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Abstract. Considerable information exists on genetic relationships of body composition and carcass quality of young and
finished beef cattle. However, there is a dearth of information on genetic relationships of cow body composition over time
and, also, relationshipswith young-animal body-compositionmeasures. The aimof the present study is to understandgenetic
relationships amongvarious cowbody-composition traits ofAngus cowsover time, fromyearling toweaningof a secondcalf
at ~3.5years. Todeterminegenetic correlations amongvarious composition traits over time, amulti-trait–multi-time analysis
is required. For the Maternal Productivity Project, this necessitates modelling of five traits (namely weight and ultrasound
measure for loin eye muscle area (EMA), rib fat, P8 rump fat and intramuscular fat) by five time combinations (recordings
at yearling then pre-calving andweaning infirst and second parity). The approachwas based on including all 25 trait-by-time
combinations in an analysis using factor analytic models to approximate the genetic covariance matrix. Various models for
the residual covariance structure were investigated. The analyses yielded correlations that could be compared with those of
past studies reported in the literature and, also, to a set of bivariate analyses. Clustering of the genetic multi-trait–multi-time
correlation structure resulted in a separation of traits (weight and EMA, and the fat traits) and also of time effects into early
(heifer = before first lactation) and late (cow = post-first lactation) measurements.
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Introduction

The Beef CRC Maternal Productivity Project (Pitchford et al.
2017) sought to understand how cow body composition was
associated with various measures of maternal productivity. An
important part of this is developing a detailed understanding
of the underlying genetic relationships between cow body
composition traits including weight (WT, kg) and ultrasound
measures of rib fat depth (RIB,mm), P8 rump fat depth (P8,mm),
intramuscular fat percent (IMF, %) and loin eye muscle area
(EMA, cm2). In addition, understanding how various trait and
genetic relationships may change during development, from
the yearling ultrasound scan to weaning of the second calf,
provides an insight as to how such traits could be handled for
genetic evaluation.

Many studies have reported genetic-parameter estimates
(genetic variances and correlations) for WT and body composition
measured on young animals and some have included multiple
measurement time points. These studies have typically
demonstrated moderate to strong correlations of the same trait
among times, e.g. start and end of finishing phase in steers

(Johnston et al. 2003). While several studies have reported
strong genetic relationships between cow height and weight
(Northcutt et al. 1992; Gregory et al. 1995), and strong
correlations for cow weight (Koots et al. 1994; Arango et al.
2002; Williams et al. 2009) over time, few studies have reported
genetic-parameter estimates for body-composition traits for cows
and relationships with cow WT.

As part of the Beef CRC Maternal Productivity Project,
Donoghue et al. (2017) reported variance and genetic
correlation estimates between body-composition traits from a
set of bivariate analyses for Angus and Hereford cows at pre-
calving and weaning in first and second parity; the analyses
conducted provide a subset of the full set of possible bivariate
analyses. The analyses provided an insight into the underlying
genetic basis for cow body-composition traits, with heritability
estimates for ultrasound-scan traits for Angus ranging from
0.22 (EMA, pre-calving second parity) to 0.59 (rib fat depth,
weaning first parity). Donoghue et al. (2017) reported moderate
to high genetic correlations between measurements of the same
trait at pre-calving and weaning within parity. In addition,
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Donoghue et al. (2017) reported that genetic correlations with
corresponding yearling measures of body composition were
consistently positive and high for the first parity, but lower for
the second parity.

The present study seeks to build on the work of Donoghue
et al. (2017) by determining genetic-variance estimates and
correlations for Angus heifers and cows using multivariate
(multi-trait–multi-time) analyses, with the aim of producing
estimates that are suitable for use in genetic evaluation. One
approach to investigating the full set of correlations between
multi-trait–multi-time data is to construct the full covariance
matrix via bivariate analyses between all pairs of trait-by-time
combinations. This is the approach considered by Stewart et al.
(2012; among others) to estimate genetic parameters for horses
in a large multi-trait dataset. An issue with this approach is
that because the correlations are estimated from many separate
analyses, the resulting covariance matrix may not be positive
definite and adjustments (Higham 2002; Jorjani et al. 2003) may
be required to make the matrix positive definite. The individual
analyses alsodonotmakebest use of all the information available.
Analternative approach is tofit a single fullmulti-trait–multi-time
covariance model using factor analytic models (Smith et al.
2001). In a series of papers, Meyer (2007, 2009a, 2009b)
investigated the use of reduced rank and factor analytic models
and applied these models in multivariate analyses of carcass
traits for Angus cattle. Tyrisevä et al. (2011) used factor
analytic models in the estimation of genetic correlations
among countries for dairy bulls. An issue with this approach is
the large computational burden these analyses impose when the
number of trait-by-time combinations is large. A further issue is
the choice of residual model and the impact that this may have.
The present study investigates the use of factor analytic models
with several residual models to estimate the genetic correlations
among multi-trait–multi-time Angus body-composition traits
from the Beef CRC Maternal Productivity Project.

Materials and methods

Animals and measurements
The Angus cows used for the present study were a subset of the
Cooperative Research Centre for Beef Genetic Technologies’
(Beef CRC) Maternal Productivity Project. Details regarding
selection of herds that participated in the Industry subproject,
along with types and timing of records collected, were described
by Pitchford et al. (2017). Briefly, body-composition
measurements of 5901 Angus heifers were undertaken at the
following four times: pre-calving first parity (PC1), weaning of
first calf (W1), pre-calving second parity (PC2) and weaning of
second calf (W2; Table 1). The body-compositionmeasurements
at the four time points included WT (kg), as well as ultrasound
measures of P8 (mm), 12 and 13th RIB (mm), EMA (cm2) and
intramuscular fat percentage (IMF, %). Yearling records
(500 day) collected for use in BREEDPLAN genetic
evaluation (Graser et al. 2005) for WT, RIB, P8, EMA, IMF
were also included as afifth timepoint in the analysis. Theaverage
age of the animals for the yearling records was 461 days.
The yearling BREEDPLAN records were pre-adjusted for age
of calf and age of dam before analysis (Graser et al. 2005). All
ultrasoundmeasurements weremade by accredited scannerswith

a B-mode Aquila Vet ultrasound (Esaote, Genova, Italy),
equipped with 18-cm linear-array probe (3.5 MHz). All data
reported in the present study for P8,RIB, EMAand IMFare based
on ultrasound measurements.

The dataset was extremely unbalanced, as not all animals
had measurements at all times. For all analyses, the variables
RIB and P8 were transformed using a natural log-transformation
(log(x+1)) to better approximate the assumed normal distribution
for the residual errors. The number of observations, and the mean
and standard deviation for each trait-by-time combination are
given in Table 1.

Formation of contemporary groups and data editing
Contemporary groups (CGs) were formed so as to group animals
that had been treated alike until the measurement date. Yearling
CG definition included yearling group (Graser et al. 2005), herd
of origin, birth year and calving season (spring or autumn).
Similarly, CG definition at pre-calving in parity one included
herd of origin, birth year, calving season (spring or autumn) and
cattle owner-defined management group. Subsequent CG
definition was sequential, with the CG at weaning in parity
one including the previous pre-calving CG subdivided for
weaning management group. The same process was followed
for pre-calving and weaning in parity two. Initial data editing
identified outliers, defined as records that were more than four
standard deviations from the CG mean, for each trait. For most
traits, the numbers of outliers were low (generally �5 records).
The outliers were removed before the analyses. CGs with fewer
than five animals were excluded from the analysis. There were
448 contemporary groups, with sizes ranging from 5 to 421.

Statistical analyses
To estimate the covariance structure between the 25 trait-by-time
combinations, a single complete analysis was undertaken using
factor analytic models (Smith et al. 2001; Meyer 2007). Cluster-

Table 1. Number of observations (n), the mean value (�x) and the
standard deviation (s.d.) for each trait-by-time combination for Angus

cows
Both P8 rump fat depth (P8) and rib fat depth (RIB) are on the log scale. EMA,
eyemuscle area; IMF, intra-muscular fat;WT, weight; 500, yearling record at
500 days; PC1, pre-calving first parity; PC2, pre-calving second parity; W1,

weaning of first calf; W2, weaning of second calf

Trait Measurement 500 PC1 W1 PC2 W2

EMA n 4704 4821 3679 3550 2543
�x 58.4 56.7 59.4 60.7 63.1
s.d. 9.2 10.3 9.1 9.5 9.5

IMF n 4707 4694 3677 3552 2538
�x 4.76 5.18 5.53 5.52 6.05
s.d. 2.04 2.05 1.91 2.14 1.90

P8 n 4707 4821 3679 3551 2543
�x 1.88 1.83 1.84 1.88 2.08
s.d. 0.42 0.42 0.42 0.45 0.48

RIB n 4706 4821 3679 3551 2543
�x 1.68 1.66 1.72 1.71 1.94
s.d. 0.36 0.37 0.38 0.40 0.43

WT n 4695 4820 3678 3551 2542
�x 392.6 487.7 516.0 554.1 582.9
s.d. 63.2 70.7 65.7 68.8 73.2
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analysis methods (Cullis et al. 2010) were applied to the
resulting genetic correlation matrix, with the aim of grouping
traits and times according to their similarity, to aid in
interpretation.

The linear mixed model was the basis of all models fitted and
was of the form

y ¼ Xt þ Zgug þ e;

where y is the vector of observations (25 trait-by-time
combinations by the number of animals, n), fixed effects are
given by Xt, the random genetic effects by Zgug and the residual
effects by e. It is assumed that e is normally distributed,with a zero
mean and covariance matrix R.

For the Maternal Productivity data, the fixed effects consist
of a mean for each trait-by-time combination, CG for each trait,
and, for cows, a regression on the age of the animal for each
trait-by-time combination, a regression on days elapsed from
PC measurement until calving (for pre-calving traits) for
animals that calved (for each trait) and a regression on days
elapsed from calving until weaning (for weaning traits), again
for each trait. Visscher and Goddard (1993) discussed the
issue of fitting CG as fixed or random and pointed out that
while information may be lost by fitting the CG as fixed effects
when there are many small sized CGs, fitting them as random
effects may cause bias if there is association between sires
(or animals in our case) and CGs. Therefore, the CGs were
fitted as fixed effects.

Maternal genetic and permanent environmental effects
were investigated separately for each trait for the 500-day
measurements and were taken as random effects. In each case,
these effects were non-significant and so were not included in
the analyses of all trait-by-time combinations.

The genetic effects ug are combinations of trait, time and
genotype; these effects are assumed independent of the other
random effects, are normally distributed and have a mean of
zero. The multi-trait–multi-time model used in the present paper
treats the trait-by-time combinations as a single component. It
is assumed that the variance matrix of ug is given by

var ug
� � ¼ Gs � A; ð1Þ

where Gs is the genetic covariance matrix for the trait-by-time
combinations, � is the Kronecker product, and A is the additive
relationship matrix as determined by the pedigree. Eqn 1 is an
example of a separable variance matrix of two components, with
one component being for the trait-by-time combinations (Gs) and
one for the animals (given by the relationship matrix A). For the
Maternal Productivity data, pedigree information was available
on 11 627 animals (n = 5901 with records) and spanned about
seven generations.

Various forms for Gs could be used in the analysis. If there
are s trait-by-time combinations, and a fully parameterised or
unstructured (US) covariance matrix is used, Gs has s (s + 1)/2
parameters to be estimated. For the Maternal Productivity data,
s = 25 and there are 325 parameters to be estimated.

A reduced form for Gs, which is a parsimonious alternative
to the US form, is the factor analytic (FA) covariance matrix
(Smith et al. 2001). In this case,

Gs ¼ LLT þY; ð2Þ

where L is a s · k matrix of loadings (k is the number of
factors) and Y is a diagonal matrix of the so-called specific
variances. As the number of factors, k, increases, the
approximation to a fully US form generally improves. This is
themodel used in themajority of analyses. Note that themaximal
FA model has 18 factors with 322 parameters. From a practical
point of view, a model with a small or modest number of factors
is desirable.

The residual effects have a covariance matrix R that can be
modelled in various ways. If Rs is the s · s covariance matrix
for the s trait-by-time combinations, it follows that for trait-by-
animal effects,

R ¼ Rs � In:

The US covariance matrix could be used for Rs and 325
parameters would need to be estimated. FA models (suitably
parameterised to ensure a positive definite matrix) could be used
to reduce the number of parameters.

Another possible model that is often used in plant-based
analyses is a separable structure for Rs, namely

Rs ¼ RT � Rt;

where for T traits and t times, the matrices in this separable
form represent covariance matrices for traits (RT) and times (Rt)
separately.

The matrices RT and Rt can themselves be modelled using
various structures. For example, US or FA models could be used
for the trait or time components. Alternatively, autoregressive
models or ante-dependence of order one (Kenward 1987) could
be used for the time component. The first-order heterogeneous
autoregressive (ar1h) covariance structure has variances st

2 for
the tth time, and covariance between the tth time and the sth time is
given by r|t-s|stss, where r is the correlation between consecutive
time points. For the autoregressive process, the time spacing
should, therefore, be uniform. An ante-dependence model of
order r assumes that the jth observation (j > r) given the
preceding r observations is independent of all other preceding
observations (Gabriel 1962). The model is more flexible than is
the autoregressive model because it allows both different
variances and so-called ante-dependence parameters. The ante-
dependence structure is best specified by the inverse covariance
matrix. For an order-one process (ante1), the inverse covariance
matrix is tri-diagonalwith zeros elsewhere; however, note that the
covariance matrix can have non-zero values for all entries. For
five times, there are five distinct diagonal elements and four
distinct off-diagonal elements on the leading off-diagonal in the
inverse covariance matrix. Thus, there are nine parameters,
whereas the heterogeneous autoregressive process will have
six parameters.

The analysis requires appropriate variance models for the
genetic (Gs) and residual effects (Rs). Four different residual
models were fitted. The first three were separable structures for
which the trait covariance matrix was always unstructured, and
the time covariance matrices were ar1h, ante1 and US
respectively. In these models, the first variance in the trait
covariance matrix was fixed at 1, so as to ensure identifiability
of parameters in the model. This is a consequence of fitting a
separable covariance model with heterogeneous variances in the
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components of the separable structure, as multiplying one
structure by a constant and dividing the other structure by the
same constant results in the same overall structure, demonstrating
the lack of identifiability. The fourth residual model was the US
covariance matrix for the full trait-by-time combinations. For
each of these residual models, FA models were fitted for the
genetic effects. A series of FA models (2) were fitted. A residual
likelihood-ratio test was used to decide on the final order of the
FA model.

Smith et al. (2015) discussed the problem of selecting a
factor model when it is difficult to fit such models. They
proposed the use of what they termed the percentage of
variance explained by the factors (%VAF), to determine
whether a model can be used for prediction of genetic effects
and estimation of covariance components. If lij is the factor
loading for the ith trait-by-time combination and the jth factor
(the (i, j) element of L), and ci is the ith specific variance, the
percentage variance explained by the factors (k in number) for
the ith trait-by-time combination is given by

Pk
j¼1 l

2
ijPk

j¼1 l
2
ij þ ci

· 100: ð3Þ

The overall percentage variance explained across all trait-by-
time combinations is

P25
i¼1

Pk
j¼1 l

2
ijP25

i¼1ð
Pk

j¼1 l
2
ij þ ciÞ

· 100: ð4Þ

Smith et al. (2015) chose a value for Eqn 4 of at least 80%,
with all individual values of Eqn 3 of at least 60% for the model
to be acceptable (in their analysis), but these values are arbitrary.

The stability of estimated correlations and variances for
successive factor models is also indicative of an acceptable
order for the factor model. Thus, if we form a vector of the
estimated pairwise correlations, rr and rr-1 for models with r and

r – 1 factors respectively, a measure of the change between the
two models is the relative L2 norm as a percentage, namely

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrr � rr�1ÞT ðrr � rr�1Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rTr�1rr�1

p · 100; ð5Þ

with a similar definition for the estimated variances. These
measures can also be used for the estimated residual correlations
and variances.

The FA model gives an estimate of the trait-by-time genetic
covariance matrix Gs, which can be converted to a correlation
matrix Cs. To investigate the genetic correlations between traits
and times, a cluster analysis using the agnes package in R was
performed, using I - Cs as the dissimilarity matrix. (Cullis et al.
2010; De Faveri et al. 2015; Smith et al. 2015). A heatmap was
used to represent the genetic correlations with the ordering of the
trait-by-time combinations on the basis of the order obtained from
the cluster analysis. This aids in the interpretation of the
correlation structure as the trait-by-time combinations that are
highly correlated are located close together on the heatmap.

Results

Multi-trait–multi-time analysis using FA models

Several models were fitted using ASReml (Butler et al. 2009;
Gilmour et al. 2009) and a subset of these are listed in
Table 2. This table also includes a residual likelihood-ratio
statistic for successive models presented in the table, the
degrees of freedom and the P-value for the test that an
additional factor is required, the Akaike information criterion
(AIC) for each model, the overall percentage of variance
accounted for by the factors for each model using Eqn 4 and
measures of stability for the estimated genetic and residual
correlations and variances using relative norms of the form
given by Eqn 5.

Table 2. Summary of models fitted
The genetic model Gs is denoted by a factor analytic model with k factors (FAk). The residual model is Rs. US, ar1h and ante1 denote unstructured, first-order
heterogeneous autoregressive and first-order ante-dependence covariance matrices respectively. Residual log-likelihoods (first model set to 0), residual
likelihood-ratio statistics (RLRS) for the test of successive models, degrees of freedom (d.f.), P-values, Akaike information criterion (AIC), %variance

accounted for (%VAF), and relative norms for the estimated correlations and variances of successive models are presented

Residual Norm of genetic Norm of residual
Gs Rs log-likelihood RLRS d.f. P-value AIC %VAF Correlations Variances Correlations Variances

FA1 US · ar1h 0.0 5414.2 27.6
FA1 US · ante1 193.2 386.4 3 0 5033.8 26.6
FA1 US · US 1010.5 1634.6 6 0 3411.2 33.7
FA1 US 2469.9 2918.8 296 0 1084.4 59.6
FA2 US 2594.3 248.8 24 0 883.6 64.0 10.18 7.45 2.95 0.87
FA3 US 2781.4 374.2 23 0 555.4 79.6 41.23 14.76 8.68 1.93
FA4 US 2924.1 285.4 22 0 314.0 92.1 38.70 27.56 6.85 3.83
FA5 US 3039.9 231.5 21 0 124.5 95.4 73.71 44.63 22.23 8.48
FA6 US 3117.3 154.9 20 0 9.6 96.4 29.82 40.47 15.61 11.43
FA7 US 3139.6 44.5 19 0.001 3.1 97.1 2.95 1.21 2.51 0.44
FA8 US 3159.1 39.1 18 0.003 0.0 97.8 3.89 1.24 2.77 0.44
FA9 US 3175.0 31.8 17 0.016 2.2 98.1 2.93 2.63 1.96 1.03
FA10 US 3183.0 15.8 16 0.466 18.3 98.5 3.17 2.69 2.10 1.13
FA11 US · US 2781.4 259.4 96.5 26.79 90.48 62.81 30.58
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The models presented in Table 2 represent a subset of the full
set of models fitted. The four residual models considered are all
presented for a genetic model with a single factor. The residual
likelihood-ratio statistics indicated the improvement of fit as the
model complexity increases, and the fully US covariance matrix
was clearly the best fit. Subsequent models (apart from the last)
are for genetic models of increasing numbers of factors with the
fully US residual covariance matrix.

The residual likelihood-ratio test for each additional factor
is presented in Table 2 as the statistic, its degrees of freedom
and a P-value. The additional factors are significant until the
10th factor, so that the model chosen is the FA9. The AIC
suggested that the FA8 could be used. Note that the best
model for the separable US trait by US time residual model
was the FA11 (presented in Table 2). The AIC was clearly larger
for the separable model (the likelihood-ratio test could not be
performed as the models were not nested).

The percentage variance accounted for by the factors, using
Eqn 4, for the FA9 model was 98% and all the individual values
using Eqn 3 were above 80%. The stability measures for the
genetic and residual correlations and variances are presented in
Table 2. These measures showed large relative changes in the
estimated genetic and residual correlations andvariances up to the
FA6 model. Thereafter, the change was between 1% and 3%,
suggesting that the estimates had settled down. Note that the last
model in the table was compared with the FA9model to illustrate
that the unstructured residual model does indeed make a big
difference compared with the separable US model.

The estimated genetic variances (diagonal of the matrix),
correlations (upper triangle of the matrix) and their standard
errors (lower triangle) for the 25 trait-by-time combinations
are given in Table 3. The strongest correlations were for the
same trait measured at different times. RIB and P8 fat depth were
highly correlated, which was expected, as they are both measures
of subcutaneous fat. IMF was less highly correlated with
subcutaneous (RIB and P8) fat, but more highly than with WT
and muscle (EMA). EMA was more highly correlated with WT
than with fat traits.

The estimated (co)variance parameters of the residual effects
for the model with a genetic FA structure with nine factors are
presented in Table 4. The residual variances are on the diagonal,
the correlations (multiplied by 100) are given in the upper
triangular part of the matrix and the standard errors of the
residual correlations are presented in the lower triangular part.

To aid in understanding the structure inwhat is a large number
of genetic correlations, a clustering algorithm was used as in
Cullis et al. (2010). A heat map of the estimated correlations is
given in Fig. 1. The trait-by-time combinations are ordered as in
the clustering, to highlight groupings.Theheatmapconfirmed the
two broad groupings of EMA and weight, and the fat traits, with
further refinement within these two groups into early (yearling
and PC1) and late (W1, PC2, W2) measurements.

Discussion

Grouping of trait-by-time combinations

The analyses showed that the traits could be grouped together into
two main groups, namely WT and muscle (EMA), and the fat
traits (P8, RIB, IMF). In addition, grouping of times generally

separated out into heifer (yearling and PC1) and cow (W1, PC2,
W2). Genetic correlations were high (~0.9 for all traits except
IMF, where the correlation was 0.7) between the two early
measurements of yearling and PC1, and similar high
correlations (~0.9) were found among the later measurements
(PC1, W1, PC2) for the same trait (Table 3, Fig. 1). Correlations
between the early measures and later measures averaged ~0.7.

On the basis of literature estimates of genetic correlations for
developing animals, the grouping of RIB, P8 and IMF in heifer
and first- and second-parity cows was expected. For Angus
heifers, Reverter et al. (2000) and Meyer (2005) estimated
genetic correlations of 0.96 and 0.85 respectively, between
RIB and P8 fat depth. IMF has been reported to be moderately
correlatedwith P8 andRIB in heifers (Reverter et al. 2000;Meyer
et al. 2004; Meyer 2005). In these studies, the correlations
between IMF and P8 ranged from 0.47 to 0.57 and, for IMF
and RIB, they ranged from 0.49 to 0.65. The correlations in the
present paper between IMF and P8 and IMF and RIB for heifers
ranged from 0.49 to 0.63 and from 0.50 to 0.67 respectively,
which are similar to those found in the previous studies.

Several studies have reported low to moderate genetic
correlations between WT and subcutaneous fat for animals at
various stages ofmaturity, thusproviding supporting evidence for
fat traits to be clustered separately from WT (Fig. 1); see, for
example, Johnston et al. (2003) and Barwick et al. (2009).
Barwick et al. (2009) and Wolcott et al. (2014) also found
correlations between WT and EMA in heifers ranging from
0.54 to 0.61, which are similar to those found in the present
paper (0.39–0.55).

For growing animals, genetic correlations between EMA and
subcutaneous fat are low (Moser et al. 1998; Reverter et al. 2000;
Yokoo et al. 2008), providing support for the separate groupingof
EMA from fat traits observed in the present study. Similar to
subcutaneous fat, estimates of genetic correlations between IMF
and EMA are low. Reverter et al. (2000) estimated genetic
correlations between scan IMF and EMA of 0.19 for Angus
heifers, while Meyer (2005) reported genetic correlations of 0.18
for Angus heifers. The estimates reported indicate that genetic
separation of EMAand IMF appears consistent with that found in
other studies.

It is apparent that there is a decline in strength of genetic
correlation for the same trait measured across time as animals
mature. Moreover, the genetics of body composition of heifers
and cows indicated that moderate but important changes in
genetic relationships take place during first gestation,
parturition and lactation. However, despite a reduction in the
strength of correlations of the same measurement between time
points, the correlations remained strong such that selection on
young-animal body composition is likely to confer change in the
same direction for cow body composition. The results in the
present paper were similar to those found in previous studies
(Koots et al. 1994; Arango et al. 2004; Barwick et al. 2009;
Wolcott et al. 2014) and matched the relationships reported by
Lee et al. (2017) and Donoghue et al. (2017).

Estimating correlation structure for cowbody composition

Modelling many trait-by-time combinations in a single analysis
can be difficult. A common approach is to conduct bivariate
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analyses for all combinations, to assemble the full correlation
matrix and then adjust it to make it positive definite. A more
comprehensive approach examined in the present paper was to
perform a full multi-trait–multi-time analysis using FA models
for the genetic covariance structure. The correlations estimated
from a complete single multi-trait–multi-time analysis make best
use of as much available information among the multiple traits as
possible. For this reason, it would be expected that these analyses
wouldyieldmore accurate correlations thanapiecemeal approach
of performing 300 bivariate analyses.

The estimated genetic (and residual) correlations found
using bivariate analyses are presented in Table S1 (available
as Supplementary material for this paper). In many cases, the
correlations are similar; however, there are clear and substantial
differences with the results in Table 3. The L2 norm of the
bivariate estimates relative to those from the multi-trait–multi-
time analysis using Eqn 5 was 13%, indicating a substantial
overall difference.

The choice of residual model used in single stage multi-
trait–multi-time genetic analyses is an important consideration.
Fitting a restrictive residual model can cause problems of
partitioning of the overall covariance matrix into genetic and
residual components. This occurred for the separable residual
models and the problem persisted even when higher-order FA
models were fitted. The separable model assumes that the
correlation between each pair of times is the same for each
trait and the correlation between each pair of traits is the same
for each time. In the present paper, the estimated residual
correlations for WT across times were much higher than those
for other traits and estimated correlations among traits were not

consistent. Therefore, the separable residual models considered
were not adequate when compared with a fully US model.

The FA analyses were computationally demanding and
were performed using high-performance computing resources.
It took weeks to run the full set of FA models required to
adequately estimate the covariance structure for the full multi-
trait–multi-time model. Meyer (2005) reported on both an
analysis of multi-trait data on Angus cattle and on a simulation
study for reduced-rank methods of analysis. The computational
burden in achieving such analyses is discussed in that paper
and mirrors those found in the current study. Despite the
computational issues, the time and resources used for analysis
were a small component when compared with the design and
data acquisition of the Maternal Productivity Project.

The practical approach to fit the multi-trait–multi-time
models is important. For FA models, there may be a need for
good starting values to achieve convergence of the fitting
process. For the analyses reported in the present paper, the
approach was to fit an initial model omitting the genetic model
(that is the FA model) and purely estimating the residual
covariance matrix. The estimated parameters from this initial
analysis were then used in the analysis for each FA model. This
approach proved very successful, and although many iterations
were required for convergence, it is our recommended method
of analysis.

Model selection, or howmany factors to include in the model,
is another important consideration. Smith et al. (2015) suggested
the %VAF could be used to decide on the appropriate FA order
and suggested that the residual likelihood-ratio test may imply
the need for fitting too many factors. Given that the aim of our
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analysis was estimating genetic correlations, we recommend
examining the stability of estimates of correlations and
variances as the number of factors in the model increases, in
conjunction with residual likelihood-ratio tests and the AIC. In
our analyses, the %VAFwas high for low numbers of factors but
the corresponding stability measures were large. The final model
selected by the residual likelihood-ratio test (and the AIC)
displayed low stability measures as is desirable.

While theFAmodels are one approach thatmaybe suitable for
modelling the genetic covariance structure in multi-trait–multi-
time genetic datasets, there are other approaches that may make
use of the time covariance structure of the traits and, specifically,
the fact that correlations usually decrease as the time between
measurements decreases. Separable models for the genetic
effects using ante-dependence or autoregressive ar1 models for
the time component are one option, but these models are
restrictive. They were attempted for this dataset (results not
presented here) but did not fit as well as the FA models. An
alternative approach may be a multi-trait random coefficients
model, multivariate autoregressive models (De Faveri 2013)
or structured ante-dependence models (Jaffrézic et al. 2003),
which may be used to model multivariate data over time.

Conclusions

In conclusion, the FAgeneticmodelswere a suitable approach for
a single multi-trait–multi-time analysis but required significant
computing resources and time. In addition, the cluster analyses
implemented in the present paper were helpful in aiding
biological understanding of genetic relationships among traits
over time. The results presented aid the understanding of genetic
relationships of WT and RIB, P8, IMF and EMA for Angus
cattle from yearling to weaning of second calf. Importantly, it is
apparent that the strength of genetic correlation for the same
trait declines over time. However, traits clearly cluster in before
first lactation and after first lactation. The strength of correlation
across the time points indicated that the selection on young
animal traits would confer change in the same direction for
cows after first lactation. If highly accurate breeding values are
required to describe cow body composition, then measurement
of traits post first lactation would be required as genetic
correlations between composition at yearling and W2 ranged
from 0.59 to 0.68.
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