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Abstract

Background: The tree of life is significantly asymmetrical - a result of differential speciation and extinction - but
general causes of such asymmetry are unclear. Differences in niche partitioning are thought to be one possible
general explanation. Ecological specialization might lead to increases in diversification rate or, alternatively,
specialization might limit the evolutionary potential of specialist lineages and increase their extinction risk. Here we
compare the diversification rates of gall-inducing and non-galling insect lineages. Compared with other insect
herbivores feeding on the same host plant, gall-inducing insects feed on plant tissue that is more nutritious and less
defended, and they do so in a favorable microhabitat that may also provide some protection from natural enemies.
We use sister-taxon comparisons to test whether gall-inducing lineages are more host-specific than non-galling
lineages, and more or less diverse than non-gallers. We evaluate the significance of diversity bipartitions under Equal
Rates Markov models, and use maximum likelihood model-fitting to test for shifts in diversification rates.

Results: We find that, although gall-inducing insect groups are more host-specific than their non-galling relatives,

there is no general significant increase in diversification rate in gallers. However, gallers are found at both extremes
- two gall-inducing lineages are exceptionally diverse (Euurina sawflies on Salicaceae and Apiomorpha scale insects
on Eucalytpus), and one gall-inducing lineage is exceptionally species-poor (Maskellia armored scales on Eucalyptus).

Conclusions: The effect of ecological specialization on diversification rates is complex in the case of gall-inducing

insects, but host range may be an important factor. When a gall-inducing lineage has a host range approximate to
that of its non-galling sister, the gallers are more diverse. When the non-galler clade has a much wider host range
than the galler, the non-galler is also much more diverse. There are also lineage-specific effects, with gallers on the

same host group exhibiting very different diversities. No single general model explains the observed pattern.

Background

The tree of life is significantly less balanced than
expected under a stochastic process of lineage diver-
gence and extinction [1] - some lineages are diverse
whereas others are species-poor. Deterministic explana-
tions for the asymmetry include clade age [2], and
among-lineage diversification rate variation [3] caused
by mass extinction [4], lineage attributes [5-9], environ-
mental attributes [10,11], and ecosystem attributes
[12,13] (Figure 1). Lineage attributes affecting diversifi-
cation rates can be divided into two classes: (1) pheno-
typic traits that are attributes of individuals, for example
reproductive rate, dispersal ability, and the degree of
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ecological specialization; and (2) traits that are attributes
of species, for example geographic range, population
size, and local abundance. A key factor in the theory of
diversification rate variation is resource availability and
breadth, i.e. adaptive zone dimensions. Under an adap-
tive radiation model [14-16] it is argued that diversifica-
tion is limited to the amount of free space in an
adaptive zone, and that elevated rates of diversification
are driven by ecological opportunities in geographic
space (e.g. island colonization) or the evolution of an
adaptive trait (key innovation). Well-studied examples of
adaptive radiation include the Hawaiian silverswords
[17], phytophagous beetles [12,18], and columbines [16].
Ecological specialization is thought to be an important
process following expansion of a lineage’s adaptive zone,
and a major driving force generating species richness
and diversity [15,19-21].
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Not all adaptive traits are expected to result in an
increased rate of net diversification; on the contrary,
some adaptive traits may result in a dramatic depression
of the diversification rate e.g. in-bred sociality in theri-
diid spiders [22]. Reduced radiation rate as a result of
failure to speciate is commonly interpreted to result in
“evolutionary dead-ends” - lineages that have low adap-
tation potential and are thought likely to become extinct
before they can diversify [23,24]. Thus, the expected
effect of ecological specialization on diversification rate
has been an area of debate [25]. On the one hand,

diversification rate is likely to increase if specialists have
smaller geographic ranges and population sizes [26]. On
the other hand, tightly constrained niches are likely to
be unstable over time, and it has been predicted that
specialization should be associated with increased
extinction rates due to a specialist’s inability to adapt
[23,27,28], a notion supported by some empirical
analyses [29,30].

The evolution of gall-induction on plants is a major
trophic shift that has occurred multiple times among
insects, with over 13,000 described species with this
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habit [31]. Galls are believed to provide the inducer with
enhanced nutrition, a favorable microclimate and, in
some cases, protection from natural enemies [32].
Among nematine sawflies, gall-inducing species are tar-
geted by fewer species of parasitoid and experience
lower rates of mortality than external-feeding species
[33], but in general natural enemies can inflict high
mortalities on gallers, and top-down selection pressure
is thought to be a critical force driving interspecific var-
iation in gall form [32,34,35]. Insect galls are thus an
extended phenotype of their inducers - with the gall
exposed to selection pressures related to predation and
host resistance [32].

Gall-inducing taxa appear to be exceptionally host-
and tissue-specific. For example, less than 1% of the
described species of gall wasps (Cynipidae) have been
recorded from more than one host genus [36], and gall
wasps on Quercus are the single most diverse lineage of
herbivores associated with a single host genus (about
1000 described species [36]). All of the 640 described
species of agaonid fig wasps induce galls within the
flowers of species of Ficus [37]. Within-host-plant diver-
sification has occurred in many groups of gall midges
[38,39] with, for example, a monophyletic group of 14
species of Asphondylia (Diptera: Cecidomyiidae) indu-
cing galls on the leaves, stems, buds and flowers of a
single plant species (Larrea tridentate) [40]. Only three
of the fourteen described species of the gall-inducing
psyllid genus Calophya (Psylloidea: Calophyidae) asso-
ciated with Schinus (Anacardiaceae) are known to
develop on more than one host species - there are eight
species of Schinus [41]. Gall-inducing species of aphids
and scale insects also tend to be constrained to closely
related hosts [42-45].

These observations of host-specificity, and the inti-
mate relationship between gall-inducer and host, have
led to the idea that gall-inducers are specialized relative
to their externally-feeding progenitors [46,47]. Gall-
inducing insects thus provide a good study system to
examine the effects of ecological specialization on evolu-
tionary diversification rates.

Here, we examine phylogenies of gall-inducing insects
and their non-galling relatives, including a total of
approximately 1,650 species (Additional files 1,2,3,4). We
first use thirteen sister-taxon comparisons to test the
assumption that gallers are more host-specific than non-
gallers. We then evaluate the significance of any diversifi-
cation asymmetry against an Equal Rates Markov (ERM)
model. Finally, we use maximum likelihood to compare
the fit of fixed (1 speciation rate) and flexible (2 or more
speciation rates) birth-death models to phylogenies, to
test whether inferred origins of gall induction correlate
with a shift in diversification rate [48,49].
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Results

Host-specificity

Gall-inducing insects are significantly more host-speci-
fic than their non-galling sister groups (exact one-
tailed Wilcoxon signed-rank test p-value = 0.050). All
five significant differences in host range favored gallers
being more host specific than their non-galling sister

group.

Diversification rates

Sister-taxon comparisons

The gall-inducing sister-clade was more diverse in seven
of thirteen comparisons, and the non-galling sister was
more diverse in the other six. We cannot reject the null
model in which each sister has an equal chance of being
more diverse with the binomial test (exact two-tailed
test p-value = 1) or the signed-rank test (two-tailed
p-value = 0.95).

One gall-inducing taxon was more diverse than
expected under an Equal Rates Markov (ERM) null
model: the scale insect genus Apiomorpha (p-value =
0.020). Two gall-inducing taxa were more diverse with
marginal non-significance: Cerataphidini aphids (p-value
of 0.053), sawflies in the subtribe Euurina (p-value =
0.059). Two gall-inducing taxa were markedly less
diverse than expected: the armored scale insect genus
Maskellia (p-value = 0.0023) and the sawfly genus
Micronematus (p-value = 0.033).

ML (birth-death) modeling of shifts in radiation rate

Only two data sets were sufficiently sampled to satisfy
criteria for tests of rate shifts along lineages. For the
Acacia thrips, we were unable to reject the fixed-rate
null model. In the LASER analysis, under no extinction
(e = 0), the likelihood ratio test (LRT) p-value was
0.096. Under high rates of extinction (e = 0.95) the LRT
p-value was 0.17. The MEDUSA analysis selected a one-
rate model with a net diversification rate of 0.042 and a
relative extinction rate of 0.13. All more complicated
models had higher Akaike information criterion (AIC)
scores.

For the nematine sawflies, the LASER analysis strongly
favored the flexible-rate model (LRT p-value << 0.0001
under no extinction and high extinction) with an
increase in diversification rate along the stem branch of
the Salicaceae-galling Euurina. The MEDUSA analysis
selected a model with 4 shift points. As in the LASER
analysis, the single shift point resulting in the largest
increase in likelihood was at the stem node of the Euur-
ina. Background rates of net diversification (r) and rela-
tive extinction (¢) were estimated as 0.048 and 0.69
respectively. Within Euurina both the net diversification
rate and relative extinction rate increased dramatically
(r= 0.094, € = 0.99).
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Discussion

We confirm that, as expected and commonly stated, gall-
inducing taxa are more host-specific than their non-galling
relatives. The effect of ecological specialization in gall-
inducing insects on diversification rates is complex, but
host range appears to be a critical factor. When a gall-
inducing lineage has a host range approximate to that of
the non-galling sister, the gallers are more diverse. These
include the Salicaceae-galling Euurina gall wasps that are
sister to a group restricted to Salicaceae and Betulaceae,
the Styrax-galling aphids Cerataphidini that are sister to a
group restricted to Quercus, and the Eucalyptus-galling
scale insect genus Apiomorpha that is sister to a group
that occurs on Eucalyptus and Casuarinaceae. Conversely,
when the non-galling clade has a much wider host range
than the galler, the non-galler is much more diverse. In
our analysis, the diversity bipartition that is most signifi-
cantly weighted in favor of the non-galling taxon (Maskel-
lia sister to a taxonomically heterogeneous group of
armored scales) is also the comparison with the greatest
disparity in host range, as measured by the estimated age
of the most recent common ancestor of the hosts. The
importance of host breadth as a determinant of diversifica-
tion rate is consistent with the assumed importance of
host-switching in speciation of phytophagous and parasitic
lineages [46,50].

Thus adaptive zone dimensions may be of more funda-
mental importance to diversification rate variation than is
the degree of ecological specialization. When clade host
breadth was roughly equivalent between gall-inducing and
non-galling sister groups, the gall-inducing group was
more diverse. This could result from uneven diversifica-
tion rates stemming from differences in species-level eco-
logical specificity, or because, for a given set of hosts, the
adaptive space available to a gall-inducing lineage is larger
than that presented to a non-galling species.

Ecological traits of host lineages are also likely to
affect diversification rates of gall-inducers. Two of the
diverse gall-inducing groups in this study, Euurina and
Apiomorpha, occur on host taxa (Salix and Eucalyptus
respectively) that are persistent and locally abundant
over vast geographic spaces, traits thought to reduce a
lineage’s probability of extinction. On the other hand,
the most strikingly species-poor gall-inducing taxon
included in this study, Maskellia, also occurs on Euca-
lyptus, and the gall-inducing thrips on Acacia are not as
diverse as might be expected given the diversity of the
host (more than 1000 described species of Acacia [51]),
although it likely that much of the true species diversity
of gall-inducing thrips is unrecognized [52].

Gall-inducer diversification rates could also be pro-
foundly affected by top-down pressure from parasitoids
and pathogens. Gall-inducing Euurina sawflies have
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been shown to have a depauperate fauna of natural ene-
mies and suffer lower enemy-caused mortality than clo-
sely related external feeders. In contrast, species of
Apiomorpha experience extremely high mortality rates
(LGC personal observations).

Conclusions

Gall-inducing lineages tend to be more host-specific
than their non-galling sister groups. A gall almost cer-
tainly represents an expansion of the ecological resource
pool (e.g. new tissues and, at least initially, enemy-free
spaces), but the gall-inducer’s niche space may not be
expanded. The effect of the evolution of gall-induction
on net diversification rate appears to have been lineage-
specific; no general trend was detected, but some gall-
inducers were exceptionally diverse and others were
exceptionally under-diverse. Although this study was
not designed explicitly to test the effect of a lineage’s
host-breadth on its net diversification, our results sug-
gest that host-breadth may be a general factor influen-
cing the net diversification of phytophagous insect
groups.

Methods

Data

We surveyed the literature for published phylogenies
containing gall-inducing taxa and their non-galling rela-
tives. We also used the PhyLoTA Browser rel. 1.01 [53]
to survey the nucleotide sequence data deposited in
GenBank for groups containing gall-inducers. Our data-
set included thirteen galler and non-galler sister clades
(Table 1). Unless otherwise noted, extant diversity esti-
mates were derived from the literature (see Additional
file 1). We estimated phylogenies when: (1) a sister rela-
tionship of interest had not been inferred with support
in a published analysis and/or additional DNA sequence
data had subsequently become available; (2) phylogenies
and extant diversity were deemed sufficient (we would
be able to allocate all extant species diversity among
terminal nodes) for ML diversification rate model fitting.
Details of the phylogenetic datasets and results for indi-
vidual taxa are provided as Additional Material.

Phylogenetics

Unaligned FASTA files were downloaded from Phy-
LoTA, and aligned using MUSCLE v.3.6 [54]. Ribosomal
alignments were filtered through the Gblocks server
[55,56], with each of the options for less stringent selec-
tion chosen, to remove areas of high alignment ambigu-
ity. Introns were excluded from nuclear protein-coding
loci. If multiple loci were available, these were concate-
nated. Datasets were partitioned by genome, and by
codon position for protein-coding loci. Maximum
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Table 1 Comparisons between galling and non-galling insect sister groups
Galling-sister Species Host range Gall ERM Non-galling Species Host range Non- ERM
number host P sister number gall P
MRCA galler host non-
age MRCA galler
(Ma) age
(Ma)
Euurina 400 Salix, Populus 58 0.059 Nematus 25 Salicaceae, 94 094
melanaspis-group Betulaceae
Bacconematus 1 Ribes 35  1.00 Eitelius 2 Salix 35 050
Pristolina 4 Vaccinium 0 050 Pristicampus 3 Potentilla 0 067
Micronematus 1 Prunus 70 097 Pristiphora 30 Fagaceae, Betulaceae, 114 0033
subgenus Sala Salicaceae, Fabaceae,
Rosaceae,
Grossulariaceae,
Malvaceae
Kladothrips 24 Acacia 0 021 Rhopalothripoides 6 Acacia 0 083
gall-inducing 1369 Fagaceae, Rosaceae, 144 024 Figitidae (in part): 435 Diptera, Neuroptera, 300 076
Cynipidae + Papaveraceae, Lamiaceae, Charpinae, Hymenoptera
Synergini Asteraceae, Anacardiaceae, Anacharitinae,
Smilacaceae, Valerianaceae, Figitinae,
Apiaceae, Sapindaceae Aspicerinae
Agaonidae + 690 Ficus 60 0.15 Sycoryctinae 121 Agaonidae + 60 085
Otitesellinae Sycoryctinae
Eurostina 41 Asteraceae (Soldagininae: 0 054 Euaresta 46 Asteraceae 0 048
Solidago; Chrysothamnus; (Ambrosiinae:
Gutierrezia)) Ambrosia; Xanthium;
Dicoria)
Oedapidina 88 Asteraceae 42 071 Tephrellini 210 Acanthaceae, 45 030
Lamiaceae,
Verbenaceae
Hexomyza 16 Liliopsida/Eudicotyledons 144 095 Ophiomyia + 282 Liliopsida/ 144 0.054
Tropicomyia Eudicotyledons
Apiomorpha 150  Eucalyptus 65 0.020 Ourococcus 3 Myrtaceae, 104 099
Casuarinaceae
Maskellia 2 Eucalyptus 65  1.00 Aspidiotini; 874 Magnoliphyta/ 366 0.0023
Pseudaonidina; Coniferophyta
Odonaspidini;
non-pupillarial
Parlatorini
Cerataphidini 73 Styrax 0 0053 Thelaxes 4 Quercus 0 096
(Thelaxinae)

Most recent common ancestor (MRCA) ages are in millions of years before the present. Host ranges are reported as lists of taxa or, in the case of diverse ranges,
as two subgroups which span the MRCA node. Divergence dates are from Davies et al. [69] (angiosperms) and Hedges et al. [70]

likelihood (ML) trees were inferred using RAXxML v.7.0.3
[57], with the parameters of a general time reversible
(GTR) nucleotide substitution model estimated indepen-
dently for each data partition. Among-site rate variation
was estimated under CAT approximation during 100
nonparametric bootstrap pseudoreplicates. Every fifth
bootstrap tree was then used as a starting tree for more
thorough ML optimization with gamma-distributed rate
variation.

Host specificity analysis

In order to remove taxonomic bias from measures of
host breadth, host range was measured as the age (Ma)
of the most recent common ancestor (MRCA) of the
hosts. This approach to quantifying host breadth is akin

to phylogenetic diversity (PD) [58], the minimum total
length of branches that span a given set of taxa on a
phylogenetic tree. Our metric is distinct, however, in
that branch lengths have been scaled to time rather
than raw branch length. Because age is standard across
analyses, it could be used to make comparisons across
DNA sequence datasets with variable substitution rates.
It is a measure of the evolutionary depth of host
breadth, whereas PD also accounts for the phylogenetic
density of host use. None of the sister taxa used in our
comparisons was restricted to a single host species.

For each of 13 pairs of gall-inducing and non-galling
insect sister pairs, we recorded the host range of each
sister. In cases for which each sister in a comparison
was restricted to a single host genus or family, and our
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knowledge of host phylogeny and/or insect host breadth
was insufficient to identify an age for the MRCA, we
assumed there was no difference in host range. We used
the Wilcoxon Signed-Rank Test to assess if the observed
disparity in host breadth departed significantly from that
expected under a null model in which each sister has an
equal chance of having a broader host range. The test
was one-tailed, reflecting our prior expectation, derived
from the literature, that gall-inducing taxa would be
more host-specific.

Diversification rate analyses

Sister-taxon comparison

Some tree imbalance is expected under null models of
stochastic diversification [59], and this needs to be taken
into account in comparison of diversification rates. We
compared the extant diversity of 13 monophyletic
groups of gall-inducing insect species to the extant
diversity of their sister taxa, against a null model in
which the extant diversity of each sister has a 0.5 prob-
ability of being larger [7], and evaluated significance
using the binomial and signed-rank tests, contrasting
species richness with log-transformed ratios (as in [60],
and recommended in [61]).

For each individual diversity bipartition we also calcu-
lated equal rates Markov (ERM) probabilities (using the
equation 3 of Slowinski and Guyer [62]) for alternative
hypotheses in which gall-inducing taxa were expected to
more or less diverse, with a Bonferroni correction for
multiple comparisons (a./2 = 0.025) to evaluate the sig-
nificance of the departure from the null model. We did
not follow the Slowinski-Guyer method of using Fisher’s
combined probability test to test the influence of a trait
on diversification rates, because of the problems with
that approach summarized by Vamosi and Vamosi [61].
ML tests for shifts in radiation rates
Optimal phylogenies were made ultrametric with non-
parametric rate smoothing using r8 s v.1.70 [63]. As only
the relative node heights were needed, an arbitrary root
height of 100 was fixed for each tree. We used the modi-
fications of the ML birth-death model fitting methods of
Magallon and Sanderson [48] implemented in the R
package LASER [64]. The likelihood was calculated by
comparing the observed species diversity of a clade to an
expected species diversity given a stem group age and a
net diversification rate (speciation rate - extinction rate)
estimated from the whole tree. To test for shifts in diver-
sification rate, a fixed null model, in which a single diver-
sification rate was estimated for all lineages, was
compared to a flexible alternative model in which an
ancestral diversification rate is permitted to shift to a des-
cendent rate along some branch in the tree. The likeli-
hood calculations were repeated for shifts along each
branch of the tree. Significance of the model comparison
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was determined on the basis of likelihood ratio tests
(LRT). To ensure that our inferences were robust over a
range of extinction rates, analyses were repeated under
two values for the ratio of the extinction rate to the spe-
ciation rate: 0 (no extinction) and 0.95 (very high extinc-
tion rates).

We also sought shifts in diversification rates using a
stepwise birth-death model fitting approach based on
the AIC implemented as MEDUSA in the R package
GEIGER [65,66]. The estimateExtinction and cutAtStem
parameters were set to True, and a cutoff of 4 units was
selected for the improvement in AIC score required to
accept a more complex model.

Automation

We provide a Python program, Systers (Additional file
5) to automate sister-taxon comparisons as outlined in
Vamosi and Vamosi 2005 [62]. Species diversities of
each sister clade are contrasted using raw differences
[13], proportional differences [67], and log ratio differ-
ences [60]. Statistical significance is assessed in one of
three ways, depending on the number of comparisons.
For analyses with < 10 contrasts, significance is assessed
with a randomization test for matched pairs [68]. In
brief, the sign of the contrast scores are permuted and
the sum of the contrasts is found for each possible per-
mutation. The fraction of possible sums more extreme
than the observed sum is returned as a two-tailed
p-value. For analyses with 11-19 contrasts, significance
is assessed with a Wilcoxon signed-rank test, and for
analyses with > 20 contrasts significance is assessed by
normal approximation of the Wilcoxon signed rank test.

Additional material

Additional file 1: Phylogenetic datasets and results. Survey of DNA
sequence-based phylogenetic studies including gall-inducing groups,
and details of phylogenetic estimates performed here.

Additional file 2: ML tree estimated from aphid DNA sequence data.
Aphidoidea ML phylogeny estimated from analysis of EF1a., long-
wavelength opsin, COI, COIl, cytochrome b, NADH dehydrogenase 1, ATP
synthase subunit 6, and mitochondrial ribosomal subunits 12 S and 16 S
dataset partitioned by genome and codon position. Major lineages are
labeled following the classification used by Blackman and Eastop.

Additional file 3: ML tree estimated from cynipoid DNA sequence
data. Cynipoidea ML phylogeny estimated from analysis of 28 S, 18 S,
and COI dataset partitioned by genome and codon position. Deep
relationships supported by >70% bootstrap proportions denoted by stars.
Empty circle indicated clade of unpublished Cynipini sequences assumed
to be misidentifications of synergine inquilines.

Additional file 4: ML tree estimated form chalcidoid DNA sequence
data. Chalcidoidea ML phylogeny estimated from analysis of 28 S
sequences. Deep relationships supported by >70% bootstrap proportions
denoted by stars. Group A composed of exemplars of the following
families: Aphelinidae, Chalcididae, Encyrtidae, Eucharitidae, Leucospidae,
Mymaridae, Pteromalidae, Perilampidae, Tetracampidae; Group B
composed of exemplars of: Aphelinidae, Eurytomidae, Ormyridae,
Perilampidae, Pteromalidae, Tanaostigmatidae, Tetracampidae, Torymidae.
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Additional file 5: Python script to automate sister taxon
comparisons. A program that reads sister clade species diversities in a
CSV file, calculates diversity contrasts with multiple metrics, and evaluates
significance with either Siegel's randomization test for matched pairs, the
Wilcoxon signed rank test, or normal approximation of the Wilcoxon
signed rank test.

List of abbreviations

AIC: Akaike information criterion; ERM: equal rates markov; GTR: general time
reversible; LRT: likelihood ratio test; ML: maximum likelihood; MRCA: most
recent common ancestor; PD: phylogenetic diversity.
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