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Genetic improvement in sorghum breeding programs requires the assessment of

adaptation traits in small-plot breeding trials across multiple environments. Many of these

phenotypic assessments are made by manual measurement or visual scoring, both

of which are time consuming and expensive. This limits trial size and the potential for

genetic gain. In addition, these methods are typically restricted to point estimates of

particular traits, such as leaf senescence or flowering and do not capture the dynamic

nature of crop growth. In water-limited environments in particular, information on leaf area

development over time would provide valuable insight into water use and adaptation to

water scarcity during specific phenological stages of crop development. Current methods

to estimate plant leaf area index (LAI) involve destructive sampling and are not practical

in breeding. Unmanned aerial vehicles (UAV) and proximal-sensing technologies open

new opportunities to assess these traits multiple times in large small-plot trials. We

analyzed vegetation-specific crop indices obtained from a narrowband multi-spectral

camera on board a UAV platform flown over a small pilot trial with 30 plots (10 genotypes

randomized within 3 blocks). Due to variable emergence we were able to assess the utility

of these vegetation indices to estimate canopy cover and LAI over a large range of plant

densities. We found good correlations between the Normalized Difference Vegetation

Index (NDVI) and the Enhanced Vegetation Index (EVI) with plant number per plot, canopy

cover and LAI both during the vegetative growth phase (pre-anthesis) and at maximum

canopy cover shortly after anthesis. We also analyzed the utility of time-sequence data

to assess the senescence pattern of sorghum genotypes known as fast (senescent)

or slow senescing (stay-green) types. The Normalized Difference Red Edge (NDRE)

index which estimates leaf chlorophyll content was most useful in characterizing the
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FIGURE 7 | Normalized difference vegetation index (NDVI) for each date across the study area during the main growing period. Black dividing lines indicate plot

boundaries, while white mask-out areas represent the areas where sample quadrat cuts were taken.

between flights. This was limited here by flying only on clear
days with no clouds and during the middle of the morning.
Furthermore, NDVI is less sensitive to such changes since it is
a ratio index.

Previous studies have reported a saturation of NDVI at higher
LAI values (i.e., LAI > 4) and thus in dense vegetation canopies
using EVI might be preferable to NDVI (Huete et al., 2002;
Myneni et al., 2002). Our experimental plots were all planted
at a target population density of 5 plants per square meter and
LAI at anthesis ranged from 1.3 to 4.7. When combining pre-
anthesis and anthesis data we also observed a slight improvement
in prediction power when fitting a logarithmic instead of a linear
function (Figure 6). To assess LAI in sorghum breeding plots
with higher LAI, it might also be better to use EVI instead of
NDVI.

Peak NDVI values varied from 0.72 to 0.86 and end NDVI
values from 0.62 to 0.67. In this trial, the end values were not
greatly lower than maximum values, given that drought stress
was not substantial, with plot yields in the uniform plots being
over 9 t ha−1. Lines with the stay-green trait, R931945-2-2 and
R931945-2-2TM, had a slower decline in NDRE after anthesis,
compared with the two senescent genotypes, MR Buster and
R955637. The stay-green trait has been associated with increased
yield under post-anthesis drought (Borrell et al., 1999, 2000;
Jordan et al., 2012) and due to the frequency of post-anthesis
drought in sorghum growing areas, it has been actively selected

for in Australian sorghum breeding programs. Being able to
monitor senescence over time will assist breeders in selecting for
stay-green under drought.

Breeding for yield under water-limitation has been the focus
of sorghum breeding activities in Australia for the last three
decades. This may well explain why sorghum yield advances in
dry environments are currently more than double those in wet
environments (Potgieter et al., 2016). However, there is potential
to further improve yields in water-limited environments by
improving the matching of leaf area and water-use dynamics to
the temporal characteristics of drought (Chapman et al., 2000).
The approach presented here offers the opportunity to monitor
LAI of different genotypes throughout the crop-growing season,
thus providing breeders with information on canopy dynamics.
This will support the accelerated development and release of
commercial hybrids that are matched to specific environments
types.

In addition to plant breeders, agronomists and growers will
also benefit from having access to information on crop canopy
dynamics as it will allow them to estimate water use and expected
yields for their sorghum crops as the season unfolds. Besides
directly affecting crop water use (George-Jaeggli et al., 2017),
LAI also relates to the fraction of absorbed photosynthetically
active radiation (PAR) and therefore is one of the most important
canopy attributes (Weiss et al., 2004; Sadras and McDonald,
2012; Sibley et al., 2014; Sadras and Calderini, 2015). LAI is
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FIGURE 8 | NDVIavg (A) and NDREavg (B) aggregated over entire plot area from flowering to maturity for four sorghum genotypes contrasting in stay-green

characteristics. MR Buster (brown) and R955637 (yellow) are both senescent types, while R931945-2-2 (light blue) and R931945-2-2TM (dark blue) are lines with the

stay-green trait. Points are least squares means for NDVI and NDRE, respectively, predicted by the linear mixed model. Black vertical bars represent standard errors

for three replicates at each time point.

FIGURE 9 | NDREavg aggregated over entire plot from maximum canopy cover to maturity (final flight) for senescent (MR Buster and R955637; A) and stay-green

genotypes (R931945-2-2 and R931945-2-2TM; B). Points are values for individual plots. Solid lines are the fitted functions through the sampling points (open circles).

an important input variable for crop models, such as APSIM
(Keating et al., 2003) that are used for yield predictions at field
and regional scales (Lobell et al., 2015b). An improvement in
this methodology would be to be able to monitor the LAI as it
increases toward amaximum value, and by accurately accounting
for heads, soil and senescing leaves, to estimate the LAI as

it changes during grain filling. A full-season measurement of
LAI would allow use of these crop models in the estimation of
seasonal crop growth and potential water use.

Apart from the capacity to scale phenotyping up from a few
to thousands of breeders’ plots, the approach presented here will
facilitate the scaling-out of phenotyping from plant to plot to field
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scales and thus enabling industry to maximize yield potential at
both the genetic and the agronomic level.
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