysis in the case of compos-
ite fruit samples and so hyperspectral data from these 
three fruit were averaged prior to data analysis and model 
development. Spectral outliers in the samples, if any, were 
detected using a Hotelling’s T2 test (with 95% level of 
confidence) and removed from the data set (Farrar et al. 
2021). The remaining data were divided randomly into 
two data sets, one used for calibration (80%) and the other 
(20%) used as a test data set to examine the precision of 
prediction using developed models (Table A1). We used 
a leave-one-out (full) cross-validation to evaluate the per-
formance of the model (Dai et al. 2014; Tahmasbian et al. 
2017; Zhang et al. 2013). This method uses the calibration 
data set but leaves one sample out of the calibration set 
each time and assesses the model using the remaining data. 
In the next iteration, another sample is left out randomly 
for the validation and this process continues until every 
sample is left out of the model once (Dai et al. 2014; Tah-
masbian et al. 2017; Zhang et al. 2013).

We developed partial least square regression (PLSR) 
models. PLSR is one of the most frequently used modeling 
methods applied in hyperspectral imaging studies (De Silva 
et al. 2023; Han et al. 2023; Kämper et al. 2020; Mayr et al. 
2021). The PLSR is commonly recommended when the 
dataset is small (Wold et al. 2001a). The PLSR is a lin-
ear multivariate model and relates data matrices of X and 
Y, the predicted and observable variables, respectively, by 
identifying smaller sets of predictors to perform a series of 
regressions (Wold et al. 2001a). These predictors have lin-
ear combinations, and the model is able to analyze datasets 
with noise and incomplete variables (Wold et al. 2001b). 
We also applied spectral pre-processing methods to decrease 
noise and improve model performance (Qin et al. 2013). The 
applied pre-processing methods were Smoothing Savitzky-
Golay (Smoothing S-Golay, 1st derivative), Normalize, 
Derivative Savitzky-Golay (Derivative S-Golay), and Stand-
ard Normal Variate (SNV) (Qin et al. 2013). Developed 
models were assessed using the following indices: deter-
mination coefficients of calibration (R2

C), validation (R2
V), 

and prediction (R2
P); root mean squares error (RMSE) of 

calibration (RMSEC), validation (RMSEV), and prediction 
(RMSEP); and ratio of performance to deviation (RPD). 
Only the model with highest coefficient of determination 
(R2), ratio of performance to deviation (RPD), and lowest 
root mean squares error (RMSE) was selected to deter-
mine the accuracy of estimation for each targeted nutrient 
(Table 1). The R2 and RMSE were calculated using Eqs. 2 
and 3 (Yanli et al. 2015):
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where n indicated the number of samples, yi and ŷi repre-
sented the reference and predicted values of the ith sample, 
respectively, and ȳ represented the mean of each reference 
value.

We then calculated the RPD using the test set (Farrar 
et al. 2021; Morellos et al. 2016). The RPD indicates the 
appropriateness of prediction. RPD classifications include 
RPD of 1.5–2.0 discriminates between high and low values, 
RPD of 2.0–2.5 provides a coarse quantitative prediction, 
and RPD > 2.5 and RPD > 3.0 provide good and excellent 
predictions, respectively (Nicolaï et al. 2007). The higher 
the RPD, the more robust is the model (Farrar et al. 2021; 
Kamruzzaman et al. 2012). RPD was defined using Eq. 4:

where SDTEST was the standard deviation of the observed 
values and RMSETEST was the root mean square error of the 
prediction from the test set.

We identified specific wavelengths that were impor-
tant for predicting N, P, K, and Ca concentrations using 
β-coefficient values that carry predictive information. The 

(2)R2 = 1 −

∑n

i=1

�

yi − ŷi
�2

∑n

i=1

�

yi − y
�2

(3)RMSE =

�

∑n

n=1

�

ŷi − yi
�2

n

(4)RPD = SDTEST∕RMSETEST

wavelengths with the highest β-coefficients contribute 
most to the predictive ability of the models (Iqbal et al. 
2013; Malmir et al. 2019; Tahmasbian et al. 2021; Xu 
et al. 2018). We assessed the model accuracies in predict-
ing nutrient concentrations of fruit, leaves, and flowers 
by comparing the best-fit model for each plant part, with 
this model being the one that had the highest RPD and 
R2 of the dataset. Unscrambler® X software version 11 
(CAMO Software Inc., Trondheim, Norway) was used 
for all computation, spectral data transformations, PLSR 
computations, outlier detection, and model development 
(Farrar et al. 2021).

Predicting yield and fruit mass

We attempted to predict both fruit yield and fruit mass 
using hyperspectral images. We also attempted to predict 
fruit yield and fruit mass from the macronutrient con-
centrations in leaf samples (n = 150) (Fig. 1). Yield was 
calculated as the total mass of fruit harvested from each 
plant during the study period of July to October 2018. 
Hyperspectral data from leaves, nutrient concentrations of 
leaves, and fruit mass were averaged for each plant, while 
yield was calculated as total fruit mass per plant. Stepwise 
regression was performed to evaluate linear regressions 
between the concentrations of N, P, K, and Ca in leaves 
or vegetation indices as the independent variable and 
fruit mass or yield as the dependent variable. Vegetation 
indices used to predict yield were Difference Vegetation 

Fig. 3   The mean (±SD) cor-
rected relative reflectance 
of the Vis/NIR spectrum 
(400–1,000 nm) from straw-
berry a fresh leaves (n = 300), b 
fresh flowers (n = 120), c unripe 
fruit (n = 180), and d ripe fruit 
(n = 620). The 100% reflectivity 
was scaled to 10,000 (integers) 
by default
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Index (DVI), Modified Chlorophyll Absorption Ratio Index 
(MCARI), Modified Triangle Vegetation Index (MTVI), 
Normalized Difference Vegetation Index (NDVI), Photo-
chemical Reflectance Index (PRI), Enhanced Vegetation 
Index (EVI), Ratio Vegetation Index (RVI), Infrared Per-
centage Vegetation Index (IPVI), Structure Independent 
Pigments Index (SIPI), and Red Edge Vegetation Stress 
Index (RVSI) (Rathod et al. 2013; Wang et al. 2018; Yu 
et al. 2018). The equations for all indices are presented in 
Table A2. Linear regressions were regarded as significant 
at p < 0.05.

Results

Descriptive statistics

Reflectance of the Vis/NIR spectrum (400–1,000 nm) 
from strawberry leaves, unripe fruit, and ripe fruit had 
low standard deviations, while the spectra of randomly 
harvested flowers (with sepals) had large standard devia-
tions (Fig. 3). The calibration and test data sets used for 
developing each of the models had comparable means and 
ranges (Table A1).

Fig. 4   Measured vs. predicted 
nitrogen (N) concentration in 
strawberry a, b fresh leaves, c, 
d fresh flowers, e, f unripe fruit, 
and g, h ripe fruit of the calibra-
tion set (Cal, open circles), vali-
dation set (Val, open triangles), 
and test set (closed circles) 
using selected wavelengths
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Estimating nitrogen concentrations

The PLSR model estimated N concentration in leaves with 
R2 of 0.71, 0.57, and 0.64 and RMSE values of 2.44, 2.98, 
and 2.69 mg/kg for the calibration, validation, and test sets, 
respectively (Fig. 4 a, b). The RPD of foliar N prediction 
was 1.64 (Table A3; Fig. 4b). The R2 values in estimating 
flower N concentrations were 0.56–0.71, RMSE values 
were 1.86–2.32 mg/kg, and the RPD was 1.59 (Table A3; 
Fig. 4 c, d). Estimation of N concentration in unripe fruit 
had high accuracy, with R2 from 0.80–0.81, RMSE values 
from 47.61–55.17 mg/100 g, and RPD of 2.46 (Table A3; 
Fig. 4 e, f). In contrast, the PLSR model for estimating N 
concentration in ripe fruit had poor accuracy, with R2 below 
0.30, RMSE values from 34.27–37.50 mg/100 g, and RPD 
of 1.31 (Table A3; Fig. 4 g, h). High β-coefficients were 
observed at 450 nm, 550 nm, 620 nm, 690 nm, and 960 nm 
for estimating N concentration in leaves and ripe fruit; at 

420 nm, 440 nm, 540 nm, 690 nm, 720 nm, and 960 nm 
for flowers; and at 400 nm, 520 nm, 620 nm, 720 nm, and 
960 nm for unripe fruit (Fig. 5).

Estimating phosphorus concentrations

The R2 values in estimating foliar P concentration were 
0.49–0.66, RMSE values were 0.42–0.54 mg/kg, and the 
RPD value was 1.36 (Table A3; Fig. 6 a, b). Similarly, the R2 
values in estimating flower P concentration were 0.34–0.66, 
RMSE values were 0.30–0.48 mg/kg, and the RPD was 1.24 
(Table A3; Fig. 6 c, d). High estimation accuracy was obtained 
in estimating the P concentration of unripe fruit, with R2 of 
0.81 for the calibration, validation, and test sets; RMSE values 
from 6.61–8.05 mg/100 g; and RPD of 2.30 (Table A3; Fig. 6 
e, f). In contrast, estimation of P concentration for ripe fruit 
had lower accuracy, with R2 values being 0.40–0.49, RMSE 
values being 3.83–4.17 mg/100 g, and the RPD being 1.54 

Fig. 5   Weighted beta coeffi-
cients of predicted nitrogen (N) 
concentration in strawberry a 
fresh leaves, b fresh flowers, c 
unripe fruit, and d ripe fruit
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(Table A3; Fig. 6 g, h). Prominent peaks were observed in 
the 520 nm, 590 nm, 660 nm, 790 nm, 930 nm, and 960 nm 
regions in the PLSR models for estimating P concentration 
in leaves and ripe fruit, and in the 400 nm, 550 nm, 690 nm, 
760 nm, and 960 nm regions for flowers and unripe fruit 
(Fig. 7).

Estimating potassium concentrations

The R2 values in estimating leaf K concentration were 
0.66–0.76, RMSE values were from 2.07–2.48 mg/kg, and 
the RPD was 1.74 (Table A3; Fig. 8 a, b). The PLSR models 
to estimate K concentration in flowers had R2 values from 

Fig. 6   Measured vs. predicted 
phosphorus (P) concentration in 
strawberry a, b fresh leaves, c, 
d fresh flowers, e, f unripe fruit, 
and g, h ripe fruit of the calibra-
tion set (Cal, open circles), vali-
dation set (Val, open triangles), 
and test set (closed circles) 
using selected wavelengths
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0.36–0.49, RMSE values from 0.89–1.38 mg/kg, and RPD 
of 1.39 (Table A3; Fig. 8 c, d). The R2 values in estimating K 
concentration of unripe fruit were 0.46–0.66, RMSE values 
were 38.78–42.25 mg/100 g, and RPD was 1.67 (Table A3; 
Fig. 8 e, f). However, low estimation accuracy was obtained 
in predicting the K concentration of ripe fruit, with R2 values 
being 0.05–0.10 (Fig. 8 g, h). Weighted β-coefficients with 
high peaks were observed in the 400 nm, 750 nm, 960 nm, 
and 990 nm regions in the developed models for estimating 
K concentration in leaves, flowers, unripe fruit, and ripe fruit 
(Fig. 9).

Estimating calcium concentrations

The PLSR model estimated leaf Ca concentration with R2 
values of 0.75, 0.62, and 0.70 and RMSE values of 1.30, 

1.62, and 1.42 mg/kg for the calibration, validation, and test 
set, respectively, and RPD of 1.77 (Table A3; Fig. 10 a, b). 
The model for estimating Ca concentration of flowers had R2 
values from 0.54–0.87, RMSE values from 0.41–0.76 mg/kg, 
and RPD of 1.63 (Table A3; Fig. 10 c, d). The model for esti-
mating Ca concentration of unripe fruit provided R2 values 
from 0.30–0.61, RMSE values from 16.72–17.80 mg/100 g, 
and RPD of 1.60 (Table A3; Fig. 10 e, f). The model for 
estimating Ca concentration of ripe fruit had R2 values from 
0.03–0.07, RMSE values from 26.72–27.54 mg/100 g, and 
RPD of 1.15 (Table A3; Fig. 10 g, h). High peaks were 
observed in the 410 nm, 420 nm, 620 nm, 650 nm, 690 nm, 
920 nm, 960 nm, and 990 nm regions in the models for esti-
mating leaf Ca concentration (Fig. 11). Prominent peaks 
were observed in the 400 nm, 420 nm, 550 nm, 660 nm, and 
990 nm regions for fresh flowers, in the 400 nm, 550 nm, 

Fig. 7   Weighted beta coeffi-
cients of predicted phosphorus 
(P) concentration in strawberry 
a fresh leaves, b fresh flowers, c 
unripe fruit, and d ripe fruit
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590 nm, 690 nm, 920 nm, and 990 nm regions for unripe 
fruit, and in the 400 nm, 490 nm, 590 nm, 790 nm, 920 nm, 
and 990 nm regions for ripe fruit (Fig. 11).

Predicting yield and fruit mass

Fruit yield per plant (R2 = 0.256) and fruit mass 
(R2 = 0.226) had significant linear relationships with the 
Difference Vegetation Index, DVI [800, 670], based on the 
leaf reflectance spectrum (Table 1). Fruit yield per plant 
(R2 = 0.294) and fruit mass (R2 = 0.307) were also related 

significantly to leaf N concentration (Table 1). Fruit yield 
per plant and fruit mass were not related significantly to 
other vegetation indices or leaf nutrient concentrations 
(Table 1).

Discussion

Our results showed that visible and near infrared wave-
lengths (400–1,000 nm) had high accuracy in estimating 
nitrogen, phosphorus, potassium, and calcium concentrations 

Fig. 8   Measured vs. predicted 
potassium (K) concentration in 
strawberry a, b fresh leaves, c, 
d fresh flowers, e, f unripe fruit, 
and g, h ripe fruit of the calibra-
tion set (Cal, open circles), vali-
dation set (Val, open triangles), 
and test set (closed circles) 
using selected wavelengths
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in strawberry unripe fruit, and in estimating nitrogen, potas-
sium and calcium concentrations in strawberry leaves and 
flowers. However, macronutrient concentrations in ripe fruit 
could not be estimated accurately. We also found that fruit 
yield per plant and fruit mass could be predicted using a 
hyperspectral-based vegetation index or leaf nitrogen con-
centrations. Hyperspectral imaging, therefore, has great 
potential for diagnosing the nutrient status of strawberry 
plants and providing decision support to amend fertilizer 
scheduling.

Nitrogen, phosphorus, potassium, and calcium concen-
trations in strawberry leaves, flowers, and unripe fruit were 
estimated with higher accuracies than in ripe fruit. The 
models for estimating nitrogen and phosphorus concentra-
tions in unripe fruit provided coarse quantitative predictions, 
while the models for potassium and calcium concentrations 
in unripe fruit only provided discrimination between low 
and high values. Furthermore, the models for nitrogen and 
calcium concentrations in leaves and flowers and potassium 
concentrations in leaves also provided simple discrimination 
between low and high values. The ratio of performance to 
deviation (RPD) is one of the most commonly used criteria 

in determining model robustness for accurately predicting 
a variable. PLSR models can discriminate between low 
and high values, but not provide good quantitative predic-
tions, when the RPD value is between 1.5 and 2.0 (Nicolaï 
et al. 2007). High-accuracy estimations of leaf macronutri-
ent concentrations have been achieved in previous studies 
of strawberry and other crops such as cacao, citrus, corn, 
maize, pepper, and soybean using hyperspectral imaging, 
mainly under field conditions (Ercoli et al. 1993; España-
Boquera et al. 2006; Pandey et al. 2017; Yanli et al. 2015; 
Yu et al. 2014; Zhu et al. 2006). We found that hyperspec-
tral imaging could also be used to estimate macronutrient 
concentrations of strawberry flowers and unripe fruit using 
laboratory-based hyperspectral imaging, suggesting another 
potential approach for fertilizer planning.

Some mineral nutrients do not absorb light in the visible 
and near infrared regions and so visible and near infrared 
spectroscopy cannot detect these minerals directly (Man-
ley 2014). Hyperspectral imaging can possibly detect these 
minerals and their concentrations indirectly, for example, 
when minerals bind to organic complexes (Manley 2014). 
Nitrogen exists in plant parts in several forms, including in 

Fig. 9   Weighted beta coef-
ficients of predicted potassium 
(K) concentration in strawberry 
a fresh leaves, b fresh flowers, c 
unripe fruit, and d ripe fruit
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amino acids, proteins, and chlorophyll molecules. Hyper-
spectral imaging systems that use visible and near infrared 
wavelengths can possibly detect nitrogen indirectly through 
chlorophyll-related compounds, because chlorophylls are 
strongly absorptive in the blue and red parts of the visible 
region (Ercoli et al. 1993; Pacumbaba and Beyl 2011; Pan-
dey et al. 2017). Phosphorus is a component part of proteins 
and nucleic acids and so hyperspectral imaging can possi-
bly detect phosphorus indirectly by detecting these organic 
macromolecules (Raven 2013). Potassium has a vital role 
in plant water absorption and osmotic potential regulation 

and accumulates as a mineral element in the vacuole, and 
so hyperspectral imaging may detect potassium concentra-
tions indirectly through changes in water potential and solute 
concentrations that are related to potassium concentrations 
(Egilla et al. 2005; Malmir et al. 2020; Vago et al. 2009). 
Calcium may not be spectrally active, but estimation is pos-
sible when it binds with molecules that have covalent bonds 
such as N–H, S–H, O–H, C–H, C–O, or C = C (Bellon-Mau-
rel et al. 2010; Manley 2014).

We were able to identify specific wavelengths impor-
tant for estimating nitrogen, phosphorus, potassium, 

Fig. 10   Measured vs. predicted 
calcium (Ca) concentration in 
strawberry a, b fresh leaves, c, 
d fresh flowers, e, f unripe fruit, 
and g, h ripe fruit of the calibra-
tion set (Cal, open circles), vali-
dation set (Val, open triangles), 
and test set (closed circles) 
using selected wavelengths
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and calcium concentrations. Wavelengths with the high-
est β-coefficients contribute most to the predictive abil-
ity of models (Bai et al. 2018; Malmir et al. 2019). High 
β-coefficients at 400–450 nm, 530–550 nm, 590–650 nm, 
700–780 nm, and 960–1000 nm have also been reported 
when estimating nitrogen, phosphorus, potassium, and 
calcium concentrations in cacao, pepper, and wheat leaves 
and avocado fruit (Hosseini-Bai et al. 2019; Kämper et al. 
2020; Malmir et al. 2020; Yao et al. 2010; Yu et al. 2014). 
We found that prominent wavelengths for estimating nitro-
gen concentrations were in the regions of 400–550 nm, 
620–720 nm, and 960–990 nm, which includes the blue 
and red regions of the visible spectrum at which chloro-
phyll is highly absorptive (Pandey et al. 2017). Chloro-
phyll concentrations are often significantly correlated with 
nitrogen concentrations (Bojović and Marković 2009). The 
wavelengths with high β-coefficients for estimating phos-
phorus, potassium, and calcium concentrations were in 
the regions of 570–600 nm, 710–730 nm, 770–820 nm, 
and 860–990 nm. Reflectance in the region of 460 nm or 

670 nm is the result of electron transitions in chlorophyll 
a and b, and reflectance in the region of 950–1000 nm is 
associated with prominent molecular bonds such as O–H, 
C–H, and N–H in water, starch, and proteins (Curran 1989; 
Zur et al. 2000).

Strawberry fruit yield and fruit mass could be predicted 
using hyperspectral imaging of leaves using the Difference 
Vegetation Index (DVI). This index was the only vegetation 
parameter, among the 11 vegetation indices we examined, 
that had a significant linear relationship with yield or mass. 
Grain yield can also be predicted using DVI based on hyper-
spectral canopy reflectance (350–2,500 nm), but with higher 
r2 values of 0.77–0.81 (Cao et al. 2015) compared with < 0.30 
in our study. PLSR usually outperforms other deep learning 
models when small datasets are used, although deep learning 
techniques can be applied to increase the prediction accuracy 
when a larger dataset exists (Ludwig et al. 2019).

Strawberry yield was also predicted from foliar nitro-
gen concentrations, but not phosphorus, potassium, or cal-
cium concentrations. Plant yield often has strong positive 

Fig. 11   Weighted beta coeffi-
cients of predicted calcium (Ca) 
concentration in strawberry a 
fresh leaves, b fresh flowers, c 
unripe fruit, and d ripe fruit
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relationships with foliar nitrogen and chlorophyll concen-
trations (Reis et al. 2009). However, leaf nitrogen concen-
trations had a significant negative relationship (r =  − 0.54) 
with yield in our study and in studies of apple (r =  − 0.82) 
and green pepper (r =  − 0.69) (Drake et al. 2002; Hassan 
et al. 1993). Nitrogen excess can reduce strawberry yield and 
fruit size (Trejo-Téllez and Gómez-Merino 2014). Highest 
yields of Tudla strawberry correspond to foliar nitrogen con-
centrations of 2.1–3.0% (Drake et al. 2002). Foliar nitrogen 
concentrations in Redlands Joy leaves were often between 
3.0 and 4.5% (Dung et al. 2022), which was higher than 
in Tudla strawberry, and these high concentrations might 
explain the negative correlation between yield and nitro-
gen concentration in our study. The recommended concen-
trations for phosphorus, potassium, and calcium in Tudla 
strawberry leaves range from 0.20–0.38%, 1.84–2.21%, and 
0.77–1.48%, respectively (Almaliotis et al. 2002). The con-
centrations of phosphorus, potassium, and calcium in our 
study were within these ranges (Dung et al. 2022), although 

there are no published recommendations for nutrient levels 
in Redlands Joy strawberry plants.

Conclusion

Laboratory-based hyperspectral imaging showed great 
potential for estimating nitrogen, phosphorus, potassium, 
and calcium concentrations in strawberry plants, with often-
high estimation accuracies for leaves, flowers, and unripe 
fruit. The technology also showed potential for predicting 
yield and fruit mass using the Difference Vegetation Index. 
Hyperspectral imaging may, therefore, be used by strawberry 
growers to monitor plant nutrient status and manage ferti-
lizer inputs in real time during flowering and fruit growth to 
ensure the best possible fruit yield and quality. Prediction 
of nitrogen, phosphorus, potassium, and calcium concentra-
tions using hyperspectral imaging of ripe fruit will require 
further investigation using deep learning techniques.

Table 1   Stepwise regressions 
to identify factors explaining 
fruit yield and fruit mass of 
strawberry using vegetation 
indices or leaf nutrient 
concentrations as independent 
parameters

An asterisk (*) indicates a negative r value; DVI, Difference Vegetation Index; MCARI, Modified Chlo-
rophyll Absorption Ratio Index; MTVI, Modified Triangle Vegetation Index; NDVI, Normalized Differ-
ence Vegetation Index; PRI, Photochemical Reflectance Index; EVI, Enhanced Vegetation Index; RVI, 
Ratio Vegetation Index; IPVI, Infrared Percentage Vegetation Index; SIPI, Structure Independent Pigments 
Index; RVSI, Red Edge Vegetation Stress Index

Parameter Vegetation indices Leaf nutrient concentrations

Independent R2 Probability Independent R2 Probability

Fruit yield DVI 0.256 p = 0.004 Nitrogen 0.294* p = 0.002
MCARI 0.010 p = 0.380 Phosphorus 0.005* p = 0.560
MTVI 0.010 p = 0.393 Potassium 0.012* p = 0.741
NDVI 0.124 p = 0.191 Calcium 0.005* p = 0.569
PRI 0.011 p = 0.846
EVI 0.005 p = 0.303
RVI 0.079 p = 0.191
OSAVI 0.0002 p = 0.619
IPVI 0.0002 p = 0.619
SIPI 0.079 p = 0.098
RVSI 0.118 p = 0.680

Fruit mass DVI 0.226 p = 0.008 Nitrogen 0.307* p = 0.001
MCARI 0.016 p = 0.317 Phosphorus 0.018* p = 0.833
MTVI 0.017 p = 0.330 Potassium 0.011* p = 0.710
NDVI 0.100 p = 0.262 Calcium 0.003* p = 0.650
PRI 0.013 p = 0.306
EVI 0.001 p = 0.717
RVI 0.063 p = 0.388
OSAVI 0.001 p = 0.464
IPVI 0.001 p = 0.464
SIPI 0.076 p = 0.116
RVSI 0.123 p = 0.539
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