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Abstract
Context. Beef cattle breeds in Australia can broadly be broken up into two subspecies, namely, Bos indicus and

Bos taurus. Due to the time since divergence between the subspecies, it is likely that mutations affecting quantitative
traits have developed independently in each.

Aims.We hypothesise that this will affect the prediction accuracy of genomic selection of admixed and composite
populations that include both ancestral subspecies. Our study investigates methods to quantify population stratification
in a multibreed population of tropically adapted heifers, with the aim of improving prediction accuracy of genomic
selection for reproductive maturity score.

Methods.We used genotypes and reproductive maturity phenotypes from 3695 tropically adapted heifers from three
purebred populations, namely, Brahman, Santa Gertrudis and Droughtmaster. Two of these breeds, Santa Gertrudis and
Droughtmaster, are stabilised composites of varying B. indicus · B. taurus ancestry, and the third breed, Brahman, has
predominately B. indicus ancestry. Genotypes were imputed to three marker-panel densities and population
stratification was accounted for in genomic relationship matrices by using breed-specific allele frequencies when
calculating the genomic relationships among animals. Prediction accuracy and bias were determined using a five-fold
cross validation of randomly selected multibreed cohorts.

KeyResults.Our results showed that the use of breed-adjusted genomic relationship matrices did not improve either
prediction accuracy or bias for a lowly heritable trait such as reproductive maturity score. However, using breed-
adjusted genomic relationship matrices allowed the capture of a higher proportion of additive genetic effects when
estimating variance components.

Conclusions. These findings suggest that, despite seeing no improvement in prediction accuracy, it may still be
beneficial to use breed-adjusted genomic relationship matrices in multibreed populations to improve the estimation of
variance components.

Implications.As such, genomic evaluations using breed-adjusted genomic relationship matrices may be beneficial in
multibreed populations.
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Introduction

Beef cattle breeds in Australia can broadly be broken up into
two subspecies, namely, Bos indicus and Bos taurus (Davis

1993; Bolormaa et al. 2011, 2013). It is believed that these
two subspecies diverged from a common ancestor between
~332 000 years ago (Achilli et al. 2008) and 2.0 million years
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ago (Hiendleder et al. 2008). Due to the time since divergence,
it is likely that mutations affecting quantitative traits have
developed independently in the two subpopulations (Bolormaa
et al. 2013; Kemper et al. 2015). The northern Australian beef
industry is dominated by B. indicus and B. indicus · B. taurus
composite cattle breeds (Bolormaa et al. 2011). So as to
develop genomic evaluations for this industry, prediction
models will need to accurately predict performance across
purebreeds and composites of both subspecies.

It is estimated that between 2% (Bolormaa et al. 2013) and
10% (Bolormaa et al. 2011; Koufariotis et al. 2018) of the
Australian Brahman genome is B. taurus in origin. Studies
have shown that quantitative trait loci (QTL) affecting
quantitative traits do segregate differently in B. indicus and
B. taurus (Bolormaa et al. 2013; Porto-Neto et al. 2013). This
will affect the prediction accuracy of multibreed genomic
selection and the genomic evaluation of composite animals
when animals of both ancestral subspecies exist within
populations (Bolormaa et al. 2013; Kemper et al. 2015).
This is because single nucleotide polymorphisms (SNP) in
linkage disequilibrium (LD) with a QTL in chromosome
segments from one subspecies may not be in LD with a
QTL in the other subspecies, or in the same phase. For
accurate across-breed genomic evaluations to be developed,
it may be essential to account for the genomic architecture of
traits by considering breed-specific ancestral alleles (Bolormaa
et al. 2013; Porto-Neto et al. 2013; Kemper et al. 2015).

Studies have shown that the use of multibreed reference
populations can improve the prediction accuracy of across-
breed genomic evaluations (Bolormaa et al. 2013; Hayes et al.
2019). However, the magnitude of this improvement has
generally been modest (Bolormaa et al. 2013; Hayes et al.
2019). Kemper et al. (2015) have shown that genome-wide
association studies using multibreed reference populations can
sometimes incorrectly identify SNP as segregating in multiple
breeds when they are segregating only in a single breed. This
limited power to detect SNP that segregate across, and have an
effect upon QTL in multiple breeds of cattle, may explain why
the use of multiple-breed reference populations in genomic
evaluation has resulted only in small improvements in genomic
prediction accuracy (Kemper et al. 2015).

Inclusion of genetically divergent breeds within genomic
evaluations can reduce prediction accuracy due to differences
in the allele frequencies and LD between marker and QTL and
markers among breeds (Calus et al. 2014; Moghaddar et al.
2014). The genomic relationship matrix (GRM) in multi-breed
genomic evaluations is typically weighted by the average
allele frequencies across breeds (in fact, just the average
allele frequencies in the reference population), and if there
is disparity in the allele frequencies among breeds, this may
have a negative effect on the prediction accuracy of multibreed
genomic evaluations (Moghaddar et al. 2014). One proposed
method to alleviate this issue is to model breed-specific allele
effects to account for disparity in allele effects among breeds
in multibreed genomic predictions (Ibán~ez-Escriche et al. 2009;
Makgahlela et al. 2013; Calus et al. 2014;Moghaddar et al. 2014;
Lourenco et al. 2016; Lopes et al. 2017; Gurman et al. 2019;
Sevillano et al. 2019; Duenk et al. 2019). This method has
shown promising results in sheep (Gurman et al. 2019).

The objective of the present study is to account for breed-
specific allele frequencies in construction of the GRM in a
multibreed population of tropically adapted heifers, with the
aim of improving prediction accuracy of genomic selection for
reproductive maturity score, an economically important
fertility trait. We hypothesise that the use of a breed-
adjusted genomic relationship matrix will improve the
prediction accuracy of genomic selection of admixed and
composite populations that include both ancestral
subspecies of beef breeds, namely, B. indicus and B. taurus.

Materials and methods

Animals
Full details of the datasets and genomic best linear unbiased
prediction (GBLUP) models used in the present paper have
been described previously (Warburton et al. 2020). Briefly,
reproductive maturity-score data were obtained from the
Queensland Smart Futures population, collected in the Next
Generation Beef Breeding Strategies project (Burns et al.
2016; Engle et al. 2019). Full information on data recording
and herd management of this population has been described in
Burns et al. (2016) and Engle et al. (2019). In total, 3695
reproductive maturity scores (RMS) were measured in this
population as a proxy trait for age at puberty (Engle et al.
2019). Reproductive maturity score is a single ultrasound
measurement recorded when a heifer reaches ~600 days of
age (Burns et al. 2016; Engle et al. 2019). It is measured on a
0–5 scale, where 0 = infantile reproductive tract, 1 = small
ovarian follicles, 2 = ovarian follicles with a diameter larger
than 10 mm, 3 = presence of corpus luteum, 4 = pregnancy to
10 weeks, and 5 = pregnancy longer than 10 weeks (Burns
et al. 2016; Engle et al. 2019). Heifers in this dataset
represented three breeds, Brahman (n = 979), Santa
Gertrudis (n = 1802) and Droughtmaster (n = 914). Two of
these breeds are stabilised composites of B. indicus · B. taurus
origins, namely, Santa Gertrudis and Droughtmaster, whereas
the Brahman is considered a purebred B. indicus breed. We
have recently shown that the heritability for single ultrasound
puberty traits, using SNP chip and sequence data, is low-to-
moderate, 17–35% (Engle et al. 2019; Hayes et al. 2019;
Warburton et al. 2020).

Genotypes
Heifers were genotyped using the Geneseek GGP-LD array,
consisting of 24 121 SNP (Hayes et al. 2019). These Geneseek
GGP-LD genotypes were initially imputed up to the
BovineHD array with 728 785 SNP (800K) using the
FImpute software (Sargolzaei et al. 2014) and a panel of
1500 BovineHD array genotyped animals from representative
breeds (Hayes et al. 2019). After imputation, two other
commercially available marker panels were constructed, the
BovineLD array (6K) and the BovineSNP50 BeadChip (50K),
by selecting SNP from the BovineHD array that were present on
each of these lower-density panels.

Genomic relationship matrix (GRM) construction
Due to computational efficiency, GRM were constructed in
Julia (Bezanson et al. 2017), a free open-source programming
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language. Julia allowed us to efficiently manipulate big
matrices with a modest use of RAM memory. For ease of
inversion and numerical stability, any animals that had exactly
the same genotypes on any of the marker panels were removed
from the analysis. Two methods were used to construct
GRM, Yang’s (GRMY) (Yang et al. 2010) and VanRaden’s
(GRMVR) (VanRaden 2008).

Wij ¼ Mij � 2pj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pj 1� pj
� �

q ð1Þ

GRMY ¼ WW0

m
ð2Þ

Yang’s GRMY was constructed using Eqns 1–2, where Mij

is the genotype of animal i at locus j, expressed as the number
of copies of the reference allele (0, 1 or 2) and pj is the allele
frequency of the reference allele at locus j. Furthermore,W is a
n · m matrix, where n is the number of animals and m is the
number of markers on the genotype panel being used to
construct the GRMY.

Wij ¼ Mij � Pj ð3Þ
Pj ¼ 2 � pj � 0:5

� � ð4Þ

GRMVR ¼ WW0

d
ð5Þ

d ¼ 2
X

j

pj � 1� pj
� �

ð6Þ

In comparison, VanRaden’s GRMVR was calculated using
Eqns 3–6, where Mij is defined as in Yang’s method and Pj is
the allele frequency of the reference allele for locus j expressed
as a deviation from 0.5, calculated using Eqn 4, where pj is the
allele frequency of the reference allele at locus j. The GRMVR

is then calculated using Eqn 5, where W is a n · m matrix
calculated using Eqn 3 and d is twice the sum of the frequency
of the reference allele, multiplied by the frequency of the non-
reference allele across all loci (6). The resulting GRMVR from
each method is a n · n matrix of estimated genomic
relationships between animals.

Two GRM were calculated for each method, a control
GRM and a breed-adjusted GRM. Control GRM were
calculated using both Yang’s (Yang) and VanRaden’s
(VanRaden) methods described above, with population
allele frequencies calculated using all heifers. Breed-
adjusted GRM were also calculated using Yang’s
(YangBA) and VanRaden’s (VanRadenBA) methods. Rather
than using population allele frequencies for each locus;
however, the dataset was split by breed (Brahman, Santa
Gertrudis and Droughtmaster) and breed-specific allele
frequencies were used to calculate each GRM. Using
Yang’s methods, all pj estimates used in Eqn 1 were
calculated for the reference allele in each breed at each
locus. To avoid dividing by 0 or 1 in our breed-adjusted
matrices, any alleles that had an allele frequency greater
than 0.99 or less than 0.01 were set to 0.99 and 0.01
respectively. After calculating a W matrix for each breed
using Eqn 1, all three W matrices were combined. After
combining the three breed-adjusted W matrices to form a

single matrix, a breed-adjusted GRMY was calculated using
Eqn 2. By combining the W matrices before calculating the
GRMY, we were able to account for the genomic relationships
among heifers of different breeds in the GRMY, while
adjusting for breed-specific allele frequencies.

When using VanRaden’s methods, it was also possible to
use breed-specific allele frequencies to calculate W in Eqn 3.
Although, after all of the breed-specific W matrices were
combined to calculate W’W in Eqn 5, it was problematic to
use a breed-specific d (6) estimate to calculate the GRMVR in
Eqn 5. So as to circumvent this, we used a breed-specific allele
frequency (Pj) to calculate W and then a population allele
frequency (d) to calculate the GRMVR, thus, making the
VanRadenBA GRMVR only partially breed-adjusted.

Genomic best linear unbiased predictions (GBLUP)
Genomic GBLUP were performed in Julia (Bezanson et al.
2017) using Eqn 7, where y is a vector of phenotypes, X is
design matrix allocating records to animals, b is a vector of
fixed effects and Z is an incidence matrix relating phenotypes
to animals. Furthermore, a is a vector of random animal effects
where the distribution is assumed to be Nð0; GRMs2

gÞ, where
GRM is one of the four n · nmatrices calculated above and s2

g
is SNP genetic variance. Random error terms were modelled in
vector e with an assumed distribution N 0; Is2

e

� �

. The
unexplained proportion of variation in the model is s2

e and
I is an n · n identity matrix. The fixed effects modelled in this
analysis were age at measurement, which was fitted as a
covariate and contemporary group, defined as herd, year
and season. Breed was not fitted in this model
as contemporary groups in this dataset were single breed
and, as such, the effect of breed was accounted for in the
contemporary group fixed effect.

y ¼ Xbþ Zaþ e ð7Þ
Genomic predictions were performed using a five-fold

cross-validation technique. Multibreed validation groups
were populated by randomly allocating 20% of the data into
one of five groups. This strategy of using randomly allocated
mixed-breed validation groups was used as it reflects the
admixed populations in the northern Australian beef
industry. Each animal occurred only in a single validation
group and these groups were maintained for each of the
analyses to enable fair comparisons between methods.

LRT ¼ --2 · ðLog LikelihoodFull--Log LikelihoodReducedÞ ð8Þ
Variance components were estimated for all GRM by

importing our custom GRM into genomic-wide complex
trait analysis and performing restricted maximum-likelihood
analysis (Yang et al. 2011). Log-likelihood estimates for the
full and reduced models for each GRM were used to calculate
a log-likelihood ratio test statistic (LRT) using Eqn 8.
Significance tests between the LRT statistic of breed-
adjusted and control GRM for each method (Yang and
VanRaden) and each marker panel were conducted to
determine whether GRM were significantly different. These
significance tests assumed a Chi-square distribution on
1 degree of freedom and a significance threshold of
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p = 0.05, resulting in a Chi-squared statistic of 3.841. A breed-
adjusted GRM was considered to be significantly different
from a control GRM if breed-adjusted LRT was greater than
the control LRT plus the Chi-squared statistic of 3.841.
Variance components specific for each GRM were used in
Julia BLUP estimations to calculate genomic estimated
breeding values (GEBVs) for animals in each validation group.

Prediction accuracy was calculated as the correlation
between GEBV and the phenotype adjusted for fixed
effects. Correlations were averaged across each validation
group and the average correlation was divided by the
square root of the heritability of the trait estimated on both
Yang’s and VanRaden’s 800K control GRM (h2 = 0.20) to
obtain prediction accuracy. Prediction accuracy standard
errors were calculated as the standard error of the mean for
the five validation groups (s.e.). Furthermore, prediction bias
was calculated as the regression coefficient between the
adjusted phenotype and GEBV for each validation group
and analysis. Standard errors for bias estimates were
calculated as the standard error of the mean for the five
validation group bias estimates (s.e.). Prediction accuracies
and estimated regression bias were plotted in R (R Core Team
2020) using the ggplot2 package (Wickham 2016).

Results

To understand the genomic relationships among the three
breeds of heifers in these data, we used principal-
component analyses of the 50K control GRM to illustrate
the genomic relationships among breeds, shown in Fig. 1. In
our analyses, breed is breeder defined; however, observation of
Fig. 1 shows that this may not be the most accurate definition
of breed. Generally, the three breeds in this dataset exist in
discrete clusters within the principal-component analysis plot,
suggesting that user-defined breed is reasonably accurate.
There are some animals, most notably Brahmans, that may
genomically be more related to the Droughtmaster breed
(Fig. 1). When using breed-adjusted GRM, it will be vitally
important to accurately identify an animal’s breed or breed of
origin, so as to obtain the best estimate of breed-specific allele
frequencies. Very few animals in this dataset appear to have

incorrect breed of origin assignment; as such, this will likely
have little impact on the accuracy of our results. In future
analyses, it will be essential to develop methods to improve the
accuracy of breed determination when accounting for
population structure in multibreed populations.

After performing genomic evaluations for each reference
population, we estimated the prediction accuracy of each
validation group as a measure of the efficacy of our
genomic evaluation models. These prediction accuracies
were averaged across the five validation groups in each
analysis and the results for each GRM and marker panel
are presented in Fig. 2. These results showed that the
higher-density marker panels, 50K and 800K, have higher
prediction accuracy than does the lower-density marker panel,
6K. Furthermore, the prediction accuracy for RMS is similar
between the 50K and 800K analysis, meaning that there is
little benefit to using the higher-density marker panel in this
population of heifers. The VanRaden breed-adjusted GRMVR

showed small improvements in prediction accuracy for RMS
on all panels, but this difference is not statistically significant
(s.e. = 0.05). In contrast, on all panels, the Yang breed-adjusted
GRMY had a slightly lower prediction accuracy than did
all other GRM, but again this was not statistically
significant (s.e. = 0.05). These results suggest that there was
no significant improvement in prediction accuracy for RMS in
this population of heifers from using breed-adjusted GRM.

Estimation bias was calculated in this analysis as the
regression coefficient between estimated breeding values
and phenotype adjusted for fixed effects (Fig. 3). It should
ideally be close to one. Similar to the results presented in
Fig. 2, bias estimates for each of the five validation groups
were averaged for each panel and GRM and are presented in
Fig. 3. These results showed that the 6K regression coefficients
were less than 1 and lower than in the 50K and 800K analysis,
meaning that there is a general over-dispersion of GEBVs in
this analysis. Bias estimates between the 50K and 800K
analyses were similar and close to one, suggesting that both
the 50K and 800K analyses were unbiased. There were no
statistically significant differences among the estimated biases
for each GRM on each marker panel. In all analyses, the Yang
breed-adjusted GRMY generally had a slightly lower bias
estimate than did the control GRMY and the VanRaden
breed-adjusted GRMVR had slightly higher bias estimates
in the 6K and 50K analyses. These differences between
breed-adjusted and control GRM were not significantly
different (s.e. = 0.13).

Variance components were estimated for each GRM in
each analysis to determine the effect of using breed-adjusted
GRM (Table 1). Using the VanRaden method, there was no
change in the estimates with or without breed adjustment
across all SNP panels. In contrast, when using Yang’s
method, the Yang breed-adjusted GRMY showed a
consistent decrease in residual variance across all marker
panels in comparison with the other GRM. Furthermore,
the estimated additive genetic variance in the Yang breed-
adjusted GRMY was slightly higher than in other GRM. In
combination, this reduced residual and increased additive
genetic variance resulted in higher estimated heritabilities
for the Yang breed-adjusted GRMY than for the other three
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Fig. 1. Principal component analysis of the Queensland Smart Futures
research herd heifers, estimated using the 50K Yang’s control genomic
relationship matrix.
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GRM. While this result was not statistically significant, this
trend for a reduction in residual variance with this GRM
suggests that the use of the Yang’s breed-adjustment
captures a higher proportion of the additive genetic effects.

Results from log-likelihood ratio testing showed that there
was a consistent reduction in log-likelihood estimates for the
Yang breed-adjustedGRMY across all models, suggesting that
this GRM was more appropriate for these data. Furthermore,
significance testing of the LRT results between control and
breed-adjusted GRM for each method and marker panel
showed that the LRT estimates for Yang breed-adjusted
GRMY are significantly different from those for the Yang
control GRMY across all marker panels.

Discussion

Ideally, genomic selection in the northern Australian beef
industry will be performed across-breeds to allow beef
cattle producers opportunities to select the best bulls for
their production system, irrespective of breed constraints.
Unfortunately, for many key traits such as fertility, the
prediction accuracy of multibreed genomic evaluations

remains quite low (Engle et al. 2019; Hayes et al. 2019).
The objective of the present study was to use breed-specific
GRM to account for population stratification in a multibreed
population of tropically adapted heifers, with the aim of
improving prediction accuracy for reproductive maturity
score. We showed that the use of breed-specific allele
frequencies to calculate breed-adjusted GRM did not result
in either improved prediction accuracy or bias for reproductive
maturity score evaluations in this population of heifers.
However, our results showed that the Yang’s breed-adjusted
GRMY was the optimal model for genomic prediction in this
population of heifers, on the basis of LRT significance tests.
This was reflected in the variance component estimations
using this GRMY, showing a reduction in residual variance
and an increase in the additive variance estimations for RMS in
this population of heifers.

Variance component estimation is critical for the efficacy
of any genetic evaluation (Hofer 1998). Our results showed
that the use of Yang’s breed-adjusted GRMY resulted in
higher LRT estimates, which were significantly different
from Yang’s control LRT estimates. This suggests that
Yang’s breed-adjusted GRMY provided a better fit for the
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Fig. 2. Prediction accuracy for reproductive maturity score (RMS) measured on the 6K, 50K and 800K
marker panels across four genomic relationship matrices, namely, VanRaden’s (VanRaden), VanRaden’s
breed-adjusted (VanRadenBA), Yang’s (Yang) and Yang’s breed-adjusted (YangBA).
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marker panels across four genomic relationship matrices, namely, VanRaden’s (VanRaden), VanRaden’s
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Table 1. Estimated variance components (s.e. in parentheses), phenotypic variance (Vp), additive genetic
variance (Va), residual variance (Ve), heritability (h

2), log-likelihood of the full model (LogL) and log-likelihood
ratio test statistic (LRT) for reproductive maturity score in Queensland Smart Futures heifers

Estimated with the 6K, 50K and 800K marker panels using one of four genomic relationship matrices; Yang’s (Yang),
Yang’s breed-adjusted (YangBA), VanRaden’s (VanRaden) andVanRaden’s breed-adjusted (VanRadenBA). *Denotes
LRT statistic for a breed-adjusted GRM that is significantly different from the control. Tested using a Chi-squared test on

1 degree of freedom and a significance level of P = 0.05

GRM Vp Va Ve h2 LogL LRT

6K marker panel
Yang 1.09 (0.03) 0.15 (0.03) 0.95 (0.03) 0.14 (0.02) –2065.85 69.0
YangBA 1.09 (0.03) 0.16 (0.03) 0.93 (0.03) 0.15 (0.02) –2050.39 81.9*
VanRaden 1.10 (0.03) 0.15 (0.03) 0.95 (0.03) 0.14 (0.02) –2065.41 69.9
VanRadenBA 1.09 (0.03) 0.15 (0.03) 0.95 (0.03) 0.14 (0.02) –2056.41 69.9

50K marker panel
Yang 1.10 (0.03) 0.20 (0.03) 0.91 (0.03) 0.18 (0.03) –2050.71 91.7
YangBA 1.09 (0.03) 0.22 (0.03) 0.87 (0.03) 0.20 (0.03) –2040.73 111.7*
VanRaden 1.10 (0.03) 0.19 (0.03) 0.91 (0.03) 0.18 (0.03) –2050.88 91.4
VanRadenBA 1.10 (0.03) 0.19 (0.03) 0.91 (0.03) 0.18 (0.03) –2050.88 91.4

800K marker panel
Yang 1.11 (0.03) 0.22 (0.03) 0.89 (0.03) 0.20 (0.03) –2049.23 94.7
YangBA 1.10 (0.03) 0.24 (0.04) 0.86 (0.03) 0.22 (0.03) –2039.25 114.4*
VanRaden 1.11 (0.03) 0.22 (0.03) 0.89 (0.03) 0.20 (0.03) –2047.48 98.1
VanRadenBA 1.11 (0.03) 0.22 (0.03) 0.89 (0.03) 0.20 (0.03) –2047.48 98.0
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reproductive maturity score phenotype in this population of
heifers. The use of this GRMY resulted in consistently lower
residual variance and slightly higher additive genetic variance
estimates across all three marker panels. This is significant as
the reduction in residual variance suggests that this model is
more accurately partitioning genetic variance and, therefore,
model error variance is being reduced. This trend was not seen
in the VanRaden breed-adjusted model. The VanRaden breed-
adjusted equations are only partially using breed-specific
alleles, when the W matrix is being calculated. Due to the
way in which the GRMVR is calculated in the VanRaden
breed-adjusted model, the d statistic has to be calculated using
population allele frequencies. Whereas, in the Yang breed-
adjusted model, breed-specific allele frequencies were used in
all calculations. This may explain why the VanRaden breed-
adjusted model did not have the same affect on the estimated
variance components as did the Yang breed-adjusted model.

There are limited estimates of published variance
components for breed-specific GRM available in the
literature, but one study has shown that the estimated
variance components from a breed-adjusted GRM had the
opposite effect in pigs (Sevillano et al. 2019). In their study,
Sevillano et al. (2019) showed that variance components
estimated with a breed-adjusted GRM had reduced additive
genetic variances and, in some cases, reduced heritability
estimates in comparison to using a non-adjusted GRM. In
comparison, our results showed that the use of a breed-
adjusted GRMY may improve the accuracy of variance
component estimation in multibreed populations, and this
warrants further investigation.

Industry-available genomic evaluations will be beneficial to
end-users only if the accuracy of prediction is high. When
performing genomic evaluations across genetically divergent
populations, such as those found in the northern Australian
beef industry, it will be essential to account for population
stratification to improve the prediction accuracy of genomic
evaluations (Bolormaa et al. 2013; Kemper et al. 2015). There
are several reports in the literature from other species (pigs,
dairy and sheep) that suggest that breed-specific allele
frequencies do not result in improved prediction accuracies
in other multibreed populations (Ibán~ez-Escriche et al. 2009;
Makgahlela et al. 2013; Moghaddar et al. 2014; Lopes et al.
2017). In contrast, a recent study showed that the use of
breed-specific allele frequencies improved the prediction
accuracy of forward cross-validation in single-step sheep
genetic evaluations in comparison to using population allele
frequencies to calculate the GRM (0.220 and 0.206
respectively); however, these results were not statistically
significant (Gurman et al. 2019). Despite the recent results
presented in the sheep industry, our results demonstrated that
the use of breed-specific allele frequencies did not result in
improved prediction accuracies for a lowly heritable trait such
as reproductive maturity score. Population stratification will
need to be accounted for in future evaluations, and it may
be beneficial to investigate other methods to account for
population differences, such as the use of haplotype
analyses (Bolormaa et al. 2011; Koufariotis et al. 2018).

Estimation bias is another important parameter to review
when considering the efficacy of genomic evaluations. In the

present study, bias was reduced most by using a higher-density
marker panel, that is, 50K or 800K marker panels. Similar to
prediction accuracy, there was no significant improvement in
bias estimations when using breed-adjusted GRM in this
population of heifers. Bias estimates of breed-adjusted
GRM evaluations are mixed in the literature. One study in
dairy cattle showed no improvement to bias estimates by using
breed-adjustment (Makgahlela et al. 2013). Another study in a
crossbred population of chickens showed that the use of a
breed-adjusted GRM reduced estimation bias (Duenk et al.
2019). Conversely, the study by Gurman et al. (2019) showed
that bias increased slightly in sheep analyses when using
breed-adjusted GRM in a single-step BLUP. While the
effect of breed-adjusted GRM on estimation bias in
GBLUP analyses remains inconclusive, no studies have
shown large adverse estimates of bias using these methods.
Therefore, from the results presented in the current study, it
can be suggested that breed-adjustedGRM have little effect on
the estimation bias in multibreed GBLUP in this population of
heifers.

Conclusions

In conclusion, the use of breed-adjustedGRM did not improve
the accuracy of prediction for reproductive maturity score in
this multibreed population of tropically adapted heifers.
Nevertheless, the use of Yang’s breed-adjusted GRMY

allowed the capture of a higher proportion of additive
genetic effects (higher additive genetic variance)
consistently across several SNP panels. This finding
suggests that despite seeing no improvement in prediction
accuracy, it may still be beneficial to use breed-adjusted
GRMY in multibreed populations to improve the estimation
of variance components.
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