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A B S T R A C T

Environmental scientists frequently rely on time series of explanatory variables to explain their impact on
an important response variable. However, sometimes, researchers are less interested in raw observations
of an explanatory variable than in derived indices induced by episodes embedded in its time series. Often
these episodes are intermittent, occur within a specific limited memory, persist for varying durations, at
varying levels of intensity, and overlap important periods with respect to the response variable. We develop
a generic, parametrised, family of weighted indices extracted from an environmental signal called IMPIT
indices. To facilitate their construction and calibration, we develop a user-friendly app in Shiny R referred
to as IMPIT−𝑎. We construct examples of IMPIT indices extracted from the Southern Oscillation Index and sea
surface temperature signals. We illustrate their applications to two fished species in Queensland waters (i.e.,
snapper and saucer scallop) and wheat yield in New South Wales.
1. Introduction

In many environmental studies, researchers rely on the time series
of one or more relevant explanatory variables to explain variation in the
response variable of interest. Frequently, the explanatory variables can
be used directly, or after relatively minor modifications (e.g., transfor-
mations, lags). In such cases the essential information needed to answer
the question of scientific interest is clearly reflected in the raw signal
data.

However, in some environmental applications, researchers are espe-
cially interested in indices derived from certain intermittent episodes
embedded in the time series of an explanatory variable. Most of the
time they may be interested only in episodes occurring within a speci-
fied, limited, memory persisting for long enough, at sufficient intensity
and occurring in sufficiently timely manner with respect to the response
variable. In our context, this limited memory will be a period of fixed
and uninterrupted duration in the past, with respect to the current
observation time.

Consider, for example, the time series of the Southern Oscillation
Index (SOI), a signal that is widely utilised in environmental sciences.
SOI indicates the magnitude and direction of the El Niño southern os-
cillation (ENSO), in which El Niño (sufficiently negative and sustained
SOI values) typically results in hotter and drier than average conditions
in Australia, while La Niña (sufficiently positive and sustained SOI
values) is associated with cooler and wetter than average conditions
in Australia. Similar considerations would apply in the case of marine

∗ Corresponding author.
E-mail address: m.mendiolar@uq.edu.au (M. Mendiolar).

heatwaves (MHWs) (Barbeaux et al., 2020; Yao and Wang, 2021), and
associated episodes that would be extracted from the time series of Sea
Surface Temperature (SST). However, high/low SOI value episodes and
marine heatwaves occur intermittently, persist for varying duration,
and differ in intensity. Furthermore, if the research focuses on their
influence on the harvest yield, we may well wish to identify those
episodes that overlap key life history stages of that species or the crop.
For fisheries, the spawning season is clearly a sensitive life stage. In
the agricultural context, we could consider the pre-sowing, sowing or
flowering seasons.

Moreover, if the expert domain knowledge indicates that there is
only a limited time horizon over which the analysis is meaningful. For
simplicity, we call that horizon a memory. This immediately leads to the
problem of appropriately differentiating between episodes that occur
more or less recently, within that memory, which we refer to as recency.

In this paper, we develop a generic, parametrised family of
weighted indices extracted from observations of an environmental
signal, on the basis of intermittent episodes of interest embedded in
the signal. These weighted indices can be calibrated to capture the
relative influence of intermittency, memory, persistence, intensity and
timing of the underlying episodes. Hence, we name them IMPIT indices.
To facilitate ease of construction and calibration of IMPIT indices, we
develop a user-friendly open source app called IMPIT−𝑎.

We illustrate the effectiveness of the design and calibration of
IMPIT indices with fishery catch rate data from two fished species in
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Queensland, snapper (Chrysophrys auratus) and saucer scallop (Ylistrum
balloti), and agricultural yield data of wheat production in New South
Wales. We consider correlations between certain environmental vari-
ables and standardised catch per unit effort (SCPUE) and yield per
hectare as response variables. We show that highly significant correla-
tions arise between these and IMPIT indices extracted from SOI and/or
SST signals, despite analyses indicating no significant (or only weak)
correlation between these response variables and the raw signal data.

To the best of our knowledge, prior studies of discrete, intermittent
episodes in the environmental and ecosystem context are very appli-
cation specific. See, for instance, Brad Adams et al. (2003), Ensminger
et al. (2004), Unal et al. (2013), Bakun (2014), Strydom et al. (2020)
and Bellanthudawa and Chang (2022). By contrast, we construct a
generic parametrised family of indices (i.e., IMPIT) induced by episodes
embedded in the time series of an environmental signal. Moreover, we
propose a systematic parametric search for associations between these
indices and seemingly exogenous response variables, such as SCPUE
of harvested fish species and yield per hectare of crop production.
Importantly, the proposed IMPIT indices can be fine-tuned to capture
a wide range of cumulative effects of these discrete episodes.

Since discrete intermittent episodes are embedded in the time series
of an environmental signal – for the sake of completeness – we next
briefly differentiate our approach from a large body of existing time
series and signal processing techniques. The majority of time series
methods focus on forecasting episodes of interest. For instance, the
well-known Croston method (see Croston (1972)) was designed for
forecasting intermittent demands. However, it is known that for many
intermittent episodes (e.g., earthquakes, or El Niño events) such fore-
casting can be very challenging (Rundle et al., 2021; Ham et al., 2019;
Glantz, 2015; Ludescher et al., 2014).

Sophisticated signal processing techniques are also used to ex-
tract features of signals and build indices accordingly. Popular among
these are techniques exploiting Empirical Orthogonal Functions (EOFs),
Fourier transforms, and wavelet transforms (Jolliffe, 2011; Hannachi
et al., 2007; Thomson and Emery, 2014). Specifically, several climate
indices are built on EOFs such as the Arctic Oscillation (Thompson
and Wallace, 1998) and RMM1 and RMM2 indices for monitoring
the Madden–Julian Oscillation (Wheeler and Hendon, 2004). More-
over, the features extracted by these methods are used as explanatory
variables in regression analyses to answer scientific inquiries. For ex-
ample, Yang et al. (2013) utilised the EOFs and short-time Fourier
transform together to reveal the relationship between spawning success
of shovelnose sturgeon in the Lower Missouri River and river depth and
water temperature using fish tracking data.

An important distinction between those approaches and this study
is that we are not attempting to forecast the underlying intermittent
episodes. Instead, we construct a unified parametrised family of indices
induced by episodes embedded in an environmental signal. We are not
using signal processing methods to automatically identify the discrete
intermittent influential episodes that we are working with. These are
either assumed to be already well defined (such as, marine heatwaves)
or are natural (such as, threshold crossing episodes). Note that IMPIT
indices in this study are constructed in the natural time domain rather
than the frequency domain.

Moreover, we propose a systematic parametric search for associa-
tions between the IMPIT indices and important seemingly exogenous
response variables, such as SCPUE of harvested fish species and yield
per hectare of crop production. Thus, the proposed IMPIT indices are
driven by features of these discrete but intermittent episodes occurring
within the observed signals (such as SOI or SST). They also account
for the propagation effects of the intermittent episodes. The proposed
search process prepares them to be plausible indicators or explanatory
variables to identify and unravel their possible impacts on relevant
response variables.

We also point out that the IMPIT indices are quite generic and
2

hence have potential application in a wide class. The indices and their h
calibration should be seen as another tool of exploratory data analyses.
Indeed, they have recently been used in a real-world application (Filar
et al., 2021). Finally, introduction of IMPIT indices is also timely
because of recent and ongoing changes in the intensity and frequency
of extreme weather and climate events (Ummenhofer and Meehl, 2017;
Frölicher et al., 2018; Oliver, 2019).

The paper is structured as follows. Section 2 describes the method-
ology used to develop IMPIT indices. Section 3 illustrates their design
and calibration for two widely used environmental signals and study
their impact in a fishery and agricultural context. Section 4 describes
the app developed and its visualisation capabilities. Finally, Section 5
contains a brief summary and discussion.

2. Indices capturing Intermittence, Memory, Persistence, Inten-
sity and Timing (IMPIT)

We consider a time series of an environmental signal denoted by
𝐗 = {𝑋𝑡} with time 𝑡 = 𝑇 ,… , 1, where 𝑋𝑇 represents the earliest
bservation and 𝑋1 the latest (most recent) observation. The units of
ime should be consistent among signal points and can be hours, days,
ears, etc. We define the memory as a period of fixed and uninterrupted
uration and denote by 𝑚 its length. With the memory fixed, we
an extract a sequence of environmental episodes where each episode
atisfies certain characterising conditions. The impact of these episodes
n a response variable may depend on their intermittence, persistence,
ntensity and timing. Timing refers to the position of the episode in
he time history with respect to any special aspects of the studied
henomenon (e.g., spawning or flowering seasons). Whatever their
efinition, the essential requirement of the episodes is that there is
ome number 𝐾 ≤ 𝑚 of them and, that the entire remembered history
f the signal 𝐗 = {𝑋1, 𝑋2,… , 𝑋𝑚} contains these 𝐾 distinct episodes
𝑘 = {𝑋𝑠𝑘 , 𝑋𝑠𝑘+1 ,… , 𝑋𝑠𝑘+𝑛𝑘−1

}, 𝑘 = 1,… , 𝐾, where 𝑛𝑘 denotes the
length of the 𝑘th episode and 𝑠𝑘 is its starting time location.1 Namely,
𝐾
∪
𝑘=1

[

𝐸𝑘
]

⊆ 𝐗. (1)

Note that while the elements comprising the episode 𝐸𝑘 would most
often be consecutive, this is not a requirement. Thus, it is possible that
𝑋𝑠𝑘+1 ≠ 𝑋𝑠𝑘+1. However, in most of our illustrations the episodes indeed
consist of consecutive observations and in such a case, they will be
denoted by 𝐸𝑘 = {𝑋𝑠𝑘 , 𝑋𝑠𝑘+1,… , 𝑋𝑠𝑘+𝑛𝑘−1}, 𝑘 = 1,… , 𝐾.

The intensity, 𝐼(𝐸𝑘), of the episode 𝐸𝑘 can be any function of
the observations comprising 𝐸𝑘, as explained in the next Section 2.1.
Collectively, the set of intensity values will be denoted by the symbol
𝑰 . Furthermore, we need to capture the relative importance of the
episodes 𝐸1,… , 𝐸𝐾 . This will be done with the help of relative impor-
tance weights, collectively denoted by 𝒘. Note that the intensity is a
measure of the strength of each episode, whereas importance weights
are intended to capture the relative impact of multiple episodes on the
phenomenon of interest.

With respect to the collection of episodes in expression (1), we
define a family of associated IMPIT indices extracted from the signal
of the environmental variable 𝐗. This family is of the form

𝑋(𝑰 ,𝒘) =
𝐾
∑

𝑘=1
𝑤(𝐸𝑘)𝐼(𝐸𝑘), (2)

where 𝑤(𝐸𝑘) and 𝐼(𝐸𝑘) denote the importance weight and the in-
tensity measures associated with episode 𝐸𝑘, respectively. We note
that episode related parameters 𝑠𝑘, 𝑛𝑘 and their relationship to the
number of episodes 𝐾 influence Eq. (2). However, to a large extent
their values will be predetermined by expert knowledge used to identify
likely relevant intermittent episodes (e.g., see definition of marine

1 Even the requirement 𝐾 ≤ 𝑚 could be relaxed but we would expect it to
old in most applications.
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Fig. 1. Examples of the shape of 𝑤1(𝑛𝑘 , 𝑚) for different dampening parameters 𝑎, where
𝑛𝑘 is measured in months. Colour code: 𝑎 = 0.50 ( ), 0.75 ( ), 1.00 ( ), 2.00 ( ),
.00 ( ), 4.00 ( ) and 5.00 ( ).

eatwaves in Section 3.1). IMPIT indices are intended to be used in
xploratory data analysis aimed at determining whether a class of
ntermittent environmental episodes are relevant to some phenomenon
f interest. Hence, for each set of importance weights and intensities
(𝐼,𝑤) is assigned a numerical value at the current time 𝑡. However,

if we considered such an index over a range of 𝑡 values, we would be
onstructing a time series {𝑋𝑡(𝐼,𝑤)}𝑡≥0 which may not be stationary,

especially if that were also the case for the original environmental
data series. The question of stationarity would properly be addressed
in follow-up confirmatory studies invoking techniques for testing and
accounting for non-stationarity of time series (e.g., see Hamilton (1994)
and Tsay (2005)).

2.1. Intensity of episodes

An intensity function 𝐼(𝐸𝑘) = 𝐼(𝑋𝑘1 , 𝑋𝑘2 ,… , 𝑋𝑘𝑛𝑘
) should map

observed values in the episode onto a number capturing the inten-
sity or strength of that episode. Several natural candidates could be
considered for such functions including, the mean of the observations
{𝑋𝑘1 , 𝑋𝑘2 ,… , 𝑋𝑘𝑛𝑘

}

𝐼(𝐸𝑘) = 𝐼(𝐸𝑘) =
1
𝑛𝑘

𝑛𝑘
∑

𝑗=1
𝑋𝑘𝑗 , (3)

r the logarithm of their sum

(𝐸𝑘) = 𝐼 𝑙(𝐸𝑘) = 𝑙𝑜𝑔

( 𝑛𝑘
∑

𝑗=1
𝑋𝑘𝑗

)

. (4)

ther candidates such as, the median, geometric mean, signal-to-noise
atio could also be considered (ensuring that each is well defined).

.2. Weights of episodes

An essential ingredient in the construction of an IMPIT index
i.e., Eq. (2)) is the relative importance weight of each episode (i.e.,
(𝐸𝑘) for each 𝑘). We postulate that the weights 𝑤(𝐸𝑘) are all non
egative numbers lying in the interval [0, 1], with 1 corresponding
o episodes viewed as most important to the studied phenomenon in
he aggregate index 𝑋(𝑰 ,𝒘). There are, at least, the following three
pproaches to the construction of these weights:
3

a

(1) Multiplicative, product form, of these weights given by

𝑤(𝐸𝑘) = 𝑤1(𝑛𝑘, 𝑚)𝑤2(𝑠𝑘, 𝑚)𝑤3(𝐸𝑘), (5)

where 𝑤1, 𝑤2, 𝑤3 ∈ [0, 1] are intended to capture the importance
of persistence, recency and timing of the episode 𝐸𝑘 of length
𝑛𝑘 and starting position 𝑠𝑘 in the memory of length 𝑚. Any of
these weights could also be set to 0 or 1 depending on exogenous
information available. In absence of deeper understanding of the
persistence, recency and/or memory aspects, 𝑤1(𝑛𝑘, 𝑚), 𝑤2(𝑠𝑘, 𝑚)
and 𝑤3(𝐸𝑘) can be set equal to 1 for every 𝑘.

(2) Construction where the weights can be used purely as a technical
tool to achieve a desired form of the 𝑋(𝑰 ,𝒘) indices. This is
illustrated in the remark, below.

(3) Construction based on expert domain knowledge. This may de-
pend on either more detailed understanding of the phenomena
defining the episodes, or on the intended target response vari-
able that a study aims to explain (at least partially) with the help
of the 𝑋(𝑰 ,𝒘) indices.2

emark. Note that most standard statistical indices can be easily recov-
red within the above 𝑋(𝑰 ,𝒘) family. For instance, if we wanted the
ean of observations {𝑋1, 𝑋2,… , 𝑋12}, all we need to do is define 𝐸𝑘 =
𝑘 for each 𝑘, the memory 𝑚 = 12, the intensity function to be 𝐼(𝐸𝑘) =

𝑋𝑘
12 and all the weights to be 𝑤(𝐸𝑘) = 1, for each 𝑘. Similarly, other
indices such as medians, moving averages, or coefficient of variation
can be naturally constructed in the above form.

In the remainder of this subsection, we propose certain specific
algebraic forms for the weights in (5) which require users to calibrate
only a small number of parameters while offering considerable freedom
in choosing their shape. Exponential form maps have natural appeal as
they frequently arise in a wide range of growth/decay models. Also in
fishery applications that motivated this study, survival rates are often
expressed as exponentials of the sum of natural and fishing mortalities
(e.g., see Quinn and Deriso (1999)). For the sake of consistency, we
used exponential type forms in all cases.

2.2.1. Persistence
It is well known that persistence of certain environmental events can

have considerable impact. For instance Li and Thompson (2021) state
‘‘Persistence has a key role in the climate impacts of a given temperature
event’’. To describe the persistence of an episode we used the following
functional form

𝑤1(𝑛𝑘, 𝑚) = 𝑒𝑥𝑝
(

−𝑎
(

1 −
𝑛𝑘
𝑚

))

, (6)

where 𝑛𝑘 is the length of episode 𝐸𝑘, 𝑚 the memory, and 𝑎 > 0 the
ampening parameter. For each fixed 𝑎, this formula places low weights
n short episodes (see Fig. 1). This figure also shows that different
alues of parameter 𝑎 control both the slope and the curvature of the
arametrised family of convex functions represented by (6).

.2.2. Recency
Recency of an episode could also play an important role in its

mpact on the studied phenomena (Deryugina, 2013; Hoffmann et al.,
022). Frequently, but not always, recent episodes can be expected to
ave greater impact than those that happened in more distant past. An
bvious indicator of the recency of the episode 𝐸𝑘 = {𝑋𝑠𝑘 , 𝑋𝑠𝑘+1,… ,
𝑠𝑘+𝑛𝑘−1} is the ratio of 𝑠𝑘∕𝑚 ∈ [0, 1], with high values indicating less

recent events. If we use this ratio to design an importance weight that
calibrates recency, we could use the following two-step process.

2 We do not discuss this approach in any more detail as our applications
re used mainly as illustrations of the generic methodology.
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Fig. 2. Examples of the shape of 𝑤2(𝑠𝑘 , 𝑚) function when 𝑚 = 96 (months) and parameters 𝑐 and 𝑏 take the indicated values. Colour code: 𝑐 = 0.00 ( ), 0.25 ( ), 0.50 ( ), 0.75

) and 1.00 ( ).
Let us define the function of 𝑠𝑘 (starting time of the episode 𝐸𝑘) and
𝑚 the memory by

𝜈(𝑠𝑘, 𝑚) = 𝜆
( 𝑠𝑘
𝑚

)𝑐 (
1 −

𝑠𝑘
𝑚

)1−𝑐
, (7)

where 0 ≤ 𝑐 ≤ 1, and the scaling parameter 𝜆 > 0 is chosen
to ensure that 𝜈(𝑠𝑘, 𝑚) ≤ 1. To capture the relative importance of
recency of episode 𝐸𝑘 within the period considered we again propose
an exponential form

𝑤2(𝑠𝑘, 𝑚) = 𝑒𝑥𝑝
[

−𝑏
(

1 − 𝜈(𝑠𝑘, 𝑚)
)]

, (8)

where 𝑏 > 0. When Eq. (7) is substituted into (8), this ensures that
𝑤2(𝑠𝑘, 𝑚) also range between 0 and 1 and attain a maximum when
𝜈(𝑠𝑘, 𝑚) = 1. The parameter 𝑏 can be viewed as a dampening (or
accelerating) factor of the rate of decay away from the maximum. For
instance, from Fig. 2 we see that 𝑏 = 0.3 dampens the rate of decay of
these weights to always remain above 0.7, while 𝑏 = 1.75 permits most
of them to drop to below 0.3.

The parameter 𝑐 can be used to assign more or less importance to
episodes that occur earlier or later in the history. From Fig. 2 we can
see that when 𝑐 = 0 (dark purple line), episodes starting late in the
memory (𝑠𝑘 close to 𝑚) obtain 𝑤2(𝑠𝑘, 𝑚) values that are smaller than
episodes starting early in that history (𝑠𝑘 close to 1), and conversely
when 𝑐 = 1 (light purple line). Note that the peak of 𝑤2(𝑠𝑘, 𝑚) coincides
with the value of 𝑠𝑘 that maximises 𝜈(𝑠𝑘, 𝑚), and hence also 𝑤2(𝑠𝑘, 𝑚).
For any fixed 𝑐 strictly between 0 and 1, 𝑠∗𝑘 = 𝑐𝑚 is the maximiser of
𝜈(𝑠𝑘, 𝑚). Since the starting time is an integer, in practice, the peak will
be set to occur at the nearest integer to that ratio. When parameters 𝑎,
𝑏 and 𝑐 are calibrated to optimise a performance measure, researchers
may be particularly interested in the ratio 𝑐 =

𝑠∗𝑘
𝑚 as it is an indicator

of the most important relative recency, with respect to the memory 𝑚.

2.2.3. Timing
Depending on the application, the importance weights of episodes

may need to be modulated further by the timing of the occurrence of
these episodes with respect to one or more response variables. For in-
stance, in the fishery science application, discussed below, the response
variable is the SCPUE, which is a proxy for abundance of the species
of interest. If the environmental episodes of IMPIT indices occurred
at times overlapping sensitive periods in the species’ lifecycle, that
information should modulate the values of the indices. For example,
temperature can be most influential at critical windows of time in
the life history of a focal organism, such as spawning, egg or larval
development, seed germination, or crop desiccation pre-harvest. Thus,
it is natural to focus on a window of time in a species’ life history where
it is most susceptible to that environmental condition. Mathematically,
such modulation can be modelled in a variety of ways. Perhaps, the
4

easiest of these is by incorporating a third, multiplicative, importance
weight 𝑤3 ∈ [0, 1], designed to capture the special timing of interest (if
any) of the occurrence of the episode 𝐸𝑘.

We shall denote the special timing we are interested in by 𝒯 . Hence,
the overlap with the episode 𝐸𝑘 can be denoted by 𝐸𝑘 ∩ 𝒯 = 𝒯𝑘 and
its length by 𝜏𝑘. Now we define the third timing weight by

𝑤3(𝐸𝑘) = 1 − 𝑒𝑥𝑝
[

−𝑑
(

𝜏𝑘
𝑛𝑘

)]

, (9)

where the fraction 𝜏𝑘∕𝑛𝑘 is intended to capture how much of the
episode is taken by this overlap and 𝑑 is a dampening parameter, 𝑑 ≥ 0.

The left panel of Fig. 3 illustrates a typical overlap of the special
timing of the spawning season of snapper with a 2008 La Niña episode.
Snapper spawn in aggregations over several months (generally May
to October) and synchronise spawning on the lunar cycle (Wortmann
et al., 2018). The right panel of Fig. 3 shows the impact of the
dampening parameter 𝑑 on the shape of 𝑤3(𝐸𝑘), as a function of the
ratio 𝜏𝑘∕𝑛𝑘.

2.3. Periodic seasonality indices

In this case each episode 𝐸𝑘 is of equal length 𝑛𝑘 = 𝑛 and they occur
with periodic regularity.

𝐸𝑘 = {𝑋𝑘1 , 𝑋𝑘2 ,… , 𝑋𝑘𝑛}, 𝑘 = 1,… , 𝐾. (10)

where the number 𝐾 of these episodes is limited by spacings be-
tween them and the total memory 𝑚 under consideration. For instance,
consider a memory of, say, 𝑚 = 48 months counting backwards
from December of the current year. For episodes capturing the spawn-
ing aggregations of snapper (May–October) there would be exactly
𝐾 = 4 such episodes, consisting of 𝐸1 = {𝑋3, 𝑋4,… , 𝑋8}, 𝐸2 =
{𝑋15, 𝑋16,… , 𝑋20}, 𝐸3 = {𝑋27, 𝑋28,… , 𝑋32} and 𝐸4 = {𝑋39, 𝑋40,… ,
𝑋44}.

2.4. Threshold-crossing indices

These concern situations where episodes of interest are defined by
only those observations which exceed or fall below some specified
threshold for sufficiently long. Let 𝛿 be a threshold and 𝐸𝑘 be the 𝑘th
episode of interest, of duration 𝑛𝑘, be defined by either

𝐸𝑘 = 𝐸𝑢
𝑘(𝛿,𝓁) = {𝑋𝑘𝑗 |𝑋𝑘𝑗 ≥ 𝛿, 𝑗 = 1,… , 𝑛𝑘 & 𝑛𝑘 ≥ 𝓁}, (11)

or

𝐸𝑘 = 𝐸𝑑
𝑘 (𝛿,𝓁) = {𝑋𝑘𝑗 |𝑋𝑘𝑗 ≤ 𝛿, 𝑗 = 1,… , 𝑛𝑘 & 𝑛𝑘 ≥ 𝓁}, (12)

where 𝓁 denotes the minimum required duration (with 𝓁 = 1 being
the default). Here, the superscript 𝑢 denotes up-episodes (above the
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Fig. 3. Left panel: Example of overlapping between La Niña episode during 01/2008-01/2010 and the May–October spawning season for snapper (Chrysophrys auratus) in yellow.
𝑌 -axis indicates monthly SOI value, with sustained SOI values above 8 for at least 5 consecutive months indicating a La Niña episode. Right panel: Examples of the shape of
𝑤3(𝐸𝑘) function when 𝑚 = 96. The differences in colour correspond to changes in the parameter 𝑑.
Fig. 4. Time series of the monthly Southern Oscillation Index (SOI) from January 1930 to December 2020. Based on Bureau of Meteorology Australia (2012) definition for El
Niño and La Niña episodes, values below −8 and above 8 for at least five consecutive months are shaded red and blue, respectively.
threshold) whereas 𝑑 denotes down-episodes (below the threshold). The
selection of the sub-sequences of the 𝑛𝑘 observations 𝑋𝑘𝑗 comprising 𝐸𝑘
would typically depend on additional, application specific knowledge.

Next, any IMPIT index of the form (2) associated with episodes
𝐸𝑢
𝑘(𝛿,𝓁) will be called a Super𝑋𝑢(𝛿,𝓁) index. Similarly, any IMPIT index

associated with episodes 𝐸𝑑
𝑘 (𝛿,𝓁) will be called a Sub𝑋𝑑 (𝛿,𝓁) index. In

the default case of 𝓁 = 1, we simplify the above notation to 𝐸𝑢
𝑘(𝛿) and

Super𝑋𝑢(𝛿) (respectively, 𝐸𝑑
𝑘 (𝛿) and Sub𝑋𝑑 (𝛿)). Since increasing 𝓁 only

makes conditions in (11) more restrictive, it follows that the number of
𝐸𝑢
𝑘(𝛿) episodes is greater or equal than that of 𝐸𝑢

𝑘(𝛿,𝓁) episodes, for any
𝓁 > 1. Similarly, for (12) and the down episodes.

The extensively studied El Niño and La Niña episodes illustrate this
situation. They are extracted from the SOI time series 𝐗. In particular,
according to Bureau of Meteorology Australia (2012), an El Niño
episode is simply 𝐸𝑑

𝑘 (−8, 5) where the threshold 𝛿 = −8 and minimum
duration of 𝓁 = 5 are used. Analogously, a La Niña episode corresponds
to 𝐸𝑢(8, 5) (see Fig. 4).
5

𝑘

2.5. Calibration via exploration of the parameter space

An underlying contribution of this study is the demonstration that
importance weights of the episodes 𝐸𝑘 may be calibrated to achieve
specific research objectives. In our application, the dual objective is
to identify parameter configurations that: (a) achieve high absolute
value of the Pearson correlation coefficient between an IMPIT index
and a response variable meaningful in fish stock assessment, and (b)
are sufficiently stable with respect to small changes in other parame-
ters, especially the memory. We note, however, that other statistical
measures of association such as Spearman correlation, or Kendall tau
could also be used. In fact, IMPIT−𝑎 allows the user these choices.
Here we illustrate our method only with the most widely used Pearson
correlation.

For each, fixed, memory parameter 𝑚, all the weights discussed
above are fully characterised by the choice of the parameter vector
(𝑎, 𝑏, 𝑐, 𝑑), where 𝑎, 𝑏, 𝑑 ≥ 0 and 𝑐 ∈ [0, 1]. In most applications, the
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Fig. 5. Monthly SOI values during 07∕1993–07∕1999 and 07∕2006–07∕2011. Columns in red and blue correspond to values below and above −8 and 8 thresholds (dashed line) used
to illustrate some of the 𝐸𝑑 (−8) and 𝐸𝑢(8) episodes used in this study.
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parameters 𝑎, 𝑏 and 𝑑 will also have practical upper bounds. Thus,
numerically, the search for an optimal parameter configuration can
be carried out by a grid search of a 4−dimensional hyperrectangle.
That search could then be repeated for multiple values of the memory
parameter 𝑚. With respect to objective (a), an approximately opti-
mal configuration (𝑚∗, 𝑎∗, 𝑏∗, 𝑐∗, 𝑑∗) could be identified by such an
xhaustive search.

However, such a brute-force calibration has some drawbacks.
learly, it is computationally intensive. Further, the best parameter
onfiguration with respect to (a) may be unstable with respect to (b)
nd may result in counter-intuitive importance weights, in the context
f the application. Working on an assumption that IMPIT indices would
e primarily of interest to users with prior expert knowledge of the
roblem studied, we suggest a structured exploration of the parameter
pace. Hence, in our illustrative applications, we propose the following
tage-wise explorative calibration that is simple to implement, preserves
he logical order of the design of IMPIT indices, and is likely to identify
ultiple interesting parameter configurations for further consideration.

At the first stage, for each value of memory 𝑚, plots of correlation
oefficient on the vertical axis (𝑦-axis) and 𝑎 values on the horizontal
xis (𝑥-axis) are generated while setting 𝑤2 = 𝑤3 = 1. Based on these
lots a candidate value of the parameter 𝑎 is chosen. This choice deter-
ines the 𝑤1 weight and may, but need not necessarily, correspond to

he maximum of the absolute value of the relevant correlation.3 At the
second stage, with the already chosen 𝑎− value and 𝑤3 = 1 fixed, plots
of correlation coefficient on the vertical axis (𝑦-axis) and 𝑐 values on
the horizontal axis (𝑥-axis) are generated, for alternative pairs of 𝑚 and
𝑏 parameters. These plots can be visualised in a composite ‘‘map’’, in
the parameter space, in order to explore and find candidate parameter
configurations that meet both objectives (a) and (b). At the third stage,
we repeat the preceding while considering only episodes that overlap
a special timing season. This stage consists of generating composite
maps for alternative values of 𝑑 and selecting promising candidate
configurations.

We note that even in the absence of a response variable suggested
by a specific application, IMPIT indices can still be optimally calibrated
with respect to their own desirable characteristics. For instance, for
each fixed 𝑚, configuration (𝑎, 𝑏, 𝑐, 𝑑) can be chosen to maximise the
𝑅2 statistic of the corresponding IMPIT index signal when fitted to a
prescribed model (e.g., a linear model, or a power law). Moreover,
the strength of the influence can be captured by a wide range of
quantitative measures (e.g., goodness-of-fit or efficiency measures), see
for instance Krause et al. (2005). The choice of such a measure, while
important, is not the focus of this study.

3 Stability of the correlation coefficient with respect to changes in 𝑎 is also
aken into consideration. If the maximisation criterion does not meaningfully
ifferentiate among 𝑎− values, expert suggested value (in the range) can be
elected.
6

A

3. Case studies using fishery and agricultural data

We illustrate the benefits of the IMPIT indices’ design and calibra-
tion in the context of the impact of selected environmental signals on
two fished species in Queensland, snapper (Chrysophrys auratus) and
saucer scallop (Ylistrum balloti), and yield data of wheat production
from NSW. The environmental signals are the Southern Oscillation
Index (SOI) and sea surface temperature (SST). The response variables
are the time series of SCPUE and yield per hectare of wheat. These
signals were selected because studies have demonstrated their strong
correlations with fish catch rates (Joll and Caputi, 1995; Lenanton
et al., 2009; Caputi et al., 2019) and wheat production (Gutierrez,
2017; Wan et al., 2022), particularly in Australia (Rimmington and
Nicholls, 1993; Yuan and Yamagata, 2015; Zheng et al., 2018; Potgi-
eter et al., 2002). A description of the data acquisition and episodes
considered in these case studies is given in Section 3.1 below.

3.1. Data acquisition

Environmental data and two types of intermittent episodes
Monthly SOI values were obtained from the Australian Bureau

of Meteorology (BoM). The SOI is computed from the variations of
monthly mean sea level pressure difference between Tahiti and Dar-
win (Chowdhury and Beecham, 2010). Positive SOI values are generally
associated with a La Niña pattern in the central and eastern equatorial
Pacific and above-average winter/spring rainfall for Australia, particu-
larly across the east and north. Negative SOI values are associated with
El Niño conditions and lower than average winter/spring rainfall over
much of eastern Australia (Bureau of Meteorology Australia, 2012).

Let 𝐗 denote the underlying SOI signal. We illustrate a class of
threshold crossing IMPIT indices extracted from 𝐗. In particular, we
consider up-episodes 𝐸𝑢

𝑘(8) and down-episodes 𝐸𝑑
𝑘 (−8) corresponding to

Super𝑋𝑢(8) and Sub𝑋𝑑 (−8) indices, requiring calibration. The choice of
he thresholds 𝛿 = 8 and 𝛿 = −8 was guided by their use in a common
efinition of La Niña and El Niño episodes, respectively (Bureau of
eteorology Australia, 2012). For example, Fig. 5 displays five 𝐸𝑢

𝑘(8)
pisodes during 07∕2006–07∕2011 (right panel) and six 𝐸𝑢

𝑘(8) episodes
uring 07∕1993–07∕1999 (left panel). Note that in the case of the up-
pisodes 𝐸𝑢

𝑘(8) only three of these correspond to La Niña episodes
asting at least five months, since the single month episode in April 2009
nd then the two monthly episode in April–May 2010 do not qualify as
a Niña episodes. Similarly, in the case of the down-episodes 𝐸𝑑

𝑘 (−8)
nly two of the six correspond to El Niño episodes.

The SST data was sourced from the Integrated Marine Observ-
ng System (IMOS) database with 6−day average, night time cap-
ure (‘‘ghrsst_L3S_6d_ngt’’) over a period of approximately 28 years
01/04/1992 to 31/12/2019). The 6−day average night time data set
as used to avoid any daytime temperature artefacts (e.g. sun glint).

lso, 6−day averaging fills gaps that are otherwise present in the daily
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Fig. 6. The SST climatology (blue), 90th percentile MHW threshold (green), and SST
ime series (black) for each MHW at south of 22◦ S to Hervey Bay. The red filled areas

indicate the period of time associated with the identified MHWs.

time series as a result of cloud cover blocking satellite view of the
ocean surface. The spatial distribution of SST used in the analysis
corresponded to the areas of the scallop fishery described in O’Neill
et al. (2020).

Marine heatwaves (MHWs) are anomalous ocean temperature
events, identified by extremely warm SST that persists for days to
months (Hobday et al., 2016). They can be caused by a mix of atmo-
spheric forcing and oceanographic conditions and depend on location
and season. For instance, a heatwave that affects coral reefs in warmer
waters will have higher temperatures than one that affects kelp forests
in cooler waters.

We followed the hierarchical definition of MHW episodes according
to Hobday et al. (2016). This definition, takes into account the fol-
lowing key features: (i) Anomalously warm temperatures with respect
to a baseline average temperature over a period of 30 years, and a
high percentile threshold of 90; (ii) Prolonged events persisting for at
least five days; (iii) Discrete events appearing with sufficient separation
between successive events.

The corresponding MHW events allow us to form episodes 𝐸𝑘 and
IMPIT indices of the form considered in Section 2. For example, Fig. 6
displays the SST climatology, 90th percentile MHW threshold and SST
time series for a typical MHW episode at a location off the Queensland
coast (south of 22◦ S in Hervey Bay). The red area between the black
and green curves identifies the episode. The intensity function we have
selected is the ‘‘mean temperature anomaly during the MHW’’.

Fishery data
For snapper, standardised catch rate data were provided by Fishery

Queensland. The top panel in Fig. 7 displays the annual time series
of SCPUE for snapper from the Queensland commercial line fishery.
Overall, we observe a decreasing trend in catch rates across most
of the dataset, following a peak in SCPUE in 1989. In the case of
scallop, catch rates were obtained from Wortmann et al. (2020). Catch
rates from November were chosen for use in the analysis because the
fishing season has traditionally commenced in November, scallop catch
rates generally peak at this time, and there is negligible fishing effort
from May–October (O’Neill et al., 2020). The November catch rate has
suffered a sharp decline in recent years. In Fig. 7b we observe a marked
decline from 2012 to 2017 with a partial recovery in 2018. Note that
there are no November catch rate data after the fishery was closed in
7

2018.
Agricultural data
Data on wheat production in NSW, from 1974 to 2021, were ob-

tained from the Australian Government, Department of Agriculture,
Fisheries and Forestry (DAFF) (https://www.agriculture.gov.au/abare
s/research-topics/agricultural-outlook/data#australian-crop-report-dat
a). We have considered the wheat production in NSW as this is the
main crop grown in the state, which is the second-highest producing
State in Australia (Department of Primary Industries NSW, 2007). In
Fig. 7c we observe that even though there are many ups and downs,
there is no strong trend in either direction. However, the low values in
1982, 1994, 2007 and 2018–2019 coincide with strong and moderate El
Niño episodes (http://www.bom.gov.au/climate/history/enso/). There
was an overall dry period across eastern and southeastern Australia
over these two last years (Wang and Cai, 2020).

3.2. The weak baseline associations

There is a natural expectation that environmental signals influence
the abundance and hence harvest of both fish and crops (Aburto-
Oropeza et al., 2010; French et al., 2021; Kangas et al., 2022; Potgieter
et al., 2002; Wan et al., 2022; Zheng et al., 2018). Indeed, marine
heatwaves can have a big impact on coastal fisheries. For example, Ca-
puti et al. (2015) report that adult biomass of saucer scallop and blue
swimmer crabs in Western Australia (WA) declined as a result of the
MHW of 2010∕2011. As a consequence, these commercial fisheries were
closed from 2012 to 2016.

Furthermore, there could be a link between MHWs and SOI os-
cillations (Meynecke et al., 2012; Loughran et al., 2017; Sen Gupta
et al., 2020). For instance, the MHW of 2010/2011, which was re-
ported to be the most extreme event (in intensity, extent and duration)
ever recorded in WA, was a consequence of a strong Pacific La Niña
episode (Caputi et al., 2015; Molony et al., 2021). Further connections
between La Niña and El Niño episodes and harvest of fish and crops
were discussed in Meynecke et al. (2012), Rimmington and Nicholls
(1993) and Gutierrez (2017). In particular, the influence of envi-
ronmental variables on the abundance of certain Queensland fishery
species had been reported in Courtney et al. (2015), O’Neill et al.
(2020) and Filar et al. (2021).

It is also widely accepted that El Niño occurrences adversely influ-
ence crop yields (Iizumi et al., 2014; Gutierrez, 2017). Specifically, they
have negative impact on Australian wheat production (Rimmington and
Nicholls, 1993; Yuan and Yamagata, 2015; Zheng et al., 2018; Potgieter
et al., 2002).

However, the drivers of the Southern Oscillation phenomenon are
complex, and as a result, there are no obvious trends in either the SOI
signal, or its association with the catch rates of snapper or NSW wheat
yield. The top and bottom right panels of Fig. 8 show that there is no
significant linear association between annual catch rates of snapper and
wheat yield with the raw, unmodified annual mean SOI index. Still,
there appears to be weak but significant negative association between
annual mean sea surface temperature and the November catch rates of
scallop as can be seen from the middle right panel of the same figure,
that is consistent with earlier studies O’Neill et al. (2020). The top and
bottom left panels of Fig. 8 indicate absence of linear trend in the mean
annual SOI signal and the middle left panel indicates weak upward
trend in the mean annual SST signal.

Nevertheless, it is possible that important associations are not re-
vealed because the use of baseline annual means of the raw SOI and
SST failed to account for the importance of persistence, recency, and
the timing of the relevant intermittent episodes. Indeed, analyses of the
remainder of this section illustrate, with the help of IMPIT indices, that
this might be the case. These analyses should be viewed as exploratory
rather than confirmatory.

In the remainder of this section, we demonstrate that IMPIT indices
can be calibrated to reveal previously hidden associations between SOI

and SST signals and the catch rates of snapper and scallop in QLD and
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Fig. 7. Time series of standardised catch rates for: (a) snapper (1988–2019) for the Queensland commercial line fishery, (b) saucer scallop in November (1988–2018) for the
Queensland trawl fishery and (c) yield per hectare of wheat production in New South Wales, 1974–2021.
wheat yield in NSW. Relationships between the environmental vari-
ables and the fishery catch rates and wheat yield data were examined
using correlation analyses. In the case of SOI, correlation analyses were
based on 31 years (1988–2019) when working with catch rate data and
47 years (1974–2021) when considering yield data. In the case of SST,
data were available only since 1993, resulting in a shorter time series.

3.3. SOI threshold-crossing indices and snapper (Chrysophrys auratus)

We investigated linear associations between snapper annual SCPUE
and a range of threshold crossing Super𝑋𝑢(8) IMPIT indices constructed
using the methodology of Section 2.4. The intensity of 𝐸𝑢

𝑘(8) episodes
in Super𝑋𝑢(8) indices was computed by Eq. (3).

We implemented the stage-wise explorative calibration described in
Section 2.5. Fig. 9 depicts representatives of composite maps obtained
at each stage, pruned for ease of display. For instance, we displayed
only even values of the memory parameter 𝑚 which ranged from 1 to
41 years. The value of 41 corresponded to the maximum longevity of
snapper in the eastern coast stock reported in Wortmann et al. (2018)

The top panel of Fig. 9 corresponds to the first stage. Setting 𝑤2 =
𝑤3 = 1, it displays plots of the correlation coefficient versus the
parameter 𝑎 ∈ [0, 5] for each value of 𝑚. Those plots exhibited a roughly
8

linear pattern with very small variation. Hence, we chose 𝑎 = 2, which
corresponds to the middle pink curve for 𝑤1 in Fig. 1.

At the second stage, while setting 𝑤3 = 1 (and 𝑎 = 2) we plotted the
correlation coefficient versus the parameter 𝑐 for alternative pairs of 𝑚
and 𝑏. The third stage considers the overlap of 𝐸𝑢

𝑘(8) episodes with the
snapper peak spawning season of June–August and generates composite
maps for alternative values of 𝑑. The second and third top panels of
Fig. 9 display the resulting representative composite maps. The bottom
panel shows the map for only 𝑑 = 1, which led to promising candidate
configurations. For simplicity, only results for values 𝑏 ∈ {1, 3, 5} are
displayed.

Careful examination of Fig. 9 reveals interesting patterns generated
by the stage-wise calibration. In particular, the impact of increasing val-
ues of the memory parameter is notable. Moreover, the inclusion of the
special (June–August) timing generated the most noticeable differences
between stages as it led to the disappearance of all significant negative
correlations for values of 𝑚 ≥ 10 years.

These patterns may also hint at the dual nature of the impact of high
SOI values on snapper catch rates and potentially abundance. Focusing
on 𝐸𝑢

𝑘(8) episodes overlapping winter spawning season is more directly
related to reproductive success and subsequent fish abundance. Thus,
significant positive correlations may be expected here.
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Fig. 8. (a) Time series of annual mean SOI index 1988–2019 (left) and scatterplot between annual mean SOI and annual log-transformed SCPUE of snapper (right). (b) Time series
of SST annual mean 1993–2019 in the saucer scallop fishery region (left) and scatterplot between SST annual mean and November log-transformed SCPUE of saucer scallop (right).
(c) Time series of annual mean SOI index 1974–2021 (left) and scatterplot between annual mean SOI and annual wheat yield in NSW (right). Regression line coloured according
to 𝑝-value, in blue correlations with p-values ≤ 0.05 and in grey with 𝑝-value > 0.05.
On the other hand, the presence of significant negative correlations,
or shorter memories at Stage 2, suggests that the impact of high SOI
alues during non-spawning times of year, may be associated with
atchability (e.g., windier, wetter-than-average conditions depressing
atch rates).

We note that each single dot in the composite maps of Fig. 9 corre-
ponds to a unique configuration of parameters 𝑚, 𝑎, 𝑏, 𝑐 and 𝑑. A simple
ule-of-thumb rule for identifying a promising candidate configuration
s to: (a) search for a dot with a high absolute value of the correlation
nd (b) one that maintains a high correlation value to its immediate left
nd right within its local panel plot, across neighbouring local panels
o its left and right (nearby 𝑚 values), across neighbouring local panels
bove and below (nearby 𝑏 values) and also checks for nearby 𝑎 and 𝑑

values.4

4 Such checks can be easily performed within our app IMPIT−𝑎.
9

U

In all likelihood, there will be multiple promising parameter con-
figurations. Below, we discuss just one such configuration with param-
eters: 𝑚 = 26, 𝑎 = 2, 𝑏 = 3, 𝑐 = 0.75 and 𝑑 = 1. Naturally, users can
choose one or more configurations that best suit their case study and
research objectives.

The left panels of Fig. 10 exhibit the time series of Super𝑋𝑢(8)
IMPIT indices correspond to the three calibration stages. From top
to bottom, we observe marked changes in the shape of the resulting
IMPIT index. At the top level (Stage 1) there appears to be essentially
no linear trend over the 1988–2019 period. Which continues to be the
case at second level (Stage 2).5 As we move to the third level, we see
that the Super𝑋𝑢(8) index exhibits a stronger downward linear trend.
This reflects the importance of restricting to only the winter spawning
season.

5 However, in both stages 1 and 2 there is an observable non-linear
-shaped trend.
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Fig. 9. Correlation coefficient between Super𝑋𝑢(8) indices and annual snapper SCPUE (1988–2019). IMPIT indices were constructed for different values of memory (𝑚 in years),
persistence according to Eq. (6) with 𝑎 = 2, recency conforming to Eq. (8) varying 𝑏 and 𝑐 and timing according to Eq. (9) with 𝑑 = 1. Snapper peak spawning season (June–August)
was the special season considered in Stage 3. Values coloured according to 𝑝-value, in blue scale correlations with p-values ≤ 0.05 and in grey correlations with 𝑝-value > 0.05.
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The right panels of Fig. 10 show the corresponding scattergrams of
uper𝑋𝑢(8) indices with annual snapper log-transformed catch rates.
hese illustrate statistically significant changes in both the magnitude
f the correlations and the degree of goodness of fit of straight line
rends.

In particular, note that at Stage 1 (top row), there is a non-
ignificant negative linear association between the Super𝑋𝑢(8) index
nd the catch rate. Inclusion of the calibrated recency weight, at Stage
(second row), leads to a positive but still non-significant correlation

f 0.29. However, considering the winter spawning season at Stage 3
third row), leads to a much higher correlation of 0.83 corresponding
o 𝑅2 of 0.69.

Our illustrative analyses indicate that Super𝑋𝑢(8) index with a mem-
ry of 26 years and suitably calibrated parameters exhibits some re-
arkably strong linear associations with log-transformed annual snap-
er catch rates. The value 𝑐 = 0.75 in the selected parameter configu-
ation shows that episodes of approximately 20 (26 × 0.75) years in the
ast receive the highest recency importance weight (𝑤2 = 1). Episodes
tarting between 15 and 20 years in the past receive recency weights
ncreasing from 0.79 to 1.0, while those starting between 20 and 25
ears have recency weights decreasing from 1.0 to 0.59. The large
ncrease in correlation from Stage 2 to Stage 3 suggests an impact of
uper𝑋𝑢(8) on spawning and possibly also on subsequent abundance. In
ummary, the results suggest episodic events characterised by elevated
≥8) SOI values during the June–August peak spawning season during
he 15–25 years prior to catch are associated with elevated snapper
ommercial catch rates.
10

𝑤

.4. Marine heatwave indices and saucer scallop (Ylistrum balloti) in
ueensland

For saucer scallops, linear associations between standardised catch
ates and a range of MHW IMPIT indices were explored using the
ethodology of Section 2. As with snapper, the intensity of MHW

pisodes was computed by Eq. (3). We chose to examine the MHW
ndex because of its association with other indices, its influence on
callops and a relatively long time series of available data.

Above average winter SSTs (June–August) are known to be neg-
tively correlated with November–January scallop catch rates from
988–2016, as reported in O’Neill et al. (2020). As noted in Caputi
t al. (2015), in WA annual recruitment of saucer scallops is also
orrelated with SST (see also Joll and Caputi (1995) and Lenanton et al.
2009)). In addition, an extreme MHW in the summer of 2010–2011
ad catastrophic impact on the WA stock (Caputi et al., 2014, 2015,
019). Scallops have an extended spawning season from April to Oc-
ober. However, between April and May most scallops are already
exually mature (Dredge, 1981). Hence, we shall refer to April–May
gg production as the ‘‘autumn component of the spawning season’’.

We performed the stage-wise explorative calibration described in
ection 2.5. Fig. 11 depicts representatives of composite maps obtained
t each stage. For the memory parameter 𝑚, we considered a 48−month
indow. This was chosen because scallops can in some instances live

or up to 4 years (Dredge, 1985; Courtney et al., 2022). Fig. 11 shows
alues of memory increasing in steps of six months.

The top panel of Fig. 11 corresponds to the first stage. Setting
= 𝑤 = 1, it displays plots of correlation coefficient versus the
2 3
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Fig. 10. Time series of Super𝑋𝑢(8) indices and their corresponding scattergrams with annual snapper log-transformed catch rates (1988–2019). For IMPIT indices’ construction,
a memory of 26 years (𝑚 = 26) was used. The intensity of episodes was computed following Eq. (3). Each row corresponds to a step of the stage-wise explorative calibration of
the relative importance weights. Leading to a parameter configuration: 𝑎 = 2, 𝑏 = 3, 𝑐 = 0.75 and 𝑑 = 1. Regression line coloured according to 𝑝-value, in blue correlations with
p-values ≤ 0.05 and, in grey otherwise.
m
M

o
r
a
r

parameter 𝑎 ∈ [0, 5] for each value of 𝑚. Those plots exhibited a roughly
linear pattern but in this case, there was more variation compared to
the case of snapper. Therefore, we chose to use 𝑎 = 0 in 𝑤1, which
means that when constructing indices, all episodes were assigned the
same persistence weight.

At the second stage, while setting 𝑤3 = 1 (𝑎 = 0) we plotted the
correlation coefficient versus the parameter 𝑐 for alternative pairs of
𝑚 and 𝑏 parameters. At the third stage, we repeated the second stage
with only those episodes that overlap the April–May component of the
scallops spawning season. Second and third panels of Fig. 11 display
the resulting representative composite maps. For simplicity, as in the
case of snapper, only results for 𝑏 ∈ {1, 3, 5} are displayed. At the third
stage, we generated composite maps for alternative values of 𝑑. Fig. 11
only displays the map for 𝑑 = 1 as it leads to promising candidate
configurations.

Careful examination of plots in Fig. 11 reveals interesting pat-
terns generated by the stage-wise calibration. In particular, the impact
of considering the special timing (April–May) generated noticeable
differences between stages for values of 𝑚 ≥ 24 months.

Typically, there will be multiple promising parameter configura-
tions. Below, we discuss just one such configuration with parameters:
𝑚 = 30, 𝑎 = 0, 𝑏 = 3, 𝑐 = 0.4 and 𝑑 = 1. Naturally, users can choose
11
one or more configurations that best suit their case study and research
objective.

The left panels of Fig. 12 exhibit the time series of MHW IMPIT
indices for each calibration stage. From top to bottom, we observe
that the shape of the resulting index changes. At top level (Stage 1)
there appears to be a rough downward trend until 2013 followed by
an upward swing. That trend is less pronounced at second level (Stage
2). However, when we move from second to third level, we observe
a period of relative stability between 2000 and 2013 followed by a

arked increase. This reflects the effect of the addition of the spawning
ay–April timing into the calibration.

The right panels of Fig. 12 show the corresponding scattergrams
f MHW IMPIT indices with November log-transformed scallop catch
ates. In particular, note that at Stage 1 (first row), there is a neg-
tive linear association between MHW IMPIT index and the catch
ate of −0.41. Inclusion of the recency weight calibration, at Stage 2

(second row), led to a very marginal but now statistically significant
improvement of the correlation. Moreover, at Stage 3 (third row),
the calibration of the timing 𝑤3 weight, led to a highly significant
correlation of −0.64 as compared to Stages 1 and 2, which accounts
for 40% of variability.
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Fig. 11. Correlation coefficient between MHW IMPIT and November scallop SCPUE (1997–2018). IMPIT indices were constructed for different values of memory (𝑚 in months),
persistence according to Eq. (6) with 𝑎 = 0 and recency conforming to (8) varying 𝑏 and 𝑐 and timing according to Eq. (9) with 𝑑 = 1. April–May was the special season considered
in Stage 3. Values coloured according to p-value, in blue scale correlations with p-values ≤ 0.05 and in grey correlations with 𝑝-value > 0.05.
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Our illustrative analyses indicate that a MHW IMPIT index with
memory of 30 months and suitably calibrated parameters exhibits

ome strong linear associations with log-transformed November scallop
atch rates. The value of 𝑎 = 0 in the selected parameter configuration
eans that all episodes receive equal persistence weight and the value

f 𝑐 = 0.4 shows that episodes of 12 (30 × 0.4) months in the past
eceive the peak recency importance weight (𝑤2 = 1). Episodes starting
etween 6 and 12 months in the past receive recency weights increasing
rom 0.74 to 1.0, while those starting between 12 and 18 months have
ecency weights decreasing from 1.0 to 0.79.

The increase in correlation in Stage 3 compared to Stages 1 and
is suggestive of an impact of April–May (autumn component of the

pawning season) MHW IMPIT index on subsequent abundance. This
eans that MHW episodes ranging from 6 to 18 months in the past may

trongly depress scallop catch rates in the following year. This is likely a
esult of either direct heat stress to the scallops themselves, or possible
ndirect effects of warm waters affecting primary production (i.e., the
12

S

hytoplankton and zooplankton that scallops feed on) and therefore
educing food availability for scallops, predators and disease, all of
hich can affect scallop abundance (Courtney et al., 2015; Richardson
t al., 2020).

The strong correlation (−0.64) of the MHW IMPIT index with log-
ransformed SCPUE is not surprising since the bottom panel of Fig. 8
and findings of O’Neill et al. (2020)) indicates a significant association
ith the raw SST signal. However, focusing on MHW IMPIT indices
verlapping April–May reveals even stronger associations.

.5. SOI threshold-crossing indices and New South Wales wheat yield

We investigated linear associations between annual yield per
ectare of wheat and a range of threshold crossing Sub𝑋𝑑 (−8) IMPIT
ndices constructed using the methodology of Section 2.4. The intensity
f 𝐸𝑑

𝑘 (−8) episodes in Sub𝑋𝑑 (−8) indices was computed by Eq. (3).
We implemented the stage-wise explorative calibration described in
ection 2.5. Fig. 13 depicts representatives of composite maps obtained
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Fig. 12. Time series of MHW IMPIT indices and their corresponding scattergrams with November scallop catch rates (1997–2018). For IMPIT indices’ construction, a memory of
30 months (𝑚 = 30) was used. The intensity of episodes was computed following Eq. (3). Each row correspond to a step of the stage-wise explorative calibration of the relative
mportance weights. Leading to a parameter configuration: 𝑎 = 0, 𝑏 = 3, 𝑐 = 0.4 and 𝑑 = 1. Regression line coloured according to 𝑝-value, in blue correlations with p-values ≤ 0.05
nd, in grey otherwise.
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t each stage, pruned for ease of display. For instance, we displayed
nly values of the memory parameter 𝑚 which ranged from 1 to 10
ears. The value of 10 was selected to check for long term effects. In
ecent decades, Australia has seen a shift towards higher temperatures
nd lower winter rainfall, which has had significant effects on many
armers (Hughes et al., 2022).

The top panel of Fig. 13 corresponds to the first stage. Setting
2 = 𝑤3 = 1, it displays plots of the correlation coefficient versus the
arameter 𝑎 ∈ [0, 5] for each value of 𝑚. Those plots exhibited a roughly
inear pattern with very small variation and no significant correlations.
s in Section 3.3, we set 𝑎 = 2.

At the second stage, while setting 𝑤3 = 1 (and 𝑎 = 2) we plotted the
orrelation coefficient versus the parameter 𝑐 for alternative pairs of 𝑚
nd 𝑏 (see the second panel of Fig. 13). For simplicity, only results for
alues 𝑏 ∈ {1, 3, 5} are displayed. We note that for the short memory
f 1 year we observed sustained statistically significant correlations for
everal values of 𝑐 and 𝑏 ranging from 3 to 5. There were also some
solated significant correlations for longer term memories of 5 years
nd above. We emphasise 𝑚 = 5 because these associations carry over
lso to Stage 3 discussed below.

The third stage considers the overlap of 𝐸𝑑
𝑘 (−8) episodes with the

eason of January–April which precedes the usual sowing period in
SW. Arguably, the conditions of the soil at the time of sowing have an
13

o

mpact on the subsequent yield. We then generated the composite maps
or alternative values of the parameter 𝑑. The third panel of Fig. 13
isplays the representative composite maps for only one value 𝑑 = 1,
s other values of 𝑑 result in similar outputs.

Careful examination of Fig. 13 reveals interesting patterns generated
y the stage-wise calibration. The significant positive correlations are to
e expected as it is generally believed that decreasing negative values of
OI maybe associated with higher wheat yields (Wan et al., 2022). The
poradic significant negative correlations for long memories of 8 years
nd above are noted but viewed as possibly spurious because they are
ess stable with respect to parameter changes. Moreover, the inclusion
f the special (January–April) timing generated the most noticeable dif-
erence between stages as it led to the significant positive correlations
or the memory of 𝑚 = 5 years. At the same time, the associations at
he memory of 𝑚 = 1 year became statistically insignificant when the
pisodes were restricted to the special period.

The strongest observed correlation between the Sub𝑋𝑑 (−8) IMPIT
ndex of SOI and the wheat yield per hectare was 0.44 which ac-
ounts for nearly 20% of the variability. This is much higher than the
.29 reported in panel (c) of Fig. 8 for the corresponding correlation
ith simple mean SOI index. Once again, this illustrates that IMPIT

ndices can potentially identify meaningful associations in this context
f agricultural application.
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Fig. 13. Correlation coefficient between Sub𝑋𝑑 (−8) indices and NSW annual wheat yield (1974–2021). IMPIT indices were constructed for different values of memory (𝑚 in years),
persistence according to Eq. (6) with 𝑎 = 2, recency conforming to Eq. (8) varying 𝑏 and 𝑐 and timing according to Eq. (9) with 𝑑 = 1. January–April was the special season
considered in Stage 3. Values coloured according to p-value, in blue scale correlations with p-values ≤ 0.05 and in grey correlations with 𝑝-value > 0.05.
4. IMPIT app

In order to facilitate the use of IMPIT indices, a software tool
IMPIT−𝑎 was developed in the R environment (Core Team, 2021)
utilising ‘‘Shiny’’ (Chang et al., 2021), an R package that provides a
web framework for building web applications using R (https://cran.r-
project.org). It is important to note that R is open-source and widely
used in environmental studies (Aparicio et al., 2019; Díaz et al., 2021).

The IMPIT−𝑎 shiny app code is available on GitHub (https://github.
com/manumendiolar/IMPIT_shiny) and needs to be run into the R or
RStudio (RStudio Team, 2021) environment, following instruction on
the GitHub page. Alternatively, it can be accessed via the shinyapps.io
platform (see Section 6). Note that because the app was built in R, it can
be run on Windows, Linux, or macOS systems. With IMPIT−𝑎 deployed
as a web application, it can be used regardless of operating systems,
hardware, or other installed software, since it can be run via a web
browser. The aims of IMPIT−𝑎 are to:

• Provide a user-friendly interface for constructing IMPIT indices.
• Provide a smooth workflow ranging from importing and exploring

raw data to defining episodes.
14
• Allow users to choose from a menu of intensity and relative
weight functions.

• Visualise imported data, defined episodes, and constructed IMPIT
indices.

The app is intended to be self-contained in the sense that all the
instructions and definitions are embedded in help messages within the
software. The main tasks of the app can be summarised in four steps:

1. Import the environmental data.
2. Define discrete episodes.
3. Construct IMPIT index.
4. Explore IMPIT index.

Each of the above steps is described in more detail in the remainder
of this section. Fig. 14 shows the IMPIT−𝑎 user interface structure with
a dynamically linked sidebar menu and Main Panel.

4.1. Input data

Construction of IMPIT indices depends primarily on characterisa-
tion of discrete episodes of interest. The app offers the options of

https://cran.r-project.org
https://cran.r-project.org
https://cran.r-project.org
https://github.com/manumendiolar/IMPIT_shiny
https://github.com/manumendiolar/IMPIT_shiny
https://github.com/manumendiolar/IMPIT_shiny
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Fig. 14. IMPIT−𝑎 user interface structure. Sidebar Menu contains Navigational Tabs and app options. Main Panel contains app visualisations capabilities.
Fig. 15. Example of Data tab, illustrated with time series plot of the monthly values of Southern Oscillation Index (SOI) from January 1900 to December 2020.
either constructing threshold-crossing episodes or by directly uploading
user-supplied episodes.

For the first option, the user has to upload the time series of
the environmental signal, via the Data tab, and then construct the
episodes, via the Episodes tab. Fig. 15 shows an example of the Data
tab. Uploaded data can be checked via Plot, Table, Summary and str()
tab options. Note that all users can interact with graphs on display.
Zooming in and out, point value display, panning graphs or saving the
plot by clicking ‘‘download plot as a png’’ button in the toolbar at the
top of the graph.

Once this is done, the user can proceed to define episodes using
the Episodes tab. This provides a definition of episodes based on the
threshold-crossing indices introduced in Section 2.4. User will have
to select a threshold and choose between up or down episodes with
respect to the chosen threshold. In addition, the minimum duration of
episodes can also be selected (by default it is 1). Minimum duration
means, minimum consecutive values above or below the threshold (see
Fig. 16). However, if the user already has a list of episodes, they can be
uploaded directly (see top panel of Fig. 16). The app offers the option
to download the table with detailed information of episodes as well as
15
lollipop charts showing the intensity mean and duration of all episodes.
If the special season option was considered, episodes highlighted in
yellow are those overlapping the special season (see bottom panel of
Fig. 16).

4.2. Index construction

Once the episode list is generated or uploaded via the Episodes tab,
we are ready to build an IMPIT index. Suppose we consider up-episodes
𝐸𝑢
𝑘(8) and we want to build their corresponding Super𝑋𝑢(8) index. A

crucial step is to set up a configuration of parameters associated with
the memory, persistence, recency and timing of the episodes. Table 1
shows a summary of the main parameters, with their description, which
can be found in the Index tab.

In the next illustration, we consider a memory of 𝑚 = 26 years.
This means that the value of the index in, for example, 2022 will be
computed based on the contribution of all 𝐸𝑢(8) episodes from 1996
until 2022. For the intensity function, from the menu on this tab we
can pick among the mean, median, minimum, maximum or logarithm
of the episode’s values. Suppose we choose the intensity function given
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Fig. 16. Example of Episodes tab capabilities. Top: In this case, 𝐸𝑢
𝑘(8) episodes were generated with timing focus on June–August from SOI signal (from January 1900 to December

2020). Middle: Table with detailed information of the episodes. Bottom: Lollipop chart showing the intensity mean of all episodes computed. In yellow the episodes that overlap
the special season (June/01 - September/01).
by Eq. (3). Next, we have to decide on the relative importance weights
of the episodes. Three aspects could be considered: persistence, recency
and timing of episodes. For the persistence, let us consider 𝑎 = 2 which
corresponds to the middle pink curve in Fig. 1. For the recency, suppose
we choose 𝑏 = 3 for the dampening rate of decay and a value of
𝑐 = 0.75 which will be similar to the light green curve in the right
panel of Fig. 2. This means that episodes starting recently will be more
important than those starting late in the prescribed memory. Finally,
for the timing, suppose episodes are weighted by their overlap duration
with the special timing. To illustrate, we considered 𝑑 = 1 to calibrate
the timing weight, which corresponds to dark orange curve (fifth from
bottom to top) in the right panel of Fig. 3. Fig. 17 displays the resulting
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IMPIT index plot. User can download the table of IMPIT index values
in the Table tab.

4.3. Output data exploration

The ‘‘Application’’ tab was designed to provide a suite of tools for
index exploration, including plot of IMPIT index with smoothing and
the option to run a simple regression analysis between the index and
a response variable of interest. The app’s visualisation functionality
allows users to explore the index before exporting it for later use.

On the left panel (in the Application tab), users can upload an IMPIT
index (generated with the app) and a response variable of interest.
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Fig. 17. Example of Index tab to compute IMPIT index according to parameter’s specifications. User can choose among a menu of memory, intensity and relative weight functions.
Timing was considered and 𝐸𝑢(8) episodes were weighted by their overlap duration with the June–August season. Note that memory units coincide with episodes units, in this
case 312 months (26 years).
Table 1
Summary description of IMPIT−𝑎’s main parameters.

Parameter Description

𝑚 Memory. A period of fixed and uninterrupted duration in the
past with respect to the current observation in time.

𝑎 Associated with the persistence of the episode. Dampens the rate
of decay (Fig. 1). A value close to zero means that each episode
will have nearly the same importance weight regardless of its
duration.

𝑏 Associated with the recency of the episode. Captures the rate of
decay (Fig. 2) of the recency weight as the starting date
deviates more from its peak. Low values flatten that relative
importance weight.

𝑐 Associated with the recency of the episode. Characterises the
skewness of the recency weight and its peak (Fig. 2). A value
close to zero indicates that recent episodes have higher weight
than those starting late in the memory.

𝑑 Associated with the timing importance weight of the episode.
The weight is monotone increasing with 𝑑 (Fig. 3).

On the right panel, the first two tabs correspond to IMPIT index
exploration, where user can visualise IMPIT index. A common approach
to identify the structure of present trends, is to plot the time series in
combination with a smooth fitted curve (von Brömssen et al., 2021).

The estimation of the smooth trend is usually achieved using a
generalised additive model (GAM) or by LOESS smooths (Hastie and
Tibshirani (1986), Wood (2017) and Cleveland (1979). The app pro-
vides the option of explore IMPIT index with a LOESS smooth and its
95% confidence intervals. The third and fourth tabs allow the users to
check the uploaded response variable data. The fifth tab corresponds
to the scatterplot between the IMPIT index and the response variable.
And the sixth tab presents a summary of the regression analysis.

5. Discussion

In this paper, we developed a generic, parametrised family of
weighted indices extracted from observations of a relevant environ-
mental signal containing potentially important discrete episodes. The
methodology focuses on determining an appropriate memory length
and assigning importance weights to episodes that capture: intensity,
persistence, intermittence and timing.
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In the process, we proposed a stage-wise calibration procedure
for refining the parameter configurations of importance weights as-
signed to the discrete intermittent episodes of interest. We chose not
to automate the search by specifying a fixed optimality criterion for
selecting an ‘‘optimal’’ parameter configuration. Instead, we believed
that structured stage-wise exploration of the parameter space, of the
type we proposed, would enable experts to make a judicious choice of
parameters.

We illustrated the effectiveness and possible uses of IMPIT indices
in the context of fishery and agricultural applications. In particular, we
considered standardised commercial fishery catch rate data from two
fished species in Queensland, snapper (Chrysophrys auratus) and saucer
scallop (Ylistrum balloti), and yield per hectare of wheat production in
New South Wales. We then searched for associations between the trends
in these data and IMPIT indices constructed from intermittent episodes
embedded in SOI and SST signals.

Using SCPUE and yield per hectare of wheat as response variables,
we showed that significant correlations exist with suitably calibrated
IMPIT indices. Moreover, this occurred even though analyses using
simple (baseline) means of the underlying environmental signals indi-
cated no significant correlation in the case of snapper and wheat yield
and only relatively weak correlation in the case of scallops. Hence,
we demonstrated that our stage-wise parameter calibration of IMPIT
indices plays a potentially important role in detecting associations
between special seasons of either the studied species or wheat, and their
environment.

We also developed an IMPIT−𝑎 software that expedites the index
construction process and combines it with data which allows users to
refine datasets/episodes and time periods analysed based on explo-
ration, before exporting the resulting IMPIT index for further use. No
specialised coding or expertise are needed to use IMPIT−𝑎. The web
interface ensures that the tool can be accessed from a web browser
without installing any additional software. Although IMPIT−𝑎 offers
only a limited number of options for the intensity or weights functions,
it can be extended to include other functional forms.

Identification of strong associations between a calibrated IMPIT
index and response variables should be seen as a starting point for
deeper follow-up investigations. These would seek to confirm that the
corresponding IMPIT index is capturing a causative, not just correlative,
relationship between the environmental signal and the study species.

IMPIT indices are quite generic and easy to interpret, and can be
used across a wide range of environmental and ecological disciplines.
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The indices and their calibration should be seen as another tool in the
toolbox of exploratory data analyses.

In the remainder of this section we wish to acknowledge several po-
tential limitations of IMPIT indices as well as possible fruitful directions
for future investigations. Many of these stem from the likely non-
stationarity of the data time series involved in applying the IMPIT tech-
nique. Clearly, environmental series data is likely to be non-stationary
(e.g., when the signal is impacted by climate change).

We recall that, in this study, an IMPIT index 𝑋(𝐼,𝑤) is calculated
nly at the snapshot single, current, time and hence it is associated with
nly a single correlation 𝜌. However, if we had considered it repeti-

tively at a range of times we would have constructed an IMPIT time
series {𝑋𝑡(𝐼,𝑤)}𝑡≥0, and an accompanying time series of correlations
{𝜌𝑡}𝑡≥0 which in many applications would probably be non-stationary.
Investigation of the nature of such non-stationarity (especially any sys-
tematic trends) would constitute an excellent direction for continuing
the present study.

Our proposed IMPIT construction assumes only that the family of
discrete intermittent episodes of interest (e.g., marine heatwaves) is
well-defined irrespective of the stationarity properties of the underly-
ing data time series. However, the question of how this impacts the
calibration procedure is both interesting and challenging. We conjec-
ture that the impact of non-stationarity on the calibration parameters
(𝑎, 𝑏, 𝑐, 𝑑) will also depend on the length of the memory parameter 𝑚.
For instance, for small 𝑚 such impacts are likely to be small. For large 𝑚,
we expect that the choice of parameters 𝑏, 𝑐 (impacting recency weight
curves in Fig. 2) would be most sensitive.

Clearly, promising IMPIT candidates could and, perhaps, should be
considered for inclusion as explanatory variables in a range of models.
The most obvious of these would be regression or generalised linear
models (GLMs). In this context, IMPIT explanatory variables could
have both potential benefits and drawbacks that may be due to their
relatively complex structure.

Benefits, because a single IMPIT variable may eliminate several
other environmental variables and account for a lot of variability in
the dependent variable. Drawbacks because it may cause a collinearity
problem or because the separate calibration of weights in the IMPIT
index either reduces the flexibility of the regression technique or tilts
the coefficients assigned to other explanatory variables. In addition,
some characterisations of underlying intermittent episodes, may result
in too few of these episodes occurring in the memory windows under
consideration.

We note also that inclusion of an IMPIT index as linear variable
in a model should have fewer drawbacks than if it were entered in a
nonlinear fashion. That is because in the former case, all the weights
comprising 𝑋(𝐼,𝑤) would be merely scaled, whereas in the latter case,
implicitly interactions among intermittent episodes 𝐸𝑘 within the index
may acquire a role.

Finally, the question of whether (and how) data series non-
stationarity should impact experts’ characterisation of the intermit-
tent episodes of interest, could well be worth investigating. For in-
stance, with threshold crossing episodes, one could easily imagine time
dependent, rather than fixed, thresholds.

6. Software availability

Name of the software: IMPIT−𝑎.
Developer: Manuela Mendiolar.
Contact Email: m.mendiolar@uq.edu.au.
Tested browsers: Firefox and Google chrome.
Software Required: R, RStudio.
R-Packages required: shiny, shinydashboard, shinydashboardPlus,
shinyFiles, shinyhelper, shinyalert, shinyvalidate, shinyjs, shiny-
Widgets, dashboardthemes, tidyverse, DT, plotly, spsComps and
lubridate.
Programming language: at least R version 4.1.2.
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Available since: 2022.
The app source code is stored in a freely accessible GitHub
repository hosted by Manuela Mendiolar: https://github.com/
manumendiolar/IMPIT_shiny.
The app can be deployed via: https://manumendiolar.shinyapps.
io/impit_shiny/.
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