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Abstract

Many statistical forecast systems are available to interested users. In order to
be useful for decision-making, these systems must be based on evidence of
underlying mechanisms. Once causal connections between the mechanism and their
statistical manifestation have been firmly established, the forecasts must also provide
some quantitative evidence of " quality’. However, the quality of statistical climate
forecast systems (forecast quality) is an ill-defined and frequently misunderstood
property. Often, providers and users of such forecast systems are unclear about
what *quality’ entails and how to measure it, leading to confusion and
misinformation. Here we present a generic framework to quantify aspects of forecast
quality using an inferential approach to calculate nominal significance levels (p-
values) that can be obtained either by directly applying non-parametric statistical
tests such as Kruskal-Wallis (KW) or Kolmogorov-Smirnov (KS) or by using Monte-
Carlo methods (in the case of forecast skill scores). Once converted to p-values,
these forecast quality measures provide a means to objectively evaluate and
compare temporal and spatial patterns of forecast quality across datasets and
forecast systems. Our analysis demonstrates the importance of providing p-values
rather than adopting some arbitrarily chosen significance levels such as p < 0.05 or p
< 0.01, which is still common practice. This is illustrated by applying non-parametric
tests (such as KW and KS) and skill scoring methods (LEPS and RPSS) to the 5-phase
Southern Oscillation Index classification system using historical rainfall déta from
Australia, The Republic of South Africa and India. The selection of quality measures
is solely based on their common use and does not constitute endorsement. We found
that non-parametric statistical tests can be adequate proxies for skill measures such
as LEPS or RPSS. The framework can be implemented anywhere, regardless of
dataset, forecast system or quality measure. Eventually such inferential evidence
should be complimented by descriptive statistical methods in order to fully assist in

operational risk management.
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1. Introduction

Climate variability affects the performance of many climate sensitive systems.
Agricultural systems are particularly impacted by climate variability that often results
in reduced production volume or quality. Decision makers, be they farmers, policy
makers or agribusiness managers, need to devise sound, adaptive risk management
strategies in order to improve overall systems performance and to avoid potentially
disastrous system failures such as bankruptcy, environmental collapse or famine.
Such sound agricultural risk management requires objective assessments of
alternative but uncertain outcomes. In highly variable climates, seasonal climate
forecasting in combination with simulation models of farming systems has therefore
become an important tool for risk assessments and the evaluation of management
options (Hammer et a/. 2000; Sivakumar et a/. 2000; Ferreyra et a/. 2001; Meinke
and Stone 2005).

Hence objective criteria regarding the performance of forecast systems are
required (Hartmann et a/. 2002). We assert that for appropriate risk management,
statistical forecasts must be based on evidence of underpinning mechanisms.
Without a plausible explanation for the observed variability in predictors it would be
inappropriate to use such forecasts in decision-making. Once some mechanistic basis
has been established, other quality attributes of the forecast need to be examined.
With this paper we aim to contribute to this process. Information about quality and
uncertainty is as important as the forecast itself in order to establish the necessary
credibility amongst users. What exactly are these attributes and how should they
should be measured? A WMO report (2005) emphasises that only probabilistic

forecast systems' should be considered for risk management. We concur. The report

! So far, most operational, probabilistic forecast systems that connect with decision-making tools such
as agricultural simulation models are based on an ‘analogue year’ approach, whereby climate series
are segregated into classes corresponding to climate indicators such as the Southern Oscillation Index
(SOI), El Nifio/ Southern Oscillation (ENSO) phases, sea surface temperature (SST) phases or
combination of such indicators. These classes constitute ‘conditional climatologies’ that need to be
compared to the unconditional climatology or reference distribution (Meinke and Stone 2005).
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lists four key forecast system attributes, namely (a) consistency (whether the
forecasts correspond with the forecaster’s judgment); (b) quality (whether the
forecast correspond with the observations); (c) relevancy (whether what is
forecasted is of concern to the user) and (d) value (whether the forecasts are/can be
beneficial when used). Each of these attributes deserves further attention. In
particular, methods that quantify the quality of probabilistic forecast systems are
poorly understood and often misused (Potgieter et a/. 2003). Therefore, we focus
here solely on forecast quality by considering explicitly two aspects that are closely

related but often differentiated in the literature: discriminatory ability (DA) and skill.

Here we demonstrate the application of an inferential framework for the
evaluation of probabilistic, class-based forecast systems. The analogue-years
approach is a frequently used example for such class-based systems and has
provided valuable information for decision-makers in many world regions (e.g.
Messina et a/, 1999; Singels et al. 1997; De Jager et al. 1998; Meinke and Hochman
2000; Nelson et a/. 2002; Podesta et af. 2002; Selvaraju et al. 2004).

According to Stone et a/. (2000), DA is the ability of the forecast system to
partition the unconditional probability distribution (also referred to as ‘climatology’) of
the variable of interest (e.g. rainfall, temperature, yield, drainage, runoff) into
conditional distributions corresponding to each class or phase within the forecast
system (such as, the consistently negative, consistently positive, falling, rising and
neutral phases of the SOI-phase system). They emphasise that DA ‘does not
necessarily imply the level of forecasting skill that would pe determined from a test
on independent data of forecast mode/ performance. DA represents the additional
knowledge about future states arising from some forecast system over and above
the total variability of the prognostic variable (climatology in the case of our study
here). Note that discriminatory ability as defined by Stone et al, (2000) is different to
forecast discrimination (Wilks 1995; Murphy 1993). DA is concerned with
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distributions of observations only and does not attempt to make any comparison

between forecasts and observations (in contrast to forecast discrimination).

Most skill measures were originally designed to quantify changes in the
agreement between observed and predicted values (accuracy) of deterministic
forecasts with some attempts to incorporate probabilistic properties (Mason 2004).
Skill measures are supposed to account for changes in accuracy, relative to using the
reference system as a framework (Murphy 1993; Potgieter et 4/, 2003). However, in
order to appropriately evaluate probabilistic forecast systems based on analogue
years, better skill measures are required to appropriately account for the probabilistic

nature of these systems (Potgieter et al. 2003).

DA is associated with variability of the observations among classes. For such
forecast systems, there is no single, predicted value corresponding to each
observation. Instead, the forecast consists of a set of possible values represented by
empirical distributions functions (CDF) derived from previously observed values. The
lack of clear distinction between sets of predicted and observed values and the
probabilistic nature of those predictions needs to be taken into account when

developing and applying skill measures.

Skill scores developed to quantify hindcast skill (e.g. LEPS skill score and RPSS)
of probabilistic forecast systems that produce categorical forecasts (probabilities of
belonging to predefined intervals or classes) are now in common use, in spite of their
limitations. Class-based forecast systems do not readily lend themselves to such
Categorical evaluations without the loss of at least some valuable information by
reducing the full probabilistic nature of the forecast systems to some broad bands of
categories such as intervals defined by terciles (Potgieter et a/, 2003). However,
changes in agreement between observations and predicted probabilities for the

predefined classes are directly related to DA, i.e. divergences between the empirical,
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conditional CDFs corresponding to each forecast System class and the unconditional
CDF arising from ‘climatology”. Hence, DA measures can be used as indirect skill

Mmeasures for class-based forecast systems.

Inferential methods proposed here only quantify the degree of evidence against
a null-hypothesis of either ‘no DA’ or 'no skill’. This information is essential but not
sufficient for sound risk management. Decision makers also require complementary
knowledge about the magnitude of expected change in the forecast variable. To
quantify this magnitude requires descriptive measures (e.g. distance among
cumulative distribution functions; magnitude of differences among conditional
median or mean values etc) rather than inferential statistical methods. However, an
in-depth evaluation and discussion of such descriptive measures is beyond the scope
of this paper. The objective of this paper is to provide a generic, inferential
framework for hypothesis testing that will add value to descriptive assessments of

forecast quality.

The proposed inferential approach is based on distribution-free statistical
methods that include both traditional non-parametric tests (e.g. Kolmogorov-Smirnov
test) and computationally intensive methods based on non-parametric Monte Carlo
techniques (e.g. bootstrapping and randomization tests). P-values derived from those
distribution-free procedures are used to quantify evidences of ‘true’ DA and skill. This
approach can be applied when the underlying probability distributions are unknown
(it is not necessary to specify a particular distribution such as normal, gamma, etc),
and it does not require any arbitrarily chosen level of significance. P-values range
between 0 and 1 and are inversely proportional to the degree of evidence against the
hypothesis of 'no class effect’. This approach takes into account the length of the
time series, the number of classes of the chosen classification system and the intra-
class variability. Further, given adequate spatial coverage, p-values can be mapped

using interpolation methods, providing a powerful and intuitive means of
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communicating the spatial variability of DA and skill, We illustrate this approach by
quantifying DA and skill of the 5-phase Southern Oscillation Index (SOI) classification

applied to forecasting rainfall across Australia, Republic of South Africa and India.

2. Material and methods

We used 3-monthly rainfall totals from 3 sample stations (one each from Australia,
The Republic of South Africa and India) and gridded (0.5 degree by 0.5 degree)
rainfall data for each of these countries to demonstrate the use of p-values to
measure aspects of discriminatory ability and skill of seasonal forecast systems. The
3 sample stations were Echuca (Australia), Bangalore (India) and Bloemfontein (The
Republic of South Africa). Rainfall data for Echuca was obtained from the SILO
Patched Point Dataset (PPD; Jeffrey et al, 2001), while Bangalore and Bloemfontein
rainfall data are generated from GHCN Data (NOAA; Version 2: Peterson and
Easterling 1994; Easterling and Peterson 1995; Easterling et a/, 1996). Gridded data
from the Hadley/CRU 0.5x0.5 global rainfall grid (New et a/. 2000) was used for the
spatial analyses of Australia, India and South Africa due to a lack of recent Indian

rainfall records.

All 3 sample stations had at least 94 years of daily rainfall records. They

represent vastly different climatic and agricultural regions.

The SOI 5-phase forecast system (SOI-5 FS) considered here is based on an
analogue year approach and is underpinned by a sound, physical understanding of
the ENSO cycle (Stone et 4/, i996). The system has been used extensively for
decision-making in Australia (e.g. Hammer et al. 2000) and elsewhere (e.g. Hill et al.
2000, 2004; Selvaraju et al. 2004). Years were categorised into five analogue sets
according to their similarity regarding oceanic and/or atmospheric conditions as
measured by SOI phases just prior to the 3-months forecast period. Hence, the
rainfall time series were segregated into sub-series corresponding to each SOI class
(consistently negative, consistently positive, falling, rising and neutral), resulting in 5

sub-series with variable record lengths. These rainfall time series were represented
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by their respective cumulative distribution functions (CDFs) or their complement,
probability of exceedance functions (POEs): a conditional CDF (or POE) for each class
and an unconditional CDF (or POE) for ‘climatology’. Cumulative probabilities are a
simple and convenient way to represent probabilistic information arising from a time
series that exhibits no or only weak auto-correlation patterns. However, if the time
series shows moderate to strong auto-correlation patterns, a CDF/POE summary will
result in some loss of information. Yearly sequences of rainfall data from a specific
month or period exhibit only weak auto-correlation, thus allowing the CDF/POE
representation to convey seasonal climate forecast information (e.g. Selvaraju et al.
2004). Figure 1 provides an example of rainfall categorisation based on the SOI

classes for the three sample locations.

a. Inferential statistical methods to quantify DA and skill

The proposed inferential framework can be applied in conjunction with any
statistical test or skill measure. As an example we implemented the approach using:
(i) Two nonparametric statistical tests to quantify DA, namely the Kruskall-Wallis
(KW) test for comparing medians and the multi-sample Kolmogorov-Smirnov
(multi-sample KS) test for comparing CDFs (Conover 1980; Stone et a/. 1996;
Stone et a/. 2000).
(ii) Randomization tests for quantifying evidences of skill as measured by two
descriptive skill scores, LEPS (linear error in the probability space, LEPS score;
Potts et a/. 1996) and RPSS (ranked probability skill score; Epstein 1969), which
is an operational forecast evaluation procedure used by the International
Research Institute (Goddard et a/. 2003).
The KW test is a generalization of the Wilcoxon-Mann-Whitney test applied to

three or more groups (Stokes et al, 2000). It accounts for overall divergences among
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medians of conditional CDFs? and is the non-parametric test equivalent to the F-test
used in analysis of variance. KW accounts for divergences among locations only,
while the multi-sample KS test, based on maximum vertical distances among CDFs,
takes a whole distribution approach to testing. The KS test is therefore able - unlike

the KW test - to detect differences due to both spread and/or shape of distributions.

We used p-values associated with the observed KW and multi-sample KS
statistics as evidences against the ‘no discriminatory ability’ null hypothesis. To
demonstrate the universal applicability of this inferential framework, we have
included the two popular skill measures LEPS and RPSS in spite of our reservations
regarding their ability to adequately represent the probabilistic features of class-
based forecast systems (see earlier). At the very least, the examples show how
quantitative descriptive measures can be converted into inferential measures, thus

providing a much sounder basis for comparative assessments.

The use of statistical tests to assess spatial variability of DA was proposed by
Stone (1992), who produced contour maps of significance levels of KW tests applied
to SOI grouping on rainfall medians over Australia. Our approach differs in one
important aspect: we do not propose the use of any predetermined cut-off levels for
evidence against the null hypothesis. Instead of choosing significance levels and
verifying if DA or skill is significant or not, we provide the nominal significance levels
(p-values). This avoids the loss of potentially valuable information and provides
informed users with the opportunity to form their own opinion whether or not the
evidence is sufficient to influence decision-making. Stone et a/. (2000) has already
used the KW p-values to quantify discriminatory ability of GCM-derived analogue

forecast systems.

? Kruskal-Wallis is a nonparametric test for the null hypothesis that the distribution of an ordinally
scaled response is the same in two or more independently sampled populations. It is sensitive to the
alternative hypothesis that there is a location difference between at least a pair of populations (Stokes
et al. 2000). It requires the assumption of same population variances when used for comparing
distributions. In our case studies, we are using KW for comparing medians, thus homogeneity of
variances is not required.
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Both LEPS skill scores and RPSS quantify the departure between a categorical
forecast and observations in the cumulative probability space (Zhang and Casey
2000). Here we used calculations for LEPS skill scores and RPSS, which are based on
agreement between actual rainfall values and predicted probabilities for intervals
defined by the empirical terciles of the corresponding cross-validated forecast

distributions.

Every empirical, descriptive skill measure, including LEPS skill scores and RPSS,
needs to be complimented by some measure of uncertainty before the information
can be confidently applied in decision making (Potts et al. 1996; Zhang and Casey
2000; Jolliffe 2004). Beyond assessing the skill magnitude (observed skill score), it is
critically important for users of forecast systems to know the probability of such skill
arising by chance, in order to avoid making decisions based on artificial or perceived
skill. This probability is used to assess the true class effect, considering the time
series size (record length) and other sources of variability, not explained by the

classification system used.

However, appropriate null-distributions for such assessments are not readily
available when using the standard LEPS skill scores or RPSS. Zhang and Casey
(2000) therefore proposed the construction of ‘statistical distributions’ using quasi-
random experiments in order to assess the significance of forecast skil. They
generated 95 ‘quasi-random ensembles’ from the rainfall time series (1900-1995) at
each station by shifting the observations 1 year ahead at a time and replacing, after
each iteration, the first observation with the last. A single ‘statistical distribution’ was
then derived for each skill measure, using the 95 skill values arising from each grid
location in Australia. Those ‘statistical distributions’ were used as ‘null distributions’
for performing skill significance tests. However, those distributions are not
appropriate for assessing significance or calculating p-values because they do not

adequately represent the set of possible values of the skill measure under the

10
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hypothesis of ‘no skill’. Further, existing spatial variability of skill is misinterpreted as
‘quasi-random variation’. Combining skill values from different locations into one
distribution ignores the existence of well-established, spatial correlation patterns.
Hence, we propose a location-by-location assessment, which allows the construction
of true null distributions of each skill measure at each location based on

randomisation techniques (Monte-Carlo analyses).

For each location, we calculated p-values associated with LEPS skill scores and
RPSS using Monte Carlo methods by randomly allocating all the observed rainfall
data 5000 times to the five SOI sub-classes and calculating cross-validated skill score
values for each random allocation in order to derive empirical null distributions for
both skill measures. Such distributions represent the set of possible skill score values
under the null hypothesis of ‘no skill'. Considering the alternative hypothesis of skill
score for forecast system > skill score for climatology, p-values associated with
observed skill scores for both measures were calculated as the relative frequency of
skill scores that exceeded the respective observed skill scores (see example for 3

locations, Fig. 2).

b. Spatial and temporal assessments of forecast quality

To demonstrate the usefulness of p-values for spatial analyses, we mapped the
KW and LEPS skill score p-values® from all grid points for the periods analysed. This
allowed us to examine spatial patterns of forecast quality associated with the chosen
forecast system. For a temporal assessment of DA and skill we investigated month-
by-month changes in p-values associated with KW, multi-sample KS, LEPS skill scores

and RPSS at the three sample locations (Fig. 3).

3 Mapping values arising from KS and RPSS yielded near-identical results and were therefore omitted.

11
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3. Results and discussion

Here we presented a generic inferential framework for quantifying forecast
quality attributes associated with probabilistic forecast systems, namely, skill and
discriminatory ability. We discuss that the distinction between the two concepts
becomes blurred, in the case of probabilistic forecast systems based on analogue
years approach. We selected KW and KS to quantify DA because of their non-
parametric nature that allows us to apply these statistical tests without the need for
distributional assumptions. We selected LEPS and RPSS because they are two

frequently used scoring systems (Mason 2004).

Skill scores associated with these systems are not very informative on their
own, difficult to interpret and need to be accompanied by some measure of
uncertainty to be useful (Hartmann et a/. 2002; Potgieter et a, 2003; Jolliffe 2004).
Any other statistical test or skill measure can be used with this generic inferential
framework (e.g. for DA, Median or Log-Rank tests; for skill, measures such as Brier
skill scores and many more, see Potgieter et a/. 2003; Mason 2004). Here KW, multi-
sample KS, LEPS and RPSS merely serve as examples to demonstrate the overall
approach, the choice of the quality measure depends on the objective of the study.
Our choice of LEPS or RPSS does not constitute an endorsement of these measures -
they must be adequate for testing the hypothesis under investigation®, Using a
statistical hypothesis testing approach, we converted observed skill scores into
corresponding nominal significance levels (p-values). This accounts for differences in
record length and number of classes and thus enables (i) investigation of temporal
variability in forecast quality (e.g. length and timing of the ‘autumn predictability
barrier’ of ENSO based forecast systems), (ii) objective comparisons of DA/skill

among sites or assessments of spatial patterns of DA/skill over regions, (iii)

* When different statistical tests are available for the same hypothesis, a power analysis would provide objective
criteria for choosing the most appropriate test. This could be achieved by analysing a large number of Monte
Carlo samples (sets of conditional distributions) drawn from synthetically constructed distributions with known
properties (divergences among conditional CDFs).

12
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assessment of congruence of DA/skill magnitude as measured by different skill
scores and (iv) performance evaluation of different forecast systems at a location

and/or regionally.

a. Converting skill scores into p-values

In our examples, the relative location of the observed skill scores (Fig. 2, dark,
thick line) on the skill scores’ empirical null distributions indicates the degree of
evidence against the hypothesis of ‘no skill’. The higher the observed skill score value
relative to the null-distribution, the greater the empirical evidence of true skill of the
forecast system. For instance, the LEPS and RPSS skill score p-values of the SOI-5 FS
to predict JAS Echuca rainfall were both < 0.001. This indicates highly significant and
similar forecast skill, regardless of skill score used. The LEPS skill score (RPSS) p-
values for JAS at Bangalore, 0.009 (0.027) and for NDJ at Bloemfontein 0.002 (<
0.001) also indicate highly significant and similar forecast skill (Fig. 3). The results
show that the conversion of skill scores into p-values can overcome the issue raised
by Mason (2004) of some skill measures, such as Brier and RPSS, having negative
skill score values that can still be indicative of forecast system skill (as demonstrated
by low p-values shown for Bangalore, Bloemfontein and Echuca). This goes some
way towards overcoming the lack of equitability of some scoring systems also

addressed by Mason (2004).

Goddard and Dilley (2005) commented that Monte Carlo re-sampling would not
be appropriate to assess nominal significance levels (p-values) for RPSS because
‘forecasts drawn at random relative to the observed sequence of years typically yield
a RPSS worse than that of climatology’. We disagree. As explained by Mason (2004),
such negative scores are an inherent feature of RPSS and negative scores can occur

even when true forecast skill exists. As the expected value of RPSS under the null

13
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hypothesis is influenced by the forecast system employed, empirical null distributions
generated using Monte Carlo techniques can contain a high frequency of negative
values (Mason 2004) as shown in Fig 2. Such a negative bias of the RPSS expected
value (in contrast to LEPS) does therefore not invalidate the use of Monte Carlo

techniques for establishing p-values associated with skill scores.

In this context, we need to flag the issue of how such null distributions can be
constructed. For class-based forecast systems using conditional distributions, random
reallocation of climate data to these classes of conditional probabilities is the
intuitively obvious method. A truly probabilistic assessment of GCM-based forecasts is
more difficult to obtain. Allen and Stainforth (2002) criticise the ‘probabilistic’ outputs
generated by GCMs through altering initial and boundary conditions without explicitly
accounting for the climate’s response. They argue that climate forecasts are
intrinsically five-dimensional, spanning space, time and probability, a fact not
accounted for when compiling subjective GCM-based probability distribution of
forecasts. More attention to formal uncertainty analyses is required, including much
more rigorous sensitivity testing based on many more elaborate ensemble runs,
before reliable GCM-based probabilistic trajectories of future climate states can be
provided (Meinke et a/. 2004). For now, the methods suggested by Stone et a/.
(2000) provide a way to develop class-based forecast systems from GCM outputs,
allowing an immediate application of the generic inferential framework we developed

here.

b. Quantifying temporal patterns of forecast quality attributes

Particularly with ENSO-based forecast system, forecast quality attributes will
vary temporally due to the well-known, seasonal life cycle of the ENSO phenomenon.

Therefore, location-specific temporal analyses are necessary to evaluate when the

14
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forecast system is sufficiently informative to influence decision making. Here we
show the usefulness of the generic inferential framework to simultaneously assess
temporal patterns. These tests revealed some interesting insights regarding
predictability and dynamics of seasonal rainfall patterns that should be investigated

in more detail elsewhere (Fig. 3):

(i) Regardless of test or skill score, p-values at all locations followed similar time
courses, albeit with some exceptions;

(i) The autumn predictability barrier (Clarke and Shu 2000; Clarke and van
Gorder 2003) around MAM is clearly evident at all locations.

(iii) For Echuca the typical ENSO-lifecycle is evident, with a strong impact on
winter and spring rainfall;

(iv) Bloemfontein, a region that is seasonally dry in winter, shows ENSO impact
for the beginning of the rainy season around October, while Bangalore shows
a strong impact for the (northern) summer monsoon (MJJ to ASO) and a small

peak for the much weaker winter monsoon (OND).

At the 3 locations, all measures broadly identified similar trends, but differed in
detail. The fact that there is broad congruence between p-values regardless of test
or measure employed demonstrates our earlier assertion that discriminatory ability
can be used as a surrogate for skill for class-based, probabilistic forecasts. Further, it
shows the generic inferential framework’s ability to reconcile vastly different

measures (Fig 3).

Although discriminatory ability and skill tests generally follow fairly consistent
patterns (temporally as well as spatially; Figures 3 & 4), there may be situations
when results may differ substantially (e.g. JJA rainfall for Echuca; Figure 3). Results

where the p-values from discriminatory ability tests (such as KW and the multi-

15
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sample KS) are much smaller than the p-values from skill tests can be attributed to
procedural differences between the two types of tests. KW/KS test for differences in
at least 1 phase (or class) distribution. There will be instances when a single phase
distribution is significantly different from all the other distributions, which do not
differ from each other, resulting in a low p-value. For a skill test, this is unlikely to
yield a low p-value as such tests are designed to compare observed data with
forecast data. Even though these circumstances will arise occasionally, Figures 3 and
4 show that p-values are generally very consistent between tests, broadly indicating
the same temporal and spatial trends. This is particularly the case when p-values are
low, indicating a convergence of results when real differences between distributions
exist. Generally discriminatory ability tests seem to be slightly more emphatic, but
our results show that they serve as reliable proxies for skill measures when
evaluating class-based forecast systems. Here we would like to add a cautionary
note: there is a temptation to ‘over-interpret’ temporal patterns in p-values as
presented in Fig. 3. By definition, p-values indicate the evidence against the null-
hypothesis — a value of 0.2 means that in one out of five cases we would falsely
reject the null-hypothesis. While the broad temporal patters from all tests are similar,
differences are inevitable and it is probably not helpful to discuss whether or not p-

values of 0.3 versus 0.8 constitute evidence of ‘skill’ or otherwise (cf. Echuca, JJA).

It is up to the informed user to decide the appropriate level of ‘significance’ (i.e.
the degree of evidence against the hypothesis of ‘no class effect’) before using the
information in decision making (Nicholls 2001). We also note that Nicholls (2001)
argues against ‘blanking out * of areas on maps where some feature does not reach
statistical significance, a practice often seen in atmospheric science. This practice can
lead to the loss of potentially valuable information. Therefore, we argue against the
use of any artificial cut-off levels to determine whether or not the p-values of the
tests indicate sufficiently high evidence. Instead, we provide all nominal significance

levels (p-values) and concur with Nicholls (2001), who questions the appropriateness

16
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of commonly used cut-off levels, such as p<0.05 or p<0.01. These cut-offs are no
more than a convention that reduce continuous probabilistic information to a
dichotomous response, thereby ignoring valuable information contained in the
nominal significance levels. Rosnell and Rosenthal (1989), cited by Nicholls (2001),

noted that *...surely, God loves the .06 nearly as much as the .05.

In our examples, using traditional cut-off levels for significance testing would
result in conflicting conclusions for some sites and seasons. For instance, at
Bangalore, India, the JAS ENSO signal would be considered either as being
'significant’ or *not significant’ if a 5% cut-off was adopted, depending on the chosen
test or measure. For JAS p-values ranged from 0.09 (KW) to 0.01 (LEPS). This is in
spite of a strong and well-established ENSO impact at this location and the fact that
p-values for all tests are moderate to low, but not all are below 0.05 (Fig. 3). Should
risk managers in the Bangalore region ignore ENSO-based forecasts during this
season? Alternatively, should they base their decisions on a single measure using a
pre-determined cut-off for significance? Risk managers must decide for themselves

whether or not the evidence is strong enough to influence their decisions.

We hypothesise that differences among p-values coming from different
measures (ceteris paribus) might be caused by differences in the ability of each test
or measure to detect divergences among conditional distributions regarding the
target attribute (e.g. median, variance, whole CDF). For example, for time series that
contain more than 50% of rainfall values equalling zero in all classes (all class
medians are zero) p-value arising from a median test would yield a value of one,
while a test comparing conditional CDFs could produce a low p-value, depending on
the differences in the right tails of conditional CDFs. Therefore, lack of agreement
between tests or measures can sometimes be explained by differences in the
underlying hypotheses tested or existing power differences between tests.

Understanding the differences between skill and or DA tests is important and
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although these differences have not been addressed within this paper, it is the
subject of ongoing research. Based on our research here we argue that non-
parametric DA measures such as KW and KS are in most Cases adequate surrogates
for skill measures and little if any additional information can be gained from using

skill measures originally designed for deterministic forecasts.

C. Quantifying spatial patterns of DA and skill over a region

As we have shown, quality measures of forecast systems vary temporally and
spatially. The spatial patterns of DA and skill for the SOI-5 FS based on KW and LEPS
p-values (Fig. 4) were consistent with known, typical ENSO impacts. Again, DA and
skill measures showed similar spatial patterns, regardless of season - high divergence
among conditional CDFs is highly likely to lead to improved agreement between
“predicted’ and " observed’ values as captured by a measure of skill. However, high
DA does not necessarily imply high skill (Stone et 4/, 2000) due to, for instance,
possible changes in skill over time, a factor not accounted for when calculating DA,
but considered during the cross-validation procedure when calculating skill. Hence, it
is not unexpected that there appears to be a general tendency for p-values

associated with DA to be slightly lower than those associated with skill.

Parametric approaches were initially developed during a time when computer

power was not available. Due to their reliance on distributional assumptions they are

-a convenient way to quickly perform hypothesis tests and calculate associated

nominal significance levels (p-values) using known, analytically-derived null
distributions. Initially, most of the known parametric methods were based on the
assumption of normality. Nowadays there are increasing numbers of parametric
methods available that are based on a range of distribution types, such as Tweedie

family (e.g. Tweedie 1984; Jdrgensen 1987), which include the Normal, gamma, and
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Poisson distributions as special cases and more. Although this greatly broadens the
applicability of parametric approaches, spatial assessments of forecast quality still
require case-by-case evaluation before parametric methods can be applied. The
historical limitation imposed by the lack of computer power no longer holds and it is
therefore no longer necessary to make assumptions about distributions — these can
now be constructed via non-parametric Monte Carlo approaches, such as
bootstrapping and randomisation techniques. This flexible approach is of particular
importance for climate science where data sources are varied, underlying
distributions can come in many shapes and predictor/predictand relationships are

often non-linear (Von Storch and Zwiers 1999).

4. Conclusions

Using an inferential, non-parametric framework we have evaluated aspects of
forecast quality using 3-monthly rainfall forecasts for a range of locations in
Australia, The Republic of South Africa and India. The approach taken is generic and
independent of location, season, data source, statistical test or skill score and
provides intuitively simple, but powerful methods that objectively quantify
discriminatory ability and skill of probabilistic forecast systems. Forecast quality
measures, once converted to nominal significance levels (p-values), can provide the
means for investigating temporal and spatial patterns of discriminatory ability and
skill. In addition, this allows comparisons among different probabilistic forecast
systems according to objective quality criteria — a key issue to further improve risk
management in climate-sensitive agricultural systems. In a subsequent step, this
framework should be supplemented with descriptive statistical tools that quantify the
magnitude of difference between target forecast quantities derived from forecast

probability distributions, in addition to the evidence against the null-hypothesis
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provided by p-values. From a risk management perspective, the ultimate
responsibility for the utility of these tools resides with the decision makers. They
must be able to properly interpret the relevance of information obtained using these
approaches. This requires an ability to handle intrinsically uncertain information

(probabilities) as well as asking fhe relevant questions (Hoffman and Kaplan 1999).

The most insightful results were obtained when two very different skill scoring
systems, namely LEPS and RPSS converged in terms of p-values and the resulting
evidence against the null-hypothesis was similar for both scoring systems and,
indeed, even for all four DA and skill measures. This provides strong supporting
evidence of the general applicability of this generic, inferential framework to explore
and quantify forecast quality. We concur with comments made by Zhang and Casey
(2000), Potgieter et al. (2003) and Mason (2004), who all stated the need to

consider a set of measures due to the multidimensional nature of forecast quality.

Finally, the generic inferential framework proposed here might also be useful
for evaluating similarities among different sets of quality measures: the approach
proposed by Potgieter et a/. (2003) based on Principal Component Analysis and
clustering techniques might reveal more insights when applied to p-values arising
from those measures. Further, the value of adapting skill measures based on tercile-
based categories in order to provide continuous assessments of forecast quality can

now be objectively evaluated. All these issues are subjects of on-going research.
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Figure Captions

Figure 1: Time series and probability of exceedance plots for JAS rainfall by
May/June SOI phase at (a) Echuca, Victoria (36.17°S, 144.76°E), and (b) Bangalore,
India (13.00°N,77.60°E) and for NDJ rainfall by September/October SOI phase at (9)
Bloemfontein, Republic of South Africa (29.10°S,26.30°E).

Figure 2: Empirical null distribution for the three-category LEPS skill scores (top row)
and RPSS (bottom row) arising from the SOI forecast system for predicting (from left
to right) JAS rainfall at Echuca and Bangalore, and NDJ rainfall at Bloemfontein. The
LEPS skill scores are defined on the range 1 to +1 and the RPSS are —Inf to +1.
Dark, thick lines indicate the location of the observed skill score values. The area to

the right of the dark, thick lines correspond to the respective p-value.

Figure 3: Annual patterns of dis_criminatory ability and skill for Echuca, Bangalore and
Bloemfontein based on p-values derived from the Kruskal-Wallis (KW) and
Kolmogorov-Smirnov (multi-sample KS), cross-validated RPSS and cross-validated

LEPS skill scores.

Figure 4: Discriminatory ability (DA, top row) and skill (bottom row) of the SOI-5 FS
based on p-values derived from the Kruskal-Wallis test and cross-validated LEPS skill
scores for July-September (JJA) rainfall in Australia and India, and November-
January (NDJ) rainfall in the Republic of South Africa. For computational reasons,
grids that have a large proportion (>33%) of dry seasons are removed from the

LEPS analysis and therefore appear as white grids in the LEPS maps.
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Figure 1: Time series and probability of exceedance plots for JAS rainfall by
May/June SOI phase at (a) Echuca, Victoria (36.17°S, 144.76°E), and (b) Bangalore,
India (13.00°N,77.60°E) and for NDJ rainfall by September/October SOI phase at (c)
Bloemfontein, Republic of South Africa (29.10°S,26.30°E).
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Figure 4: Discriminatory ability (DA, top row) and skill (bottom row) of the SOI-5 FS
based on p-values derived from the Kruskal-Wallis test and cross-validated LEPS skill
scores for July-September (JAS) rainfall in Australia and India, and November-
January (NDJ) rainfall in the Republic of South Africa. For computational reasons,
grids that have a large proportion (>33%) of dry seasons are removed from the

LEPS analysis and therefore appear as white grids in the LEPS maps.
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