
lable at ScienceDirect

Environmental Modelling & Software 25 (2010) 269–275
Contents lists avai
Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft
Simplifying environmental model reuse

Dean P. Holzworth a,*, Neil I. Huth a, Peter G. de Voil b

a CSIRO Sustainable Ecosystems, P.O. Box 102, Toowoomba 4350, Queensland, Australia
b Department of Primary Industries and Fisheries, P.O. Box 102, Toowoomba 4350, Queensland, Australia
a r t i c l e i n f o

Article history:
Received 14 May 2008
Received in revised form
2 October 2008
Accepted 20 October 2008
Available online 13 December 2008

Keywords:
Model
Simulation
Component
Interoperability
Framework independent
APSIM
* Corresponding author. Tel.: þ61 7 4688 1279.
E-mail address: dean.holzworth@csiro.au (D.P. Ho

1364-8152/$ – see front matter Crown Copyright � 2
doi:10.1016/j.envsoft.2008.10.018
a b s t r a c t

The environmental modelling community has developed many models with varying levels of complexity
and functionality. Many of these have overlapping problem domains, have very similar ‘science’ and yet
are not compatible with each other. The modelling community recognises the benefits to model
exchange and reuse, but often it is perceived to be easier to (re)create a new model than to take an
existing one and adapt it to new needs.
Many of these third party models have been incorporated into the Agricultural Production Systems
Simulator (APSIM), a farming systems modelling framework. Some of the issues encountered during this
process were system boundary issues (the functional boundary between models and sub-models), mixed
programming languages, differences in data semantics, intellectual property and ownership.
This paper looks at these difficulties and how they were overcome. It explores some software devel-
opment techniques that facilitated the process and discusses some guidelines that can not only make this
process simpler but also move models towards framework independence.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.
Software availability

Name: Agricultural Production Systems Simulator (APSIM)
Developer: Agricultural Production Systems Research Unit (APSRU)
Contact address: P.O. Box 102, Toowoomba 4350, Queensland,

Australia
Tel.: þ61 7 4688 1596
Email: christopher.murphy@dpi.qld.gov.au
First available: 1992
Hardware required: Microsoft Windows (98 or later) compatible PC
Software required: Microsoft .NET 2
Language: FORTRAN, Cþþ, C#.NET and VB.NET
Program Size: 54 MB (download size)
Availability: www.apsim.info
Cost: Free.
1. Introduction

The software engineering industry has been striving for source
code reuse for decades. This has progressed from the sharing of
libraries of subroutines in the 1960s and 1970s, to object orientated
techniques in the 1980s and 1990s, through to more recent
component-based designs. Many implementation technologies
lzworth).

008 Published by Elsevier Ltd. All
have been created in an attempt to facilitate sharing of routines,
classes and components. These range from simple exchange of
binary libraries through to more complex technologies such as
Microsoft COM, CORBA�, Java NetBeans�, and Microsoft .NET�.
Some of these technologies have seen wider adoption than others.

Reuse and extension of existing work are preferable to creating
something completely new. Utilisation of existing work is much
more efficient and potentially more robust when the existing
technology is already proven. However, when new functionality is
required, a new solution is often favoured over extending existing
work. While extending existing work can be time consuming,
especially when the existing work isn’t well designed, the flow-on
benefits of extending are often not considered when deciding
between extending and starting anew. Building extra capability
around an existing solution aids others and often brings additional
capabilities that aren’t currently required but may prove beneficial
in the future.

The environmental modelling community has, in the last
decade, been actively developing simulation models of various
environmental and farming systems processes (e.g. Keating et al.,
2003; Donatelli et al., 2005; Acutis et al., 2007). Many of these
efforts start small with a goal of extending knowledge of a process.
As such, the desire to start anew is understandable. Problems arise
though when the model is shared and extended by others when
extendibility was not built into the original design. Very quickly the
model becomes difficult to understand and unworkable. If suffi-
cient demand and resources warrant it, a rewrite follows, building
rights reserved.

mailto:christopher.murphy@dpi.qld.gov.au
http://www.apsim.info
mailto:dean.holzworth@csiro.au
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft

D.P. Holzworth et al. / Environmental Modelling & Software 25 (2010) 269–275270
in extra capability and extensibility. All software modelling projects
follow this evolutionary process of renewal. Most models never
progress beyond the concept stage, some remain as small research
projects, some gather a small following within a region or organi-
sation and a few become large simulation frameworks. A frame-
work is defined as a group of interconnected models with
infrastructure to support inter-model communication.

The authors are developers of a farming systems simulation
framework called the Agricultural Production Systems Simulator
(APSIM) (Keating et al., 2003). It is used widely in Australia and
increasingly overseas. Other frameworks include the spatial ‘‘catch-
ment modelling toolkit’’ used in Australia called TIME (Rahman et al.,
2003), OpenMI (Gijsbers et al., 2005) used in Europe to link time
dependent models, AusFarm (Moore, 2001) a grazing systems model
used in Australia and MODCOM (Hillyer et al., 2003), the protocol for
linking components in the APES (http://www.apesimulator.it/
default.aspx) model that is a part of the European SEAMLESS
project. The Decision Support System for Agrotechnology Transfer
(DSSAT) is a collection of crop, soil and weather models produced by
the ICASA (http://www.icasa.net/dssat) consortium of scientists that
is used extensively in the United States. CropSyst (Stockle, 2003) is
another cropping systems simulation model used widely in the US
and elsewhere. Many of these efforts cover different, but overlapping,
problem domains. Several of them have different implementations of
very similar components, e.g. soil water/nutrient balance, wheat or
maize crops. Some of them are linkage protocols (e.g. TIME, OpenMI
and MODCOM). In general though, they are mostly incompatible with
each other; the exceptions being APSIM/AusFarm (Moore et al., 2007)
and the APES models.

In an ideal world, models from different backgrounds and
approaches could be easily combined and linked to create new and
interesting possibilities. Models of the same type, for example, that
of a wheat crop, could be compared and contrasted within
a simulation using the same water, nutrient and environment
components. Work from one organisation or individual would
become easily transferable to other scientists and used in new and
unexpected ways. Given the advantages of reuse, and the consid-
erable overlap of functionality in the cropping system domain, it is
desirable that some level of compatibility be created between the
various models and the frameworks. Attempts have been made in
the past to enable this sort of component swapping between
frameworks. Moore et al. (2007) describes the creation of a binary
protocol that was implemented in both APSIM and AusFarm. This
low-level protocol enables models to be interchanged, realising
many of the benefits of reuse. While other frameworks could also
adopt this same protocol in order to exchange model components
with APSIM and AusFarm, this is neither practical nor desirable.
A diversity of approaches and technologies brings new ideas and
techniques to a project.

While it is not currently possible to have an APSIM model run in
other frameworks and vice versa, it is possible to apply several soft-
ware development techniques that it makes it easier to execute the
model in different frameworks. However, many non-engineering
issues make this difficult. Intellectual property (IP) and ownership
issues, social issues, difficulty in achieving agreement on a ‘standard’,
semantic meaning of data and software related issues all combine to
make it difficult to realise this goal. Some of these issues, particularly
the software related ones, can be solved while others are more
difficult, particularly those with a human or organisational origin.

This paper looks at several experiences of connecting external
models into APSIM and examines some software development
practices that have aided this process. It concludes by extending the
APSIM experience into a set of principles for constructing models in
a given problem domain such that they can more easily be incor-
porated into multiple frameworks. This paper does not subscribe to
the notion of standardisation of models or frameworks. Rather, it
embraces diversity and looks at the issues involved and examines
how some of the work in APSIM is moving towards framework
independence.

2. Issues faced when bringing foreign models into APSIM

2.1. Model execution

A farming systems model like APSIM has its own separate crop,
environment, soil water and nutrient models. The crop models can
be rotated in and out of a simulation, taking up soil resources as
required, leaving the soil in an altered state. This soil centric focus is
what separates a systems model like APSIM from other single,
standalone crop models.

When connecting a foreign crop model into APSIM, it is there-
fore the crop growth portion of the model that is of interest. Quite
often this requires decoupling of this from other components
within the foreign modelling environment such as the soil water
and nutrient balance or input/output systems. The crop growth
portion that remains often needs restructuring to create an entry
point that APSIM can call once each timestep. Other frameworks
like TIME also have this requirement for a timestep entry point. This
disaggregating and restructuring of source code is time consuming,
particularly when the original model has its sub-components
tightly coupled. When OZCOT (Hearn, 1994), a cotton crop model,
ORYZA2000 (Bouman et al., 2001), a rice model and GRASP
(McKeon et al., 1990) a native pasture and grazing model were
connected into APSIM, the approach taken was to extract just the
required science source code and wrap this with code that provided
the required soil and weather data from other APSIM model
components (Fig. 1). The original models all had sub-models that
were tightly coupled, for example, the growth routines referenced
variables in the soil (e.g. soil water and nitrate) and environment
(e.g. maximum temperature) and these had to be replaced with
calls into APSIM. The resulting model then gave different results
from the standalone version of the model as it was linked to
different water and nitrogen balance models. A process of recali-
bration then ensued further adding to the time consuming process.

This system boundary issue, defined as where the boundary is
drawn between one model or sub-model and the next, can be a very
subjective and subtle one. Difficulties can occur even when the two
models seemingly have their system boundaries in similar parts of
the problem domain. This was the case when SWIM (Verburg et al.,
1996), a water balance model based upon a solution of Richards’
equation, was provided as an alternative to APSIM’s standard
‘‘tipping bucket’’ water balance, SOILWAT (Probert et al., 1998). Both
simulate water movement in the soil, albeit in a different manner. It
was only upon closer examination that SWIM was revealed to
calculate the water uptake by all crops in a simultaneous manner,
something that SOILWAT doesn’t do. This disparity was solved by
modifying the crop models to allow SWIM to provide their water
uptake when SWIM is the chosen water balance model, but calcu-
late their own uptake when SOILWAT is the choice of model.

User interface coupling also hinders the ability to connect
a foreign model to a framework like APSIM. Models that are
intrinsically linked to user interfaces can be very difficult to run in
frameworks that have a different user interface or even none at all.
Models that have forms and user interface events embedded in the
science require major recoding to remove the user interface
portions. In APSIM, UI components have had short lifetimes (w3
years) while models have much greater longevity (5–10 years), thus
emphasising the need to separate models from the user interface.

In a few rare situations, models were inserted into APSIM with
no exchange of source code. AusFarm (Moore, 2001) and APSIM
share a binary protocol called the CSIRO Common Modelling
Protocol (CMP) (Moore et al., 2007). This protocol allows a model

http://www.apesimulator.it/default.aspx
http://www.apesimulator.it/default.aspx
http://www.icasa.net/dssat

Crop sub-model

Original foreign model New APSIM model APSIM Framework

Weather sub-model

Soil water sub-model

Soil N. sub-model

Crop sub-model

Fig. 1. To connect a foreign model into APSIM, the approach taken was to extract the required sub-model (e.g. crop growth) and modify all communications so that they are routed
through the APSIM framework.

D.P. Holzworth et al. / Environmental Modelling & Software 25 (2010) 269–275 271
from AusFarm to be executed in APSIM, and vice versa, by simply
copying an executable file from one system to the other. The CMP
defines a binary transport mechanism and describes a message
based mechanism for packing and unpacking data, entry points in
the executable and a set of defined messages to transfer variables
and events from one model to another. This allows easy exchange of
models between AusFarm and APSIM and it has been used with
great success. However, expecting other modellers to adopt and
implement the complex CMP to gain APSIM compatibility is unre-
alistic, particularly when resources are limited.

Another option exists, in some circumstances, when a foreign
crop model is needed in APSIM. Wang et al. (2003) and Robertson
et al. (2002) describe generic modelling approaches to parame-
terising crop models in APSIM. This work has been incorporated
into a generic PLANT model that can be parameterised from
a configuration file (XML). The PLANT model reads a configuration
file at runtime and dynamically instantiates crop growth processes,
passing initialisation parameters that describe various growth
characteristics. Sometimes it is necessary to create new process
classes in PLANT to capture new functionality when adding a new
crop, particularly when the new crop model is quite different to
existing models. These new processes then become part of the
‘library’ of processes which can be instantiated for other models.
This approach has been used to create many new crop and tree
models in APSIM and could be used as an alternative to the alter-
native source code restructuring approaches. Rather than extensive
source code modification, it may be simpler to extract the required
equations and parameters, creating a new configuration of PLANT.

2.2. Data semantics

A successful model compiles and link is only one small step
towards having a model run correctly. The meaning of data
required by a model needs to be fully understood before the model
is run. This understanding needs to include the set of data is
required by a model, its units and its temporal and spatial context.
Once the data requirements of a model are understood, the
framework within which it will run needs to provide the correct
data. In APSIM, this matching of data requirement to supply is done
automatically, based on name alone. If the soil water model
supplies a variable called ‘sw’ and the plant model has a require-
ment for ‘sw’, they are matched and connected at runtime. It makes
no attempt to match units or semantics. While this works for
known components, difficulties can arise when working with
foreign components. Variable meaning becomes important, for
example, the variable ‘sw’ may refer to the volumetric or gravi-
metric water content; it may be a layered array variable as in APSIM
or a summed variable over the soil profile. In APSIM, even though
variables are matched and linked at runtime, this doesn’t guarantee
a valid connection. If there is a semantic mismatch then the
simulation is invalid.

Good documentation is often cited as a cure for understanding
the data requirements of a model. While this is true to some extent,
the time needed to create this documentation can be large and
unless it is well maintained over time, can quickly become out of
date. Documentation that does not accurately reflect the source
code can be worse than no documentation at all. One reason for this
is the separation between documentation and source code. It
therefore follows that if the implementation of documentation and
source code was more closely coupled, compatibility is more likely
to be maintained. APSIM strives to keep the semantics of the data
with the source code wherever possible.

APSIM doesn’t precisely define all inputs and outputs, instead
preferring a short description, units and its shape (scalar or array).
This simple approach has been sufficient for the many APSIM
collaborative projects over the past 15 years. As APSIM becomes
open-source, perhaps some improvement to these metadata may
become necessary. The philosophy behind APSIM’s development in
recent years has been to solve problems with the simplest solution
possible. It is always much easier to step up the complexity ladder
later than to move down it. This is also one of the fundamental
principles of the agile software development community (Jeffries
et al., 2001) that have been adopted by the APSIM development
team.

A mismatch between the data semantics of two models is
common when bringing a foreign model into a framework. While
modifying the foreign model, the framework, or both, will over-
come the problem, sometimes this standardisation isn’t desirable.
It is often better to leave both untouched and work around the data
differences. One approach, that APSIM has adopted, is to create
‘helper components’. These small components translate the names,
and in some cases the meaning, of variables between two models
such that they coexist. For example, when the AusFarm STOCK
model runs in APSIM, an instance of a helper component is created
during the simulation. This converter translates individual dry
matter output variables from APSIM PLANT into a structure con-
taining herbage masses and other variables used by the STOCK
model. The advantage of this approach is that neither PLANT nor
STOCK required any changes. In a sense, this is a form of wrapping,
the process where a model is given a different external view so that
it appears and operates differently. Often, some form of wrapping is
an expedient way of bridging the gap between foreign models
without needing to make changes to the models.

2.3. Other issues

Some of the more difficult issues to solve are related to
ownership and intellectual property (IP). In some cases, licencing

scienceAPI.expose("plants", "plants/m^2", "Plant density", Density);
scienceAPI.get("latitude", "Degrees Celcius", Latitude, -90.0, 90.0);
scienceAPI.get("co2", "mg/kg",co2, 0.0, 1500.0)

class ScienceAPI
{
public:
virtual bool read(string name, string units, float& data, float lower, float upper);
virtual bool get(string name, string units, float& data, float lower, float upper);
virtual void set(string name, string units, float& data);
virtual void expose(string name, string units, string description, float& data);
virtual void publish(string name, float& data);
virtual void subscribe(string name, FloatHandler handler);
. . .

a

b

Fig. 2. The interface class that models in APSIM use to communicate with other
models showing (a) an extract from the Cþþ version of the interface with method
names in bold and (b) three examples of using this interface, showing the metadata
passed as arguments.

D.P. Holzworth et al. / Environmental Modelling & Software 25 (2010) 269–275272
for source code access has placed severe restrictions on the use and
extent of code modifications that are allowed. Ultimately, a limited
connection capability has been achieved but a much more flexible
solution would have been possible had it not been for the IP issues.
Restrictions placed on source code and the resulting modifications
can be detrimental to collaboration and the openness of a process.
Indeed, until very recently, the APSIM framework had been a closed
system, almost discouraging others from extending its compo-
nents. The lack of availability of source code and restrictions on its
modification led others to perceive APSIM as being non-trans-
parent, a black box too difficult to work with. APSIM is becoming
more open and attractive to other modellers with a planned move
to open-source. Most restrictions are created by a perceived lack of
trust or an unwillingness to relinquish some control to others.
Allowing others to modify a model to run in another framework
does not mean losing ownership of that model.

3. Software development techniques that can help

The problems outlined in the previous section can be largely
circumvented if models are better designed using several, well
established, software development techniques.

The ‘science’ of the various parts of a model (equations and such
like) should be loosely coupled to each other and to other models in
the simulation. Abstraction is a key technique to enable this sepa-
ration of logic. When the science of the model is mixed with the
framework dependant communication code or other technology
related issues, then bringing this science into APSIM can be difficult.

3.1. Design-by-interface

One approach to decoupling models is to use a design-by-
interface pattern (Lowy, 2006). This pattern describes an approach
where source code calls an abstract series of functions to perform
a service for the source code. For example, when the science of
a model needs to obtain data from elsewhere (e.g. a crop model
needs maximum temperature) it calls an interface to get the data.
The model doesn’t need to know how the data are obtained or even
where the data have come from, only that a valid value is returned
when requested. The interface provides a service to the science
source code. To connect such a model to APSIM would require an
implementation of the interface, something potentially much
easier to do than substantial source code modification. The degree
to which an implementation of an interface can easily be created is
dependent on how simple and technology free the interface is and
whether the target framework supports the required services. If the
interface contains complex, solution space, and types (e.g. struc-
tures, variants, file handles, ID’s) then the interface will be harder to
implement and call than one with simpler strings, integers, and
floating point types.

In early versions of APSIM, the interface that a model used to
communicate with other models was very closely tied to the CMP.
The CMP requires all models to perform communications in
a particular, well defined way. This translated to models in APSIM
also performing inter-model communications in this manner. The
result was a lot of model source code coupled to the CMP, which
meant that it was not easy to investigate alternative protocols or
approaches. In recent times this CMP style, low-level interface has
been redesigned, removing the need for CMP technologies and
techniques to be inserted into the model science code. In rede-
signing the interface, a minimal set of services was created to
support the model’s science source code. Fig. 2 shows this interface
for Cþþmodels. There are methods to ‘get’ a variable value from the
simulation, ‘set’ the value of a variable in another component, read
an initialisation parameter and expose a variable to the simulation
so that its value can be returned automatically in response to a ‘get’
request. APSIM is an event based simulation framework so there are
also methods for publishing and subscribing to notification events.
The arguments to these methods are simple types, for example,
names and units expressed as strings, bounds as simple floating
point numbers, etc. This simplicity significantly reduces the
plumbing of a model and invites model builders to express their
science cleanly and without clutter. It also allows the APSIM
developers to explore alternative forms of inter-model communi-
cation, something that wasn’t previously possible. This is one
example where a technology laden interface has been simplified.

The interface in Fig. 2 shows the methods typed on float. Given
that model science will typically need to work with different types
and structures, an identical set of methods exist that are typed on the
other APSIM types, e.g. int, double and more complex structures.
Some languages like Cþþ, C#.NET and VB.NET have the concept of
templates or generics which allow overloading on type. The decision
was made not to use these features as they aren’t easily callable from
FORTRAN and aren’t as simple to understand. Likewise a variant type,
one that is capable of representing different types, could have been
used, but like generics, these are more complex to use. Instead, the
APSIM typed interface is explicit with a ‘get’, ‘set’, and ‘expose’ for
each of the several dozen APSIM types. The downside to such an
approach is that the interface becomes very long. To combat the many
issues of maintaining such a lengthy interface, we automatically
generate it from an APSIM types specification (XML), alleviating the
problem of hand coding for different types. Fig. 3 demonstrates this
process. To incorporate a new type into APSIM, a developer creates
a small XML description of it in the data types XML file and regen-
erates the interface. Such an interface provides a lot of flexibility to
the model developer. A model can choose to get values of variables
dependent on the state it is in. For example, a crop model may not get
variables from the simulation at all when it hasn’t been sown. Like-
wise some models will expose certain variables in some simulations
and not others. For example, the APSIM PLANT component is capable
of simulating multiple cereal and legume crops. When configured as
a chickpea model, it will expose a different set of variables compared
to when it is configured as wheat.

Simplicity is a very subjective term when applied to software
interfaces. Fig. 4 shows an OpenMI (Moore and Tindall, 2005)
interface for communications between models. It uses a ‘pull’ style
of interface where a model requests data when needed, for
example, a crop model would request maximum temperature each
timestep. The OpenMI interface has a GetValues method for per-
forming this variable request. The first argument to this method is

//------ NewMet ------
struct NewMetType

{
double today;
float radn;
float maxt;
float mint;
float rain;

};

class ScienceAPI
{
public:

. . .
virtual bool get(string name, NewMetType& data);
virtual void set(string name, NewMetType& data);
virtual void expose(string name, string description, NewMetType& data);
virtual void publish(string name, NewMetType& data);
virtual void subscribe(string name, NewMetTypeHandler handler);
. . .

<type name="NewMet">
<field name="today" kind="double"/>
<field name="radn" kind="single" lower="0.0" upper="50.0" units="MJ/m2/d"/>
<field name="maxt" kind="single" lower="-10.0" upper="70.0" units="oC"/>
<field name="mint" kind="single" lower="-20.0" upper="50.0" units="oC"/>
<field name="rain" kind="single" lower="0.0" upper="1000.0" units="mm/d"/>
</type>

a

b

c

Fig. 3. To add a new data type to APSIM, the developer creates (a) an XML description
of it and then auto-generates the source code for the interface. The auto-generator
produces (b) a Cþþ structure for the type and (c) a series of interface methods for the
type. The auto-generator also does this all supported APSIM languages; FORTRAN, Cþþ
and the .NET languages.

D.P. Holzworth et al. / Environmental Modelling & Software 25 (2010) 269–275 273
a time parameter specifying a time span for the request and the
second argument is a linkage object defining the location and
quantity of the required value. The interface also defines methods
for adding and removing linkage objects. This interface, while quite
short, uses more complex types than the APSIM one presented in
the previous paragraph. For example, the OpenMI interface
«interface» ILinkableComponent
+ «property» ComponentID() : string
+ «property» ComponentDescription() : string
+ «property» ModelID() : string
+ «property» ModelDescription() : string
+ «property» InputExchangeItemCount() : int
+ «property» OutputExchangeItemCount() : int
+ «property» TimeHorizon() : ITimeSpan
+ «property» EarliestInputTime() : ITimeStamp
+ Initialize(properties :IArgument[]) : void
+ GetInputExchangeItem(inputExchangeItemIndex :int) : IInputExchangeItem
+ GetOutputExchangeItem(outputExchangeItemIndex :int) : IOutputExchangeItem
+ AddLink(link :ILink) : void
+ RemoveLink(linkID :string) : void
+ Validate() : string
+ Prepare() : void
+ GetValues(time :ITime, linkID :string) : IValueSet
+ Finish() : void
+ Dispose() : void

Fig. 4. The OpenMI interface that models use to communicate with other models and
the framework (Moore and Tindall, 2005).
requires the model developer to work with ‘inputExchangeIte-
mIndex’ and ‘outputExchangeItemIndex’ and ‘ILink’ types. These
are very low-level, implementation concepts. It would be better to
devise a mechanism to hide these data types so that the model code
deals with problem domain entities.

3.2. Component-based design and reflection

Component-based design is a technique that many of the newer
programming languages support. Models written in .NET or JAVA
are constructed of classes that contain not just methods but also
properties and optionally event handlers. Frameworks that execute
these types of components need to create an instance of the class,
set the values of some properties of that instance and then call
methods to perform the timestep logic. This approach is sometimes
called the Create-Set-Call pattern (Stylos, 2007). However, in
a model in which every component will have different properties
and methods the framework cannot automatically know what
properties need setting and what methods need to be called.

Reflection is one way to alleviate this problem. Reflection allows
the framework to discover properties and methods automatically.
The model developer inserts metadata into the source code to tag
various properties and methods. Rahman et al. (2003) discuss this
technique at length and suggest that ‘‘metadata frameworks reduce
the amount of code required to develop a model and make use of
framework features.’’

The .NET models in APSIM currently use some of the same TIME
metadata tags to mark up outputs and event handlers, alleviating
the need to call the expose and subscribe methods of the interface
outlined in the previous section. Fig. 5 shows an excerpt from the
APSIM SLURP model written in VB.NET. The class variables
‘‘int_radn’’ and ‘‘rlv’’ have metadata added to their declarations. The
framework running this model can automatically extract this
metadata and expose the variables to other models. Likewise
a method (e.g. ‘OnNewMet’) can be tagged as an event handler. The
system can extract this information and automatically call this
method whenever a ‘NewMet’ event is published by the environ-
ment model. Table 1 shows a complete list of metadata tags that
can be inserted into a .NET model in APSIM. Many of these tags are
identical to the TIME framework making it easier to transfer models
between the two frameworks.

3.3. Other software development processes

There are many other good software development practices that
can aid in the design of a model to assist in exchanging components
between frameworks. Jeffries et al. (2001) outline many popular
processes including test first development, unit testing, and
continuous integration. Design-by-contract, the process where
properties and arguments to methods are explicitly tested before
<Model()>
Public Class Slurp

<Output(), Description(“Daily Intercepted Radiation”), Units(“MJ/m2”)>
Public IntRadn As Single

<Output(), Description(“Root Length Density”), Units("mm/mm3")>
Public rlv() As Single

<EventHandler()> Public Sub OnNewMet(ByVal Data As NewMetType)

. . .

Fig. 5. An extract from the APSIM Slurp model (written in VB.NET) showing examples
of various APSIM metadata tags (in bold).

Table 1
A complete list of all metadata tags used in APSIM.

Name Purpose

Model Specifies that the following class contains the model code. This avoids
the need to use inheritance and thus coupling the component to
a framework.

Output Specifies that the following declaration should be made available to
output components.

Minimum Specifies a lower bound for the following variable.
Maximum Specifies an upper bound for the following variable.
Description A description of the following variable.
Units Units of the following variable.
EventHandler Specifies that the following declaration is an event handler.

D.P. Holzworth et al. / Environmental Modelling & Software 25 (2010) 269–275274
and after any calculations that use them, has been used extensively
by some modelling groups (e.g. Donatelli and Rizolli, 2007). While
these processes are not absolutely necessary, they are recom-
mended as good software practices and will help significantly.

4. Discussion

The previous two sections have illustrated some of the issues
faced when bringing models into APSIM and a few software
development techniques that have helped this process. Combining
these generates a set of principles for model builders.

A model’s system boundaries should be carefully considered
before and during the construction phase. While this is a very
subjective concept, consideration of other models and how they
may be interconnected will help with the decision. For example, if
the desire is to produce a crop model, decouple the crop growth
from the water and nutrient movement. The fact that there are
many models in existence for movement of water and nutrients
already exist, suggests that a design pattern where the soil processes
should be considered external to the crop growth is advantageous. If
different soil evaporation models are to be compared, then this
would suggest the boundary be placed around the soil evaporation
process. The result would be separate soil evaporation, runoff and
water movement models or at least sufficiently decoupled sub-
models. Quite often the boundaries change over time. While at the
outset, the decision to couple crop and water balances may make
perfect sense, over time, when interests change, the boundaries
inevitably need to be moved to accommodate the new required
functionality. This is a normal part of the evolutionary process of
every model. It can be circumvented somewhat if a careful analysis
of the problem domain is conducted at the outset.

Once the system boundary decision has been made, some form
of abstraction is necessary to decouple the model from other
models and the environment within which it operates. Even if the
model is a standalone executable, abstraction still plays an impor-
tant role. The sub-models within the executable can still be sepa-
rated from each other via some interface. Rather than a crop model
directly accessing the soil water, it should call a method of an
interface to perform the variable access. The primary drawback of
such an interface is that the length of the interface and the number
of calls to the interface can obfuscate the code, but this is still
preferable to tight coupling.

Reflection is another abstraction technique that is available to
newer computer languages, namely Java and the .NET languages. It
provides a high level of abstraction but has the added benefit of
reducing the amount of ‘plumbing’ that needs to be written. The
code is generally easier to read as there are less calls into interfaces,
for example, variables are retrieved automatically by the frame-
work. Currently, APSIM uses a hybrid approach of using a ‘pull’
interface with a ‘push’ metadata system giving the .NET APSIM
models the needed flexibility while removing many of the
unwanted calls to the interface. An additional advantage is that
various tools and user interfaces can discover this metadata and
produce custom documentation or user interfaces. The only minor
downside to a reflection approach is the minimal delay, once at
initialisation, while the framework discovers this metadata.

No matter which abstraction technique is employed, interfaces
or reflection, both should contain metadata describing the model
data requirements. Describing the data in the source code has many
benefits including increasing the chances of keeping the descrip-
tion and the source code synchronised, the ability to create auto-
matic documentation and the ability for user interfaces to
automatically extract the information and use it in different ways.

The APSIM project has taken a simplistic approach to metadata
and data matching. Further up the complexity ladder, ontologies
have become a popular way to accurately attribute meaning to data.
The ontology is used to match inputs with outputs and in some
instances is used to convert semantics to enable a match. For some
situations this may be necessary. Indeed Argent (2003) suggests
that when modelling across disciplines (e.g. environmental
management), problems of data meaning are extensive. In these
situations the complexity of an ontology may be warranted. For the
types of problems that APSIM has been used in, the simpler
approach has been satisfactory.

User interfaces should be kept separate from the models. In
APSIM there are several user interfaces that can execute the same
model. These user interfaces range from a simple command line for
doing batch runs, a flexible one for researchers and another much
simpler user interface for end-users like growers and agricultural
consultants. Coupling a model to a user interface would make this
impossible.

The final recommendation is borrowed from the Agile Software
Development Community. The Agile Manifesto (www.agilemanifesto.
org) emphasises simplicity with a ‘‘build for today’’ philosophy. Jeffries
et al. (2001) controversially introduces the acronym ‘‘YAGNI: You Aren’t
Gonna Need It’’ which describes this tendency to over-engineer
a solution. Parts of APSIM exhibit over-engineering where complexity
was added to support some perceived future function. That future
never materialised and the increased complexity is only now being
gradually removed. Hindsight makes it easy to identify unwanted
complexity. It is much harder to look forward and envisage all possible
uses of a model or piece of source code. Developing for extensibilityand
reusability often leads to over-engineered models and yet that is
something to be avoided. How do we resolve this conflict? How do we
develop something that is reusable in different contexts and yet not
over-engineer the solution? The solution is to keep it simple. If a model
developer finds themselves writing significant ‘‘plumbing’’ or infra-
structure code to achieve a more reusable model, then that is a sign of
complexity and a simpler solution should be sought. If a model
developer finds themselves developing a model that is large and
difficult to reuse then perhaps some simple reengineering would be
worthwhile, forexample, bysplitting a large model into smaller models
or into simple libraries.

Somewhere on the continuum between complexity and
simplicity is a place where model reuse and extensibility can be
achieved. We are trying to move APSIM from the complex end of
the scale back towards the simple end. We are doing this through
substantial and ongoing refactoring (Fowler, 1999) of source code.
Our philosophy: if a simpler approach can be found, it should be
adopted.

5. Conclusion

For those model builders starting out in a particular problem
domain, prototyping is a good starting point. Inevitably, a decision
point is reached on how to progress the prototype to the next stage.
Models are often more useful when connected to other models, so
to enable this, an existing framework should be adopted rather

http://www.agilemanifesto.org
http://www.agilemanifesto.org

D.P. Holzworth et al. / Environmental Modelling & Software 25 (2010) 269–275 275
than creating a new one. Even when the model to be created is
deemed to be a research project looking at some small aspect of the
system, once the model is published or it is given to other mod-
ellers, the decision to use a framework to build the model will be
beneficial. The choice of frameworks is often dictated by collabo-
rators or personal preference. Beyond that, comparing the features
and support of the many frameworks can help with the decision. A
framework that is ‘lightweight’, meaning one that has minimal
overheads and baggage, and one that has a simple model devel-
opment pathway will be beneficial.

For modellers who are already working in a framework, we
recommend a continual process of review and refactoring, looking
for ways to simplify. Where there are framework specific entities or
technologies, these should be abstracted in some way, using either
reflection or an interface. With a mindset of simplification and
framework independence, a model builder can produce a model
that can more easily be executed in other frameworks.

Framework builders, likewise, need to look to simplify
programming interfaces and libraries to aid the model builders.
When making significant changes, the preference should be an
evolutionary approach.

Sometimes when resources are plentiful, an organisation, or
individual, will be tempted to build from scratch rather than reuse
and extend an existing solution. Certainly, there are costs associ-
ated with collaboration and reuse. In the long-term, not choosing
reuse leads to a proliferation of incompatible, but often very similar
models. Often a future need emerges for integration of these
models into other frameworks, with other models, from other
organisations. Indeed, a trend is emerging in the literature of model
integration across disciplinary boundaries thus making it even
more important for some convergence of models and frameworks.

The way forward is not for all modellers to adopt a single
framework or technology although evidence of convergence is
already visible between several frameworks (van Evert et al.,
2005). This convergence is something that should be encouraged
but not at the expense of diversity. Diversity of models and
approaches is something to embrace and support. The recom-
mendations outlined in this paper support diversity but at the
same time encourage model builders to think about the design
and implementation of their models in order to better facilitate
model exchange and reuse.
References

Acutis, M., Trevisiol, P., Gentile, A., Ditto, D., Bechini, L., 2007. Software components
to simulate surface runoff, water, carbon, and nitrogen dynamics in the soil. In:
Proceedings of the Farming Systems Design, Sicily.

Argent, R.M., 2003. An overview of model integration for environmental applica-
tions – components, frameworks and semantics. Environmental Modelling &
Software 19, 219–234.

Bouman, B.A.M., Kropff, M.J., Tuong, T.P., Wopereis, M.C.S., ten Berge, H.F.M., Van
Laar, H.H., 2001. ORYZA2000: Modeling Lowland Rice. International Rice
Research Institute, Wageningen University and Research Centre, Los Baños,
Philippines, Wageningen, The Netherlands.

Donatelli, M., Carlini, L., Bellocchi, G., 2005. A software component for estimating
solar radiation. Environmental Modelling & Software 21, 411–416.

Donatelli, M., Rizolli, A., 2007. A design for framework-independent model
components of biophysical systems. In: Proceedings of the Farming Systems
Design, Sicily.

van Evert, F., Holzworth, D., Muetzelfeldt, R., Rizzoli, A.E., Villa, F., 2005. Conver-
gence in integrated modeling frameworks. In: Zerger, A., Argent, R.M. (Eds.),
MODSIM 2005 International Congress on Modelling and Simulation. Modelling
and Simulation Society of Australia and New Zealand, ISBN 0-9758400-2-9, pp.
745–750.

Fowler, M., 1999. Refactoring. Improving the Design of Existing Code. Addison-
Wesley, ISBN 0-201-48567-2.

Gijsbers, P., Gregersen, J., Westen, S., Dirksen, F., Gavardinas, C., Blind, M., 2005.
OpenMI Document Series: Part B Guidelines for the OpenMI (Version 1.0).
Edited by Isabella Tindall. Available from: http://www.OpenMI.org.

Hearn, A.B., 1994. OZCOT: a simulation model for cotton crop management. Agri-
cultural Systems 44, 257–299.

Hillyer, C., Bolte, J., van Evert, F., Lamaker, A., 2003. The ModCom modular simu-
lation system. European Journal of Agronomy 18, 333–343.

Jeffries, R., Anderson, A., Hendrickson, C., 2001. Extreme Programming Installed.
Addison-Wesley, ISBN 0201708426.

Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J.,
Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z.,
McLean, G., Verburg, K., Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S.,
Bristow, K.L., Asseng, S., Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.J.,
2003. An overview of APSIM, a model designed for farming systems simulation.
European Journal of Agronomy 18 (3–4), 267–288.

Lowy, J., 2006. Programming.NET Components, second ed. O’Reilly Media Inc., ISBN
0596007620

McKeon, G.M., Day, K.A., Howden, S.M., Mott, J.J., Orr, D.M., Scattini, W.J.,
Weston, E.J., 1990. Northern Australian savannas: management for pastoral
production. Journal Biogeography 17, 355–372.

Moore, A.D., 2001. FarmWi$e: a flexible decision support tool for grazing systems
management. In: Proceedings of the XIX International Grassland Congress.

Moore, A.D., Holzworth, D.P., Herrmann, N.I., Huth, N.I., Robertson, M.J., 2007. The
common modelling protocol: a hierarchical framework for simulation of agri-
cultural and environmental systems. Agricultural Systems 95, 37–48.

Moore, R.V., Tindall, C.I., 2005. An overview of the open modelling interface and
environment (the OpenMI). Environmental Science and Policy, vol. 8, Issue: 3.
Research & Technology Integration in Support of the European Union Water
Framework Directive. In: Quevauviller, P. (Ed.), Proceedings of a Workshop held
in Ghent (Belgium) on 4–5 October 2004, pp. 279–286.

Probert, M.E., Dimes, J.P., Keating, B.A., Dalal, R.C., Strong, W.M., 1998. APSIM’s water
and nitrogen modules and simulation of the dynamics of water and nitrogen in
fallow systems. Agricultural Systems 56, 1–28.

Rahman, J.M., Seaton, S.P., Perraud, J.-M., Hotham, H., Verrelli, D.I., Coleman, J.R.,
2003. It’s TIME for a new environmental modelling framework. In: Proceedings
of MODSIM 2004 International Congress on Modelling and Simulation, vol. 4.
Modelling and Simulation Society of Australia and New Zealand Inc., Towns-
ville, Australia, pp. 1727–1732.

Robertson, M.J., Carberry, P.S., Huth, N.I., Turpin, J.E., Probert, M.E., Poulton, P.L.,
Bell, M., Wright, G.C., Yeates, S.J., Brinsmead, R.B., 2002. Simulation of growth
and development of diverse legume species in APSIM. Australian Journal of
Agricultural Research 53 (4), 429–446.

Stöckle, C.O., Donatelli, M., Nelson, R., 2003. CropSyst, a cropping systems simula-
tion model. European Journal of Agronomy 18, 289–307.

Stylos, J., 2007. Usability implications of requiring parameters in objects’
constructors. In: Proceedings of ICSC 2007, Minneapolis, MN, pp. 529–539.

Verburg, K., Ross, P.J., Bristow, K.L., 1996. SWIM v2.1 User Manual. Divisional Report
No 130. CSIRO Division of Soils, Canberra, Australia.

Wang, E., Robertson, M.R., Hammer, G.L., Carberry, P., Holzworth, D., Hargreaves, J.,
Huth, N., Chapman, S., Meinke, H., McLean, G., 2003. Design and implementa-
tion of a generic crop module template in the cropping system model APSIM.
European Journal of Agronomy 18, 121–140.

http://www.openMI.org

	Simplifying environmental model reuse
	Introduction
	Issues faced when bringing foreign models into APSIM
	Model execution
	Data semantics
	Other issues

	Software development techniques that can help
	Design-by-interface
	Component-based design and reflection
	Other software development processes

	Discussion
	Conclusion
	References

