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ABSTRACT 

Eucalyptus species native to Australia have shown excellent growth rates, good physical properties 

and resistance to diseases. As a result, they are widely planted globally for a variety of uses. One 

negative aspect of many of these faster growing species is that they have a high percentage of low 

durability heartwood that resists preservative treatment. In Australia, large plantations of these 

species were established near the end of the 20th Century, primarily for paper production. However, 

shifting priorities have encouraged a re-examination of possible uses for these materials. Shining 

gum (Eucalyptus nitens) is an important plantation species in Tasmania.  Among the possible uses 

for this species are those requiring enhanced durability. This paper reviews the options for 

enhancing the durability of Shining gum heartwood for structural and appearance product 

applications in both interior and exterior exposures. 

Keywords: Shining gum, Eucalyptus nitens, durability, heartwood, refractory, incising, thermal 

modification, permeability  

1. INTRODUCTION 

Although members of the genus Eucalyptus are mainly native to Australia, they now have an 

almost worldwide distribution and have become a globally important plantation fibre source. Since 

the end of the 20th Century, sizable Eucalyptus plantations have been established in Australia, 

many of which were originally destined for the pulp and paper market. Tasmania alone has an 

estimated 208,000 hectares of Shining gum (Eucalyptus nitens), nearly 70% of the state’s total 

plantation resource, that were planted to support a large domestic pulping industry (Downham and 

Gavran 2019). However, changing economics and market factors have prompted a re-examination 

of this resource for other, more value-added uses both in Australia and globally (Nolan et al. 2005, 

Wentzel et al. 2019).  

 

Timber and veneer-based products can potentially create more value for Australia’s Eucalyptus 

plantation resources than chips, but the characteristics of the wood resulting from certain biological 

traits, species provenance and plantation management strategies mean they may not be directly 

suitable for manufacture and production of structural or appearance wood products. In Australia, 

many Eucalyptus plantations are grown un-thinned, unpruned (fibre-managed), on short rotations 

to maximize output and reduce costs for paper chip production (Beadle et al. 2008). As a result, 
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this timber contains high percentages of features (knots, limb trace, gum vein, etc.), juvenile wood 

and tension wood. Juvenile wood is a natural growth adaptation that allows the tip of the tree to 

flex as it grows upward, but it is typically weaker and prone to excessive longitudinal shrinkage 

(Maeglin 1987). The transition from juvenile to mature wood is gradual and can take from 6 to 15 

or even 20 years depending on the species, meaning that trees grown in short rotation plantations 

contain very high percentages of this material. Tension wood has similar effects to juvenile wood, 

although it occurs as a result of trees bending or leaning in response to environmental stimuli such 

as wind or light (Washusen 2009). Forest management of plantation Eucalyptus, for example 

specific thinning and fertilising regimes, may help to reduce the likelihood of tension wood 

(Washusen 2009), but in Australia, the number of fibre-managed Eucalyptus plantations far 

exceeds the number of sawn-log managed plantations (Beadle et al. 2008). In addition, tree sizes 

and wood density can vary widely, even for trees with the same species origin, in the same age 

range and plantation (Potts et al. 2011), and this lack of uniformity, coupled with the propensity 

for collapse during drying and high percentages of features makes plantation eucalypts like 

Shining gum a complex and difficult material to fit into sawn log production criteria.  

 

Extensive research is underway in the Australian timber industry to determine the best options for 

utilizing the Eucalyptus plantation resource for higher value wood products, despite its 

characteristic challenges. Possible applications include exterior uses such as cladding, decking, 

veneer-based products, mass timber elements, or even in-ground fences. However, the Australian 

Standard AS5604 classifies Shining gum as a Durability Class 3 timber for above ground 

applications and Class 4 for soil contact, equating to estimated service lives of 7 to 15 years above 

ground and 0 to 5 years in the soil, respectively. As a result, the timber of this species must be 

preservative treated or modified in some other way to provide acceptable performance for these 

applications. 

 

Preservative treatment of Shining gum poses a major challenge. The sapwood zone of this species 

is relatively thin and treatable, but as is the case with most eucalypt species the heartwood is 

extremely resistant to conventional impregnation methods. This is a challenge which industry and 

researchers have been considering for many years. Cookson (2000) reviewed potential approaches 

to treating low durability eucalypts, with a focus on heartwood protection, including incising, pre-

steaming/boiling, pressure variations, ammoniacal solutions, diffusion, and supercritical fluid 

treatments. The purpose of the current paper is to review and compare some of the above strategies 

that remain relevant, as well as discuss further options for this effort. 

 

Development of contemporary alternative technologies for improving the performance of 

refractory, low durability plantation Eucalyptus species could enable value-enhanced 

opportunities for utilizing these materials. This would be of great benefit internationally given that 

there are now more than 20 million hectares of eucalypt plantations world-wide (Ferreira et al. 

2019), and the vast majority of this resource has relatively low natural durability. Timber 

researchers at the University of Tasmania (UTAS) in Launceston and other industry and research 

collaborators are actively involved in a number of efforts to enhance the durability of Shining gum 

as well as other plantation, regrowth or regenerated Eucalyptus species. Research at UTAS is also 

focussing on wood modification for fire resistance and increasing the machineability and service-

life of timber in non-exterior applications, but that is outside the scope of this paper.  

 

This paper considers options for improving the durability of Eucalyptus heartwood, outlining some 

of the positive and negative attributes of each approach by reflecting on factors such as the 

repeatability and efficiency of the process, it’s capacity for industry uptake as well as the 

commercial viability of the resulting product in terms of its appearance, anatomical and durability 

qualities. It will focus on seven different strategies including: enhancing the permeability of the 
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wood by expanding pores; increasing the surface area and pathways for fluid movement by 

modifying the wood; reducing the need for preservative treatments by modifying the wood; 

altering the treatment fluid; altering the treatment process; creating surface barriers; and using thin 

sawn laminates or veneers.  

2. STRATEGIES FOR IMPROVING TREATMENT OF EUCALYPTUS HEARTWOOD 

As noted in the introduction, the heartwood (or true wood) of most Eucalyptus species, including 

Shining gum, is very resistant to conventional vacuum/pressure impregnation. Pressure treatment 

which is commonly used to treat softwood species often results in a thin shell of preservative 

treatment surrounding a largely untreated, decay and insect susceptible core. This type of thin 

barrier treatment will perform as long as the treatment envelope is not compromised by cutting or 

drilling, or by the development of checks that penetrate beyond the depth of the original treatment. 

In most built environments, it is impossible to control post occupancy modifications or alterations 

to timber building elements. Damage to the treatment envelope allows for the entry of fungal 

propagules or insects that can degrade the unprotected interior, leading to eventual failure.  

Altering pressure cycles can produce slight improvements in treatment results, but the effects are 

limited by the inherent resistance of the timber to fluid flow (Cobham and Vinden 1995). 

 

The wood characteristics of Shining gum sharply limit the potential for effective preservative 

treatment to the current Australian/New Zealand Standard for Hazard Class 3 (weather exposed; 

above ground) that in sawn timber requires complete sapwood penetration as well as either 8mm 

of penetration of heartwood in timber >35mm thick or 5mm for timber <35mm thick (AS1604.1-

2012). This seems relatively shallow but can be extremely hard to achieve with many Eucalyptus 

heartwoods, including Shining gum. An alternative requirement for Hazard Class 3 for sawn 

timber allows unpenetrated heartwood, but it cannot exceed 20% of the cross section nor extend 

more than halfway through a piece. However, the high proportion of heartwood and the typical 

sawing patterns adopted (e.g. Washusen et al. 2008, Washusen and Harwood 2011, Washusen 

2013) leave only small percentages of sapwood on each board, making it difficult to achieve less 

than 20% unpenetrated heartwood. Even more challenging is the aim to treat Shining gum to 

Hazard Class 4 (in ground contact), which for sawn timber requires total sapwood penetration and 

not less than 10mm penetration of heartwood from any surface, regardless of the board’s 

dimensions. Unpenetrated heartwood may be permitted but with the same conditions as outlined 

for H3 above, and thus, faces similar problems.  

 

Eucalyptus heartwood characteristics also affect the ability to use other treatment approaches such 

as resin impregnation, acetylation or any technologies that require liquid penetration into the 

timber. The options for improving treatment can take several forms including: enhancing the 

permeability of the wood by opening or removing the blocked pit membranes that restrict fluid 

flow, increasing the amount of cross section area exposed to fluid flow, modifying the treatment 

fluid, making the wood less susceptible to water ingress, or else focusing on the treatment of thin-

sawn laminates or veneers for producing engineered wood products. 

2.1 Enhancing permeability by expanding pores 

Fluid flow in wood is largely dictated by the diameter of the smallest pores or openings at a cellular 

level (Nicholas and Siau 1973, Siau 1971). The cell structure of hardwoods is composed of vessels, 

fibres and parenchyma. Fluid flow occurs most easily through open vessels and becomes 

progressively more difficult through the fibres, while parenchyma cells mainly act as storage units. 

Eucalypts tend to have vessels uniformly distributed across the growth rings with fibres 

representing ~60% of the total section. Vessels can become occluded with tyloses that block flow 

and these are common in Shining gum heartwood. ‘Pits’ are generally the smallest openings in 
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wood cells and they essentially act as a channel or conduit between different wood cell structures 

where fluid is stored or transported. Hardwood pits can become blocked by an accumulation of 

debris made up of extractives and other mineral deposits that restrict fluid flow.  

 

2.1.1 Microwave treatments 

Microwave treatments have been explored for increasing the permeability of both pine heartwood 

and Eucalyptus species (Vinden 1986, Torgovnikov and Vinden 2000 a, b, Xia et al. 2017). In 

essence, high intensity microwave energy is focussed on timber with a high moisture content to 

generate targeted steam pressure that causes pit membranes between cells, tyloses in vessels and 

ray cells to rupture thus enabling subsequent preservative treatment to flow through the wood cell 

structure more easily. Higher intensity microwaving can also create new voids or cavities in the 

wood on the radial and longitudinal planes which can significantly increase chemical uptake 

capacity. Aside from its ability to enhance permeability, microwaving can also potentially reduce 

drying times and decrease internal stress development that can lead to collapse in woods like 

Shining gum (Yang and Liu 2018). 

 

Although microwave treatments have been shown to increase permeability, care must be taken to 

avoid overheating wet wood, which can lead to significant losses in physical or mechanical 

properties (Torgovnikov and Vinden 2009). Microwave treatment can also markedly change the 

appearance of the wood as clearly demonstrated by a photograph of Torgovnikov and Vinden’s 

patented product ‘Torgvin’ (2009, p.88). Both these effects potentially limit the usefulness of 

microwaves for certain applications in the built environment. The most immediate application for 

microwave treatment is for enhancing the pulping process rather than enhancing sawn timber 

products, but Torgovnikov and Vinden also developed ‘Vintorg’, a composite product made by 

modifying wood through high intensity microwave treatment followed by soaking in resin, before 

the material is compressed and cured. The process counteracts the potential physical and 

mechanical effects of microwave treatment and reduces the highly porous surface appearance. 

However, this type of product clearly requires the addition of multiple, potentially costly steps into 

the timber manufacturing process. Capital and energy costs are an additional factor, although 

Torgovnikov and Vinden (2009) suggested that the operational costs were modest and were not a 

deterrent to industry uptake for a product with superior durability. However, this process is not 

commercially used. 

 

Microwave treatment does have promise for enhancing the permeability of refractory species such 

as Shining gum especially if more nuanced, species-specific treatment parameters that minimize 

negative effects on strength can be developed.  

 

2.1.2 Ponding 

Although it is not used for improving permeability, long term ponding of logs has been used to 

limit checking prior to sawing. However, ponding for long periods under water has also been 

shown to result in substantial bacterial degradation of the pits and should improve permeability 

(Elwood and Ecklund 1959). However, the process is slow, taking months to years or even 

centuries and would require substantial volumes of both water and land area.   

 

2.1.3 Fungal inoculation or biological incision 

An alternative approach to altering permeability is to inoculate the wood with fungi. Most fungi 

preferentially move between cells by growing through and thus opening the pits. Inoculating 

southern pine and Douglas-fir poles and posts with Trichoderma spp. improved permeability, but 

the effect was variable across the stem and did not affect the heartwood (Archer 1983, Graham 

1954, Lindgren 1952). Fungal growth was further enhanced by pre-treatment with sodium fluoride, 

which inhibited the growth of competing fungi, allowing Trichoderma to dominate in the sapwood. 
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While some Trichoderma species are marginal soft rotters, the overall effect on wood properties 

would be minimal in comparison with the gains in sapwood treatment. However, fluoride is no 

longer widely used for wood protection and its use in an industrial setting might be problematic. 

 

Decay fungi have also been explored for opening pits and increasing permeability. Rosner and 

colleagues used two white rot fungi Phanaerochete chrysosporium and Dichomitus squalens to 

improve permeability (Rosner et al. 1998, Schwarze and Schubert 2009, Tucker et al. 1998). They 

found improved permeability but noted that care needed to be taken to ensure that the fungal 

exposure did not extend to the point where decay adversely affected mechanical and physical 

properties (Messner et al. 2003). While so-called ‘biological incising’ has shown promise under 

controlled conditions it has not fared well in field trials (Dale et al. 2019, Lehringer 2011) where 

conditions are more variable and other fungi can out-compete the test organisms, which limits its 

commercial applicability. 

 

2.1.4 Chemical Additives  

Another approach that can be used to enhance wood treatability is the incorporation of additives 

to the preservative formulation to improve preservative penetration. The additives can be used 

alone or in combination and include wood swelling agents; resin or extractive dispersing or 

dissolving chemicals; surfactants and wetting agents. These compounds are generally applied at 

low concentrations (i.e. < 5% m/v) mainly because of adverse effects, such as interference with 

the functioning of the other preservative formulation ingredients if the concentration is too high 

and also due to cost factors. Most additives produce slight improvements in penetration, ranging 

from 1 to 3 or 4 mm, but recent studies using various amines such as buffered amine oxides suggest 

that they can help enhance fluid movement (Ross 2015). 

 

One of the most common tools for improving the penetration of preservative formulations is the 

addition of ammonia (Morrell and Morris 2002). Ammonia is used to solubilize copper, but also 

appears to substantially improve penetration in wood via a combination of dissolution of 

encrustations on pits and swelling of cell structure (Rak 1975, Gjovik 1983). Ammoniacal-based 

preservatives tend to provide improved penetration into seasoned refractory timbers on both a 

microscopic and macroscopic level (Cookson 2000). Ammoniacal-based systems have found a 

number of niche markets for treatment of refractory woods. The disadvantage of these systems is 

their tendency to darken the wood and their strong odours. Amines have been substituted for 

solubilising copper because they are less expensive and lack the ammonia odour, but the enhanced 

penetration associated with the ammonia is also lost. 

 

2.2 Increasing permeable surface area and pathways for fluid by modifying wood 

2.2.1 Incising 

Incising is the practice of driving metal teeth into the radial or tangential faces of timber to increase 

the amount of cross-sectional area exposed to fluid flow. Since longitudinal flow can be orders of 

magnitude greater than either radial or tangential flow, the process increases the depth of 

preservative treatment to a zone just beyond the depth of the incisions (Morrell and Winandy 1987, 

Anderson et al. 1997, Chandler and Morrell 1999). While preservative penetration around each 

incision is limited, high density incising can produce uniform treatment to the depth of the incision 

(Smith and Morrell 1991, Lebow and Morrell 1993). Incising is required in North America for 

treatment of many timber species and was used in Australia for treatment of railway sleepers 

(AWPA 2019, Cookson 2000). It is also still used in Australia to a limited extent for aiding the 

treatment of softwood landscaping timbers. The process is simple and rapid and has been available 

for almost a century. Incising can also help to create more even drying checks in large timbers as 

it relieves drying stress near the surface that can lead to deeper checks (Henry 1973). This process 

is commonly used prior to air-seasoning of railway sleepers in North America. 
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While incising does improve preservative penetration, it is not without drawbacks. The most 

notable drawback is a loss in flexural properties (Morrell et al. 1998, Winandy and Morrell 1998, 

Winandy et al. 2018). Incising reduces the effective cross-sectional area of the timber. The effect 

is most noticeable on smaller dimension timbers and decreases with thickness. Changes in flexural 

properties can be predicted based upon loss of cross-sectional area. There is a definite trade-off 

between decreases in flexural properties and improved performance against biological 

deterioration. Numerous studies have shown that incising enhances preservative penetration and 

improves product performance. Another notable drawback of incising is that it negatively affects 

the surface appearance of the final product. Many architects routinely drop the incising 

requirement in North America for this reason. However, incising technology has improved 

markedly with the use of much finer incisor teeth, the use of needles instead of teeth and, finally, 

laser incising (Goodell et al. 1991, Islam et al. 2007, Morris et al. 1994, Suttie 1996, Yakuwa et 

al. 2018). Despite these advances, conventional high-density incising remains the predominant 

method for improving treatment. Incising could be feasible for enhancing the treatment of Shining 

gum for applications such as decking, posts and other products where the incising marks were 

acceptable. The marks could potentially be hidden by profiling the surface, or for example, the 

development of novel incising technology using photogrammetry, patterned incisions and 

application-specific CNC routing for designed exterior applications.   

 
2.2.2 Compression 
A number of researchers have explored the use of compression processes to improve durability 

(Cech and Huffman 1971, Sanders et al. 2000). At its simplest, wet wood is compressed in the 

radial or tangential direction prior to seasoning and treatment. The process ruptures cells creating 

additional pathways for fluid flow. The process is performed in the green condition while the cell 

walls are still saturated which minimizes potential effects on strength. Compression treatments can 

be taken further by heating the wood and then compressing the timber in the viscoelastic thermal 

compression (VTC) process. The VTC process was originally developed to densify lighter woods 

such as poplar. The combination of heating and a small amount of compression might enhance 

subsequent preservative treatment. The primary issue for this process would be the added cost. It 

is also worth noting that heating the wood causes a change in the appearance of the wood. 

 

2.3 Reducing the need for preservatives by modifying wood 

2.3.1 Thermal modification  

There is an increasing global aversion to synthetic chemicals including those used to protect timber 

(Fell et al. 2006). Such concerns are especially prevalent in Europe, where major regulatory 

changes have markedly altered the markets for traditional wood preservatives (Sandberg and 

Kutnar 2016). These changes have fostered the development of alternative strategies for increasing 

durability that avoid the use of chemicals altogether and among these is thermal modification.  

 

At its simplest, thermal modification involves heating dry timbers to temperatures of about 150 ̊C 

to 260 ̊C for varying periods of time. Exposure to elevated temperatures affects the three primary 

wood polymers differently, with the hemicelluloses being most susceptible to thermal degradation, 

followed by cellulose and finally lignin. Hemicelluloses play a number of roles in the 

lignocellulose matrix, including acting as a bridge between cellulose and lignin, and their non-

uniform polymeric structure makes them among the first polymers to be degraded by many wood 

decay fungi (Winandy and Morrell 1993). Thermal modification attacks the hemicelluloses and 

alters the wood/moisture relationships. As a result, the wood wets more slowly rendering it 

potentially less susceptible to degradation because the conditions for decay are less suitable. There 

are an infinite range of conditions for thermal modification and a number of processes such as 

Thermowood, OHT, and Plato have been commercialised (Militz 2002). The processes are not 
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new, but the potential for creating a more durable material with no synthetic chemicals has 

attracted interest. Thermally modified wood is primarily used in Europe, but there is increasing 

interest in this material outside Europe (Sandberg and Kutnar 2016), including in the Australian 

timber industry. 

 

Thermal modification is an attractive option for increasing the durability of Shining gum because 

it is not affected by challenges related to low heartwood permeability that affect traditional 

preservative treatments. Instead, the process is dependent on heat transfer. Along with increased 

resistance to moisture uptake, the process changes some of the anatomical and visible qualities of 

the wood, including darkening its colour, increasing dimensional stability, reducing gluability and 

perhaps most significantly, decreasing its impact bending strength (Militz 2002). Even so, a 

reduced modulus of elasticity (MOE) may not be that problematic for certain building applications, 

for example wall cladding, and other changes could potentially be worked around or used to 

advantage by timber processors, builders and designers. In addition, while there is likely to be 

some increase in brittleness, a recent study suggests that the mechanical and anatomical properties 

of Shining gum may be less affected in an open versus a closed thermal modification system 

(Wentzel 2018 Wentzel et al. 2019), although potential commercial, environmental (e.g. odour 

during production) and operational pros and cons of open versus closed systems remain to be 

determined.  

 

While thermal modification of Shining gum is possible, the primary limitation of this process is 

its ability to produce truly decay and insect resistant materials (Esteves and Pereira 2009, Hill 

2006, pp. 99-126). Most thermally modified materials have been employed in Europe, which has 

a much lower decay risk than many areas in Australia where this species would be used. Thermally 

modified wood appears to be performing well in above-ground applications such as cladding 

where the wood is somewhat protected from continuous wetting, but these materials have not 

performed as well in traditional decay tests (Knapic et al. 2018, Vidrine et al. 2007). A further 

drawback for thermal modification is that it has little or no effect on termites, which are endemic 

to all of mainland Australia. Thus, thermally modified timbers would need supplemental treatment 

with some type of termiticide. There is already one light organic solvent preservative (LOSP) 

treated, thermally modified, radiata pine material on the market, which would potentially 

outcompete a Shining gum alternative. Potential problems with surface barrier treatments are 

discussed further in section 2.6 below.  

 

2.4 Altering the treatment fluid 

The other approach to improve treatment is to modify the solvent, generally by reducing the 

viscosity (Siau 1971). However, reduced viscosity has only limited effects on fluid movement 

which is still heavily influenced by pore size of the wood’s cell structures. As a result, the use of 

more volatile solvents may produce slight improvements in treatment, but the benefits are minimal 

without concurrent treatment to increase permeability. 

 

2.4.1 Gas phase treatment 

Gas phase treatments can penetrate relatively refractory woods and gaseous fumigants have long 

been used for treating timbers to kill pests for quarantine purposes and for limiting internal decay 

in utility poles (Morrell and Corden 1986). These treatments are generally short term and highly 

toxic to non-target organisms. The one gaseous process that did show promise for timber in service 

was vapour phase boron. Developed nearly simultaneously in the UK and New Zealand, the 

process drew a vacuum over the wood and introduced trimethylborate (Burton et al. 1990, Turner 

et al. 1990). The trimethylborate volatilized and diffused through the wood, reacting with moisture 

to form boric acid and methanol. The methanol could be recovered leaving the boron in the wood. 

This process worked best in very dry wood and was especially suited for composites. Boron, 



 

 

9 

however, is susceptible to leaching, so this treatment was more appropriate for termite and insect 

protection of finished panels in interior applications. A second process, using vapour copper was 

also explored but never commercialized (He et al. 1997). Vapour treatments were not explored for 

refractory species, but the primary limitations would be the cost of the chemicals, the need to dry 

wood to low moisture contents (<6 %), and the times required for the actives to diffuse through 

the timber at effective levels. 

 

2.4.2 Supercritical Carbon Fluids 

The ultimate fluid change approach would be to explore supercritical carbon dioxide impregnation. 

First explored for wood treatment in Japan, supercritical fluids (SCF) can move through already 

seasoned timbers like a gas, but also have solvating properties approaching those of liquids 

(Kayihan 1992, Krukonis 1988). Thus, a SCF can move through a refractory timber like Shining 

gum carrying enough biocide to provide protection against fungal and insect attack. Carbon 

dioxide is a preferred carrier because it has a relatively low critical temperature (31.1 ̊C) and 

pressure (7.39 MPa) and minimal toxicity. Extensive testing on refractory heartwood of softwoods 

showed that a variety of fungicides could be delivered into the wood at effective levels and there 

is one commercial facility using supercritical carbon dioxide in Denmark (Kjellow et al. 2012, 

2013, Kjellow and Henriksen 2009). The primary limitation to using this process is the initial start-

up cost. High pressure pumps, vessels and fittings are costly and training and building expertise 

would take some time. However, the operating costs for SCF could be quite low because the carrier 

can be recovered and recompressed. The other issue that may affect SCF treatment of Shining gum 

is the ability to effectively relieve pressure differentials at the beginning and end of the process. 

Elevated pressures can cause crushing if the differences between the surface and interior exceed 

the material properties of the timber. Similarly, failure to relieve excessive pressure inside the 

timber at the end of the process can result in the timber cracking (Kjellow and Henriksen 2009, 

Smith et al. 1993), and this may be particularly problematic for a collapse-prone, lower density 

hardwood like Shining gum. However, these problems could potentially be addressed by careful 

selection of treatment parameters. The main benefits of this approach include that SCFs are able 

to permeate seasoned timber, which can subsequently be sold or machined directly, as well as the 

fact that the system can use low levels of low toxicity chemicals and is closed loop, which has 

advantages for worker and environmental safety. Although the process has been around for many 

decades, and evaluated on a small scale using Messmate (Eucalyptus obliqua) (Cookson 2009) it’s 

unclear if it has yet been tried on Shining gum. 

 

Kennedy et al. (2007), also explored hydrofluoroalkanes as alternative fluids. These refrigerants 

could readily move through refractory woods as gases and were easily recovered by 

recompression. The process, however, was not commercialized but it shows that there may be 

other fluids that could overcome the inherent resistance of timber to fluids.   

 

2.5 Altering the treatment process  

Treatment methods that don’t involve vacuum pressure impregnation may include various 

methods of spraying, dipping or soaking timber in preservative fluid. In particular, dip/diffusion 

treatments have been used for decades to protect timbers in low decay risk environments or to 

provide surface protection against insects.  

 

2.5.1 Boron pre-treatment 

The most commonly used long term dip/diffusion process was boron treatment of framing timber 

in New Zealand. Although no longer widely used, the process provided protection against lyctid 

attack in framing and, coincidentally protection against fungal attack if the framing was wetted. 

Boron treatments are also still used Australia, although mainly to protect sapwood from lyctid 

attack in various Hazard Class 1 environments (i.e. inside, above ground) (Cookson et al. 1998). 
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Boron has a number of attractive features for wood protection (Obanda et al. 2008). It is effective 

against fungi and insects, it has low toxicity to non-target organisms and, most importantly, it is 

capable of diffusing into refractory woods with moisture. Another positive attribute of boron is 

that it is also an effective fire retardant and is a common ingredient in several commercially 

available fire retardants for interior use. Unfortunately, boron will also diffuse or leach out of the 

timber under high moisture regimes. Thus, boron alone is not a suitable treatment for using Shining 

gum in exterior exposures in Hazard Classes 3 or 4 by Australian/New Zealand Standards 

AS/NZ1604. 

 

2.5.2 Boron pre-treatment with supplemental preservative overcoat 

Although dip/diffusion with boron alone is not suitable for exterior applications, there may be a 

way to take advantage of the process. Boron pre-treatments are widely used in North America for 

protecting railway sleepers from decay during air seasoning. The process was first proposed by T. 

L. Amburgey (Amburgey and Sanders 2007), at Mississippi State University who showed that ties 

dipped in a boron solution prior to air-seasoning experienced much less decay than untreated ties. 

Amburgey also followed this up by over-treating boron treated ties with creosote and having these 

placed in the track (Amburgey and Sanders 2007, 2009). Field tests showed that the boron 

continued to protect the ties from internal decay for over 20 years. The creosote treatment 

apparently helped to retain the boron, limiting the potential for internal decay and prolonging tie 

service life. As a result, boron pre-treatment is now widely used in North America for railway 

sleepers.  

 

Boron pre-treatment may also be feasible for Shining gum, although creosote treatment would 

have limited application or acceptability in Australia. Instead, over-treatment with light organic 

solvents (LOSPs) might help retain the boron. LOSPs are assumed to evaporate from the timber, 

but some residue remains that may be able to help retain the boron in the wood. This would need 

to be evaluated or other oil systems might be explored, along with a feasibility study for 

commercial/operational logistics in the Australian timber industrial setting.  

 

2.5.3 Microwave with cold dipping  

Hot and cold bath preservative treatment of wood has been around since 1867 when it was first 

patented by Seely (Wilkinson 1979). It involves immersing wood in successive baths of hot and 

cold preservatives. During the hot baths, the air expands in the timbers. When the wood is moved 

to the cold bath a partial vacuum is created within the cell lumens, causing the preservative to be 

drawn into the wood (Wilkinson 1979). Due to the longer treatment periods, this method finds 

little use in the commercial wood preservation industry except for thermal treatment of thin-

sapwood western redcedar in North America. However, a recent variation of this approach is to 

use microwaves to rapidly heat the wood before it is immersed in a cold preservative solution. This 

can assist in achieving rapid treatment of the wood, although it may have limitations in terms of 

suitable wood dimensions and also commercial feasibility. 

 

2.6 Creating surface barriers  
Many attempts have been made to develop coatings or barriers to protect wood. An ideal coating 

would need to be thick enough to resist physical abrasion and biological attack, remain flexible 

for long periods of time and limit moisture uptake that would lead to dimensional instability and 

checking. These are major challenges especially because timber is often cut or drilled on site 

during construction, thereby compromising the barrier.   

 

An excellent example of the limited effects of barriers can be shown with polyurea coatings 

(Konkler et al. 2019). These coatings can be sprayed on dry timber to a desired thickness and can 

be formulated to provide protection from ultraviolet light. Field exposures of otherwise untreated, 
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polyurea coated Douglas-fir timbers at a high decay hazard test site near Hilo, Hawaii showed that 

termites rapidly tunnelled through coated, but non-treated Douglas-fir timbers while avoiding 

similarly coated preservative treated samples. Decay fungi were also able to penetrate the coatings 

to degrade the untreated wood inside although it took several years for this process to occur. 

Coatings will only work if fungi or insects cannot penetrate and the wood underneath does not 

shrink or swell to the point where the coating fails. Alternatively, preservative coatings used in 

combination with boron diffusion treatments might be useful for protecting against fungal attack 

since the coating would help retain the boron and the boron would be available should the coating 

fail.  

 

2.7 Creating smaller-dimensioned sawn laminates or veneers 

Most of the strategies in this paper relate to enhancing the durability of conventional sawn products 

and dimensions. One option that could be explored further to overcome the challenges of treating 

Eucalyptus heartwood is to use thinner sawn dimensions or veneers as the feedstock for treatment 

and subsequent gluing to create larger timber elements. While these processes do not alter wood 

permeability, the smaller dimensions of the individual pieces are more likely to result in a much 

higher percentage of the piece receiving acceptable preservative treatment. Veneers are 

particularly easier to treat compared with sawn timber because of the smaller dimensions (e.g. 2 

or 3mm thick veneers compared to >19mm thickness sawn boards) as well as the presence of lathe 

checks that facilitate liquid penetration. Thin sawn and/or veneer laminates can then be glued to 

produce engineered wood products such as plywood, laminated veneer lumber (LVL), glulam and 

cross laminated timber. It might also be possible to achieve satisfactory durability performance by 

using glueline treatments for products using thinner veneers that incorporate insecticides and 

fungicides (Standards Australia 2012, Siraa et al. 2018). 

 

Research has already highlighted the potential to produce engineered wood products such as 

plywood and LVL from fibre-managed Shining gum; for example, Blackburn et al. (2018) 

explored the potential for using fibre-managed Shining gum for structural plywood. However, 

these studies did not focus on preservative treatment. Some factors that would need to be 

considered before pursuing this approach would include the feasibility of gluing preservative 

treated Eucalyptus veneers and sawn laminates; the feasibility of using glueline treatments to 

achieve satisfactory durability performance; and the economic viability of, and market demand 

for, engineered wood products manufactured from treated Eucalyptus veneers and sawn laminates. 

In addition, the initial set-up for a commercial hardwood veneering/peeling operation is costly, 

and retrofitting existing facilities to accommodate plantation timber characteristics would also be 

required.  

3. SUMMARY 

Table 1:  Summary of reviewed strategies and authors’ preference for testing 

 

Treatment 

type 

Advantages Disadvantages Author 

preference 

(1 = high, 

14 = low)  

    

Microwavea Increases permeability in Eucalyptus, 

potentially cost effective 

Sensitive to variability in 

timber/process parameters, significant 

mechanical and appearance degrade, no 

commercial uptake as yet 

9 

Ponding Increases permeability, may limit 

checking 

Slow process, requires significant 

water/space, variable outcomes 

11 



 

 

12 

Fungal 

inoculation 

Increases permeability without 

mechanical losses 

Variable outcomes when upscaled from 

lab to field trials, potential for 

mechanical degrade 

12 

Chemical 

adjuvants 

 

Increases permeability without 

mechanical or appearance degrade, 

commercially viable 

 

Process not refined yet, potentially 

high additional material and process 

costs 

 

1 

 

Incising 

 

Increases surface penetration depth 

and area, new technology has 

potential to enable more aesthetic 

outcomes 

 

Appearance degrade, some mechanical 

degrade 

 

4 

Compression 

 

May increase permeability, (also 

improves dimensional stability, 

machineability) 

Additional cost to process 8 

 

Thermal 

 

Can increase resistance to decay in 

certain applications by reducing 

hygroscopicity, no or low toxicity, 

can be used on refractory species, 

(also improves dimensional stability, 

machineability) 

 

Does not improve termite resistance 

and resistance to decay in certain 

applications/environments remains 

unproven, can cause 

brittleness/mechanical degrade 

 

7 

Gas phase 

 

Moves through refractory wood more 

easily than liquid 

High toxicity to non-target organisms, 

takes a long time, requires very dry 

wood (less than 6% MC) 

 

13 

Supercritical 

fluids 

 

Full permeation possible, closed loop 

system, uses seasoned timber which 

can be sold or machined directly after 

treatment 

 

Costly set-up, potential crushing  3 

Boron 

dip/diffusionb 

 

Can permeate green wood, relatively 

simple set up, some fire-retardant 

capacity 

Leaches out in high moisture regimes 14 

Boron 

dip/diffusionc 

 

As above, but leaching is less likely  Additional coating step adds some cost, 

commercial scale logistics and 

feasibility needs to be evaluated 

5 

Microwaved 

 

Potentially increases uptake of 

chemicals, speeds up the hot/cold 

treatment method 

Potential limitations on sawn timber 

sizes, commercial viability and effect 

on mechanical properties not known  

6 

Surface barrier Can protect wood for short periods 

again decay and insects 

Not decay or insect resistant in long 

term, or if surface barrier is penetrated 

in any way 

10 

    

LVLs/veneers 

 

Smaller thicknesses much easier to 

treat to required % (also increases 

stability, machinability, mechanical 

strength, and broadens commercial 

applicability of plantation resource) 

Costly set-up (for veneering/peeling 

operation), feasibility of gluing treated 

wood and glueline treatments not clear 

2 

aTo increase permeability by rupturing pores, bPre-treatment, cPre-treatment with hard preservative overcoat, dTo 

heat wood followed by direct dip into cold solution 

 

While many of the methods for improving timber durability described above have produced mixed 

results, it is clear that some have the potential to enhance the durability of low durability 

Eucalyptus in specific applications. The inherent variability of the timber between trees, along the 

tree length and across the cross section makes it difficult to identify a single strategy for enhancing 
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durability. Differences in growth rates, tree age, and even site differences further complicate the 

effort. As noted in the introduction, another consideration for this research, is that young plantation 

trees grown for pulp, potentially have very different characteristics to those older, larger trees that 

were most likely included in the research on which the Australian Standards and early durability 

and treatment research were based. For example, WoodSolutions, a website run by the Forest and 

Wood Products Association (FWPA 2020), which is dedicated to the dissemination of timber 

research and knowledge, suggests that seasoned Shining gum has a density of approximately 680 

- 700kg/m3, and describes the tree as reaching 70m height and 1-2m diameter. However, young, 

fibre-managed plantation trees harvested today are typically much smaller and less dense. Any 

assumptions about the characteristics of Shining gum or other Eucalyptus species really need to 

be re-evaluated in line with the current resource. 

 

It is also important to note that many of these strategies remain awkwardly between academic 

research and commercial realities. For example, many wood modification or treatment options 

outlined have narrow research parameters requiring homogenous or uniform timber samples and 

controlled conditions in order to achieve repeatable and positive results. This is rare in a 

commercial scenario, meaning that treatments with highly sensitive parameters, like microwaving, 

tend to become less viable when upscaled to a commercial setting. Other factors, such as market 

forces and competition, for example from well-established softwood processors, also influence 

industry focus and willingness to pursue novel treatment options for plantation Eucalyptus.  

 

The challenges should not prevent or deter further research into any of the potential strategies 

outlined above. As noted in the introduction, the aim of this paper was to review current durability 

treatments and treatment processes for refractory timber to gain insights or inspiration for possible 

pathways to enhance the durability and potential value of Tasmania’s primary plantation resource. 
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