Supplementary Information for

Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range

Gemma Henderson, Faith Cox, Siva Ganesh, Arjan Jonker, Wayne Young, Global Rumen Census Collaborators, and Peter H. Janssen

Correspondence to: <u>peter.janssen@agresearch.co.nz</u>, gemma.henderson@agresearch.co.nz

This file includes:

Supplementary Text 1.

Supplementary Fig. 1. Relative abundances of dominant bacteria, archaea, and protozoa.

Supplementary Fig. 2. Variability of bacterial, archaeal, and protozoal communities.

- Supplementary Fig. 3. Effect of host species and dietary forage to concentrate ratios on rumen microbial communities.
- Supplementary Fig. 4. Effect of forage to concentrate ratios on A) bacterial, B) archaeal, and C) protozoal communities.
- Supplementary Fig. 5 Effect of host lineage on A) bacterial, B) archaeal, and C) protozoal communities.

Supplementary Fig. 6. Effect of forage type on A) bacterial, B) archaeal, and C) protozoal communities.

Supplementary Fig. 7. Correlations between major rumen bacteria, archaea, and protozoa.

Supplementary Fig. 8. Reproducibility of the sample processing pipeline.

Supplementary Fig. 9. Effect of forage plant on A) bacterial, B) archaeal, and C) protozoal communities.

Supplementary Table 1. The most abundant and prevalent rumen bacterial (Ba) genus-level groups.

Supplementary Table 2. Mean relative abundances of bacterial groups summarised by animal species group.

Supplementary Table 3. The most abundant and prevalent rumen archaeal (Ar) species-level groups.

Supplementary Table 4. Mean relative abundances of archaeal groups summarised by animal species group.

Supplementary Table 5. Metabolic classification of rumen methanogens.

Supplementary Table 6. The most abundant and prevalent rumen protozoal (Pr) genus-level groups.

Supplementary Table 7. Diet classifications.

Supplementary Table 8. Identities of the 50 most abundant and prevalent bacterial operational taxonomic units (OTUs^a).

Supplementary Table 9. Identities of the 50 most abundant and prevalent archaeal operational taxonomic units (OTUs^a).

Supplementary Table 10. Bacterial groups considered to be exogenous to the rumen.

Other Supplementary Information for this manuscript includes the following:

Supplementary Data 1 as an Excel file: Supplementary _Data_1.xlsx

Supplementary Text 1

Supplementary Methods

Sample processing pipeline reproducibility and negative controls

Due to the high number of samples, these were processed in four batches (and sequencing rounds at MWG Biotech). We assessed the reproducibility of the DNA extraction, PCR, and sequencing steps using 12 rumen samples (sample numbers 0333-0336, 0468-0471, 0544, and 0546-0548; Supplementary Fig. 8). These samples were originally processed in sequencing round 2. In sequencing round 3, the samples were reanalysed in three ways: by starting at the DNA extraction step using the homogenised rumen sample from sequencing round 2 (DNA.REP); starting at the PCR step using the DNA extract from sequencing round 2 (PCR.REP); and resequencing the PCR product from sequencing round 2 (SEQ.REP). Additionally, DNA was extracted from these samples using the RBB+C method of Yu and Morrison ¹ from 30 mg of freeze-dried samples as previously described ² (RBBC). A negative control sample, which was subject to all sample processing steps, was also sequenced.

Criteria for sample exclusion

Samples were excluded from analyses if an insufficient number of sequencing reads were obtained. Five samples with less than 500 sequencing reads of bacterial 16S rRNA genes were excluded, for archaea 38 samples with less than 100 sequencing reads of archaeal 16S rRNA genes were excluded, and 150 samples with less than 100 sequencing reads of protozoal 18S rRNA genes were excluded. These exclusions were done independently, so that a sample was only excluded in the dataset for the microbial group (i. e., bacteria, archaea, or protozoa) that failed to reach this minimum, but retained for the others for which sufficient read data were obtained. In most of these cases, PCR amplification yielded less PCR product, but the amount of this product that was used for sequencing was increased so that it was the same for all samples. There were no obvious factors that caused bacterial, archaeal, or protozoal reads to be low for some samples.

Differentiation of rare and outlier taxa from noise

To be included in analyses, microbial taxa (hereafter referred to as groups) had to have a relative abundance greater than 0.5% in at least one of the 742 samples. Groups that fulfilled this criterion represent 99.6, 100.0, and 100.0% of sequences of bacteria, archaea, and protozoa, respectively (Supplementary Tables 1, 3, and 5). Groups that did not meet this criterion were summarised as "other groups". The relative abundance of these "other groups" in any one sample was at most 2.8, 0.5, and 0.0% of the bacterial, archaeal, and protozoal communities, respectively.

Some samples contained high levels of potentially exogenous bacteria that are not typically found in the rumen (Supplementary Table 10). Many of these exogenous bacteria may have "legitimately" entered the rumen via the ingestion of feed, water, and soil and could thus be considered transient residents of the rumen. However, some exogenous bacteria may have increased or been introduced during sample processing, for example, due to prolonged storage without adequate cooling, and should thus be considered as sample contaminants. It was difficult to decide whether bacterial groups were transient rumen residents or contaminants, thus these were summarised as "exogenous groups". On average these "exogenous groups" comprised $3.0\pm0.4\%$ of bacterial communities and were found in 88% (n = 737) of samples. Samples (n = 53) with a relative abundance of "exogenous groups" greater than 10% were excluded from further analyses. On the whole, less DNA was extracted from these samples, which could be due to degradation of the DNA during sample processing or the presence of substances that may interfere with DNA extraction.

Archaeal and protozoal communities of samples that contained high abundances of exogenous bacterial groups appeared to be comparable with those of other samples. This is possibly because archaea and protozoa are not ubiquitous environmental microbes, and they are less likely than bacteria to enter the rumen as transients, contaminate the samples, or be introduced during sample processing. For these reasons, we used archaeal or protozoal data from these samples.

Supplementary Results

Sample processing pipeline reproducibility and negative controls

Principal coordinate analysis of microbial community composition was used to assess the reproducibility of the DNA extraction, PCR, and sequencing steps of the sample processing pipeline (Supplementary Fig. 8). As expected, data generated from the same samples were more similar if fewer steps of the pipeline were repeated, and if the same rather than a different DNA extraction method was used. The smallest difference was observed between different sequencing rounds on the same PCR product (SEQ.REP; see Supplementary Fig. 8), with greater differences with different PCRs on the same DNA (PCR.REP), even greater with replicate DNA extractions using the same (PCQI) method on the same sample (DNA.REP), and the greatest with a different DNA extraction method on the same samples (RBBC). Even so, overall, reproducibility was high (Supplementary Fig. 8). Samples from pasturefed deer, pasture-fed Belgian Blue cattle, and concentrate/silage-fed Icelandic cattle generally formed distinct clusters by sample type rather than by variations in sample processing and data generation. Data points from the same animals clustered together closely in the majority of cases, the few exceptions nonetheless indicating that some variability can be introduced during sample processing. For example, the protozoal community results were quite disparate for deer rumen sample GRC0467 (sample ii), possibly due to repetition of the DNA extraction and PCR amplification steps resulting in fewer protozoal sequencing reads being obtained. Repeating the sequencing on the same PCR sample that had been stored at -20°C for two months generally resulted in fewer sequencing reads being obtained. In some cases, e. g., archaea in some of the Icelandic cattle and bacteria in some of the deer, samples

from different animals processed using the RBB+C DNA extraction method grouped more closely together than samples from the same animals. It has previously been shown that changes in sample processing and DNA extraction methods can result in differences in apparent microbial community compositions ². This study confirms this finding, and it also provides evidence that performing DNA extraction and PCR steps on separate days can result in subtle changes being introduced to apparent microbial community compositions. However, compared to the variation of the whole dataset, these changes were minor. Therefore, despite subtle differences in sample processing, the data generated by this study can validly be used to survey the diversity of rumen microbial communities.

No products were observed from negative controls following PCR amplification, and no sequencing reads were obtained for archaea or protozoa, and only ten for bacteria. These bacterial reads were assigned to the *Lachnospiraceae* (4 reads), *Pseudomonas* (3 reads), *Treponema* (1 read), *Clostridiales* (1 read), and *Bacteroidales* (1 read), and thus possibly stemmed from extremely low-level background (rumen) environmental contamination or were due to barcode sequencing errors.

Transient bacteria found potentially originating from feed and soil

Grazing ruminants are observed to ingest soil ³, and soil microbes would thus enter the rumen. However, sequences from highly diagnostic groups of soil bacteria were very rare in the dataset. Bacteria from classes (subdivisions) 1, 3, 4, and 6 of the phylum *Acidobacteria*, from the classes *Acidimicrobiia*, *Rubrobacteria*, and *Thermoleophilia* of the phylum *Actinobacteria*, from the class *Flavobacteria* of the

phylum *Bacteroidetes*, and from classes *Spartobacteria* and 3 of the phylum *Verrucomicrobia* are globally distributed and ubiquitous soil bacteria ⁴. Sequences from these groups made up 32.5% of 16S rRNA gene sequences in soil ⁴, but only 0.007% of the sequences from the rumen samples. Bacteria of the order *Actinomycetales* of the phylum *Actinobacteria* are also considered to be soil bacteria, with an abundance of about 4.7% ⁴. These were far more abundant in the rumen samples than other soil bacteria, but still only made up 0.5% of all sequences. The discrepancy between their abundance and that of other soil bacteria suggests a different source for *Actinomycetales*. These bacteria are common airborne contaminants and feed spoilage organisms ⁵, and may have been ingested with feed rather than soil. Overall, the data suggest that only a very small part of the rumen microbial community is made up of transients from feed, and even fewer from soil.

Members of the class *Bacilli*, such as *Carnobacterium*, *Enterococcus*, *Lactobacillus*, and *Streptococcus*, were generally not prevalent and abundant, but are known to occur in the rumen, are used as silage inoculants, and are sometimes associated with acidosis ⁶.

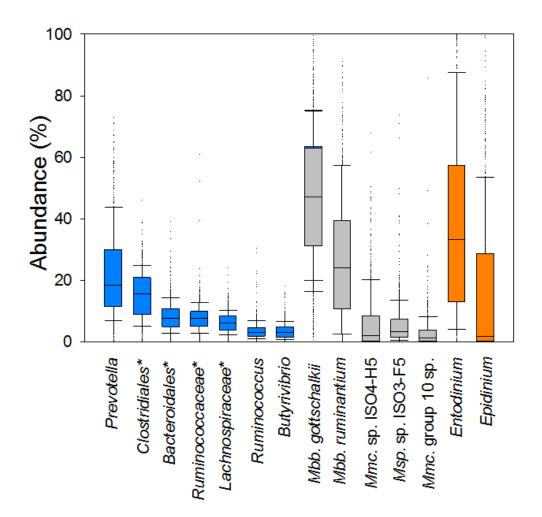
Additional factors influencing microbial communities (Supplementary Figs. 3, 4, 5, 6, and 9)

Within those animals consuming diets containing at least 30% forage, higher relative abundances of unclassified *Succinivibrionaceae*, *Ruminococcus*, *Prevotella*, *Butyrivibrio*, *Coprococcus*, and *Methanomassiliicoccaceae*-affiliated group 12 sp. ISO4-H5 were characteristic of animals fed preserved whole crops such as silage, whereas *Pseudobutyrivibrio* and *Selenomonas* were more abundant in animals fed

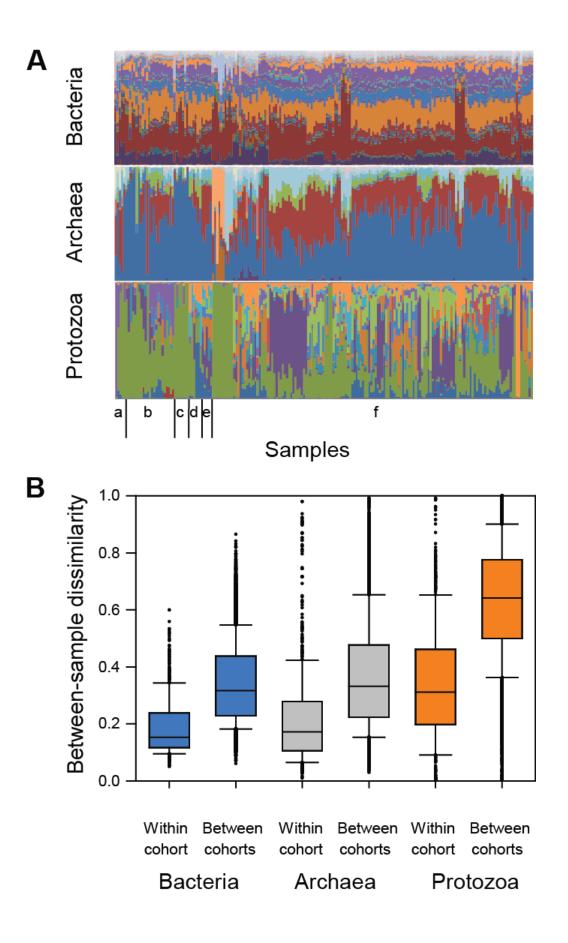
diets comprised of both fresh and preserved whole crops. Grasses were the most widely used forage plant and unclassified Clostridiales, Mogibacteriaceae, Christensenellaceae, and Ruminococcaceae, as well as the Methanobrevibacter gottschalkii clade, were typically found in ruminants fed pasture. When grass forage was supplemented with another forage derived from a cereal plant, unclassified Lachnospiraceae and Butyrivibrio, Coprococcus, and Prevotella became more evident, as did members of the archaeal Methanomassiliicoccaceae. Samples from animals on diets with high levels of starch were characterised by *Prevotella*. Methanomassiliicoccaceae group 12 sp. ISO4-H5, and to some extent Entodinium, whereas those with high levels of pectin were typified by Succiniclasticum, Entodinium, Ophryoscolex, and Methanosphaera sp. ISO3-F5. Pectin is a rich source of microbially-available methyl groups ⁷ and *Methanosphaera* spp. are known to use methyl groups for methane formation⁸. Samples from animals on diets that contained low levels of starch and pectin could be discriminated by the greater relative abundances of unclassified Clostridiales, Christensenellaceae, and Ruminococcaceae, the Methanobrevibacter gottschalkii clade, and Eudiplodinium.

Co-occurrence and associations within and between rumen microbial communities Prevotella showed strong negative correlations with other major bacterial groups, but this is probably because they are a large proportion of the total, and changes in their abundance will have arithmetic effects when all data as expressed as proportions of the total bacterial community. Similarly, the two main archaeal groups, *Methanobrevibacter gottschalkii* and *Methanobrevibacter ruminantium* display this replacement effect. The same effect was observed within the protozoa, where the

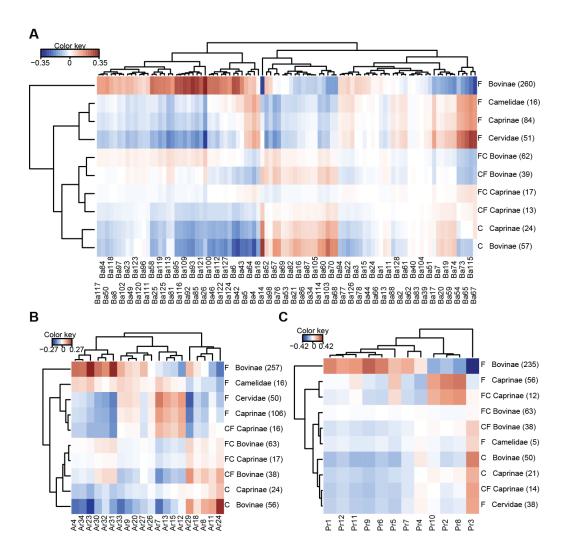
abundant genus *Entodinium* was found to correlate negatively with other abundant protozoal groups.

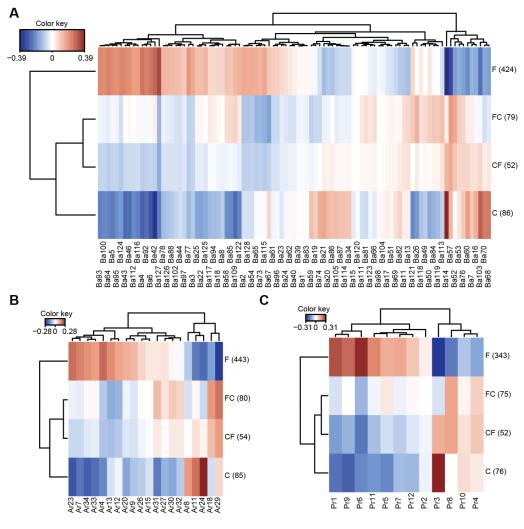

Supplementary Acknowledgements

We thank the following, who provided assistance that allowed Global Rumen Census collaborators to supply samples and metadata: Andre Abraham (Northstar Bison Processing), Seppo Ahvenjärvi (Natural Resources Institute Finland), Ole Sommer Bach (Randers Rainforest), Tim Bell (Swiss Federal Institute of Technology), Maria Benson (University College Dublin), Laurence Bernard (Institut National de la Recherche Agronomique), Jane Ann Boles (Montana State University), Cecilia Cajarville (Facultad de Veterinaria, Universidad de la República), Fergal Coughlan (Teagasc), Joost de Groot (Cargill Animal Nutrition), Michel Doreau (Institut National de la Recherche Agronomique), Obioha N. Durunna (The University of Queensland), Vanina Egea (Instituto Argentino de Investigaciones en Zonas Áridas), Tryggvi Eiríksson (Agricultural University of Iceland), Conrad Ferris (Agri-Food and Biosciences Institute), Diego Franco (Instituto Nacional de Tecnología Agropecuaria, Argentina), Lucette Genestoux (Institut National de la Recherche Agronomique), Marziye Ghadami (Ferdowsi University of Mashhad), Pablo Gutierrez-Toral (Institut National de la Recherche Agronomique), Grétar H. Harðarson (Agricultural University of Iceland), Joe Heemskerk (Westwold View Farms), Lisbeth Høgh (Knuthenborg Safari Park), Keith Joblin (AgResearch Ltd), Fumiko Kasai (Chiba Prefectural Livestock Research Center), Dave Kasper (Cargill Animal Nutrition), Kenji Kawashima (Chiba Prefectural Livestock Research Center), David Kenny (Teagasc), Kate Keogh (Teagasc), Amil Kleinert (Memphis Meat Processing), Larry Kolles (Cargill Animal Nutrition), Andrej Lavrencic (University of Ljubljana), Rasmus Levinsen (Mølgaarde), Matevz Likar (University of Ljubljana), Jason Lin (Diamond V), Mahdi Madaeni (Ferdowsi University of Mashhad), Anita Maguire (Department of Agriculture, Fisheries and Forestry), C. Mapiye (Agriculture & Agri-Food Canada),

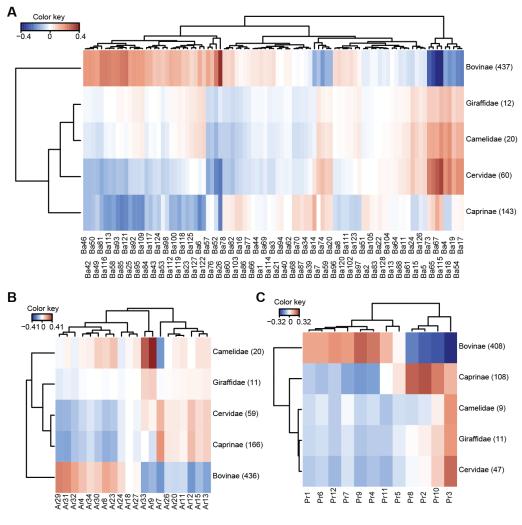

Marcos Inácio Marcondes (Universidade Federal de Viçosa), Samuel Martin (Agri-Food and Biosciences Institute), Ignacio Martin (Consejo Superior de Investigaciones Cientificas), Sarah Meale (Agriculture & Agri-Food Canada), Roberta Mila-Arango (Colegio de Posgraduados), Stephen Miller (University of Guelph), David Mills (Agri-Food and Biosciences Institute), Ole Mols, Stephen Moore (The University of Queensland), Sithembile Ndlela (University of KwaZulu-Natal), Emma O'Flaherty (The University of Sydney), Ibrahim O. Oguntusi (Federal University of Agriculture), Sebastián Paez (Instituto Argentino de Investigaciones en Zonas Aridas), Simo Pärssinen (HAMK-University of Applied Sciences), Nicolle Pomies (Facultad de Veterinaria, Universidad de la República), Kim Rasmussen (Givskud Zoo), Moufida Rira (Institut National de la Recherche Agronomique), Mayra I. Rivas-Martínez (Colegio de Posgraduados), Dora Raquel Rojas (Instituto Nacional de Tecnología Agropecuaria), Rodolfo Saldaña (Instituto de Investigaciones Agropecuarias, INIA Remehue), Paulino Sánchez Santilla (Colegio de Posgraduados), Jan Šefl (Czech Academy of Sciences), Adriana E. Severianos-Corral (Colegio de Posgraduados), T. Turner (Agriculture & Agri-Food Canada), Urban Udovic (University of Ljubljana), Koichiro Ueda (Hokkaido University), Jan Vávra (Czech Academy of Sciences), Laura Ventto (Natural Resources Institute Finland), Franco Medone Vergara (Instituto de Investigaciones Agropecuarias, INIA Remehue), Darko Veternik (University of Ljubljana), Cristian Villaroel (Instituto de Investigaciones Agropecuarias, INIA Remehue), Tracy Werner (Diamond V), Kelsey Westveer (Montana State University), and Pamela Williams (Universidad de Concepcion).

Supplementary References

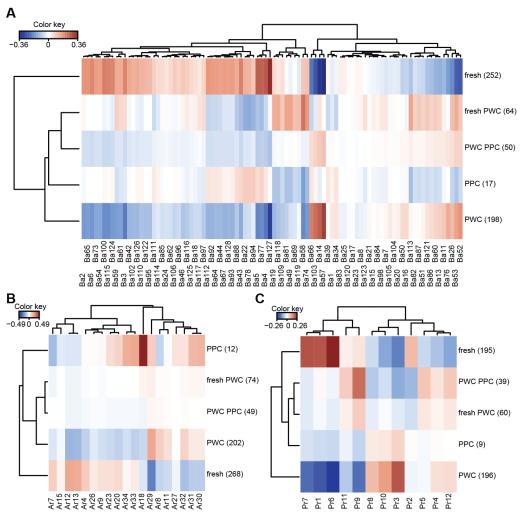

- 1 Yu, Z. & Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. *Biotechniques* **36**, 808-812 (2004).
- 2 Henderson, G. *et al.* Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. *PLoS ONE* **8**, e74787 (2013).
- 3 Thornton, I. & Abrahams, P. Soil ingestion a major pathway of heavy metals into livestock grazing contaminated land. *Sci. Total Environ.* **28**, 287-294 (1983).
- 4 Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. *Appl. Environ. Microbiol.* **72**, 1719-1728 (2006).
- 5 Dalphin, J. C. *et al.* Influence of mode of storage and drying of fodder on thermophilic actinomycete aerocontamination in dairy farms of the Doubs region of France. *Thorax* **46**, 619-623 (1991).
- 6 Petri, R. M. *et al.* Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. *Appl. Environ. Microbiol.* **79**, 3744-3755 (2013).
- 7 Schink, B., Ward, J. C. & Zeikus, J. G. Microbiology of wetwood: importance of pectin degradation and *Clostridium* species in living trees. *Appl. Environ. Microbiol.* **42**, 526-532 (1981).
- 8 Fricke, W. F. *et al.* The genome sequence of *Methanosphaera stadtmanae* reveals why this human intestinal archaeon is restricted to methanol and H₂ for methane formation and ATP synthesis. *J. Bacteriol.* **188**, 642-658 (2006).


Relative abundances of dominant bacteria, archaea, and protozoa. Boxplots represent the 25th to 75th percentiles, lines within boxes depict medians, whiskers represent the 10th and 90th percentiles, and outliers are plotted as individual points. *indicates unclassified bacteria within an order or family. *Mbb.*, *Methanobrevibacter*, *Mmc.*, *Methanomassiliicoccaceae*; *Msp.*, *Methanosphaera*.

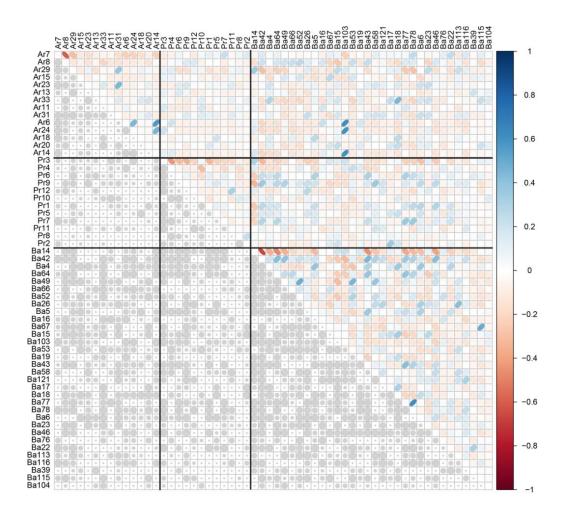
Variability of bacterial, archaeal, and protozoal communities. A) Relative abundances of microbial groups in individual samples (from 24 cohorts with at least five samples, each stacked bar represents one sample, and the colours represent different microbial groups within each panel); Samples were from a, giraffes (n = 5); b, deer (n = 23); c, goats (n = 37); d, sheep (n = 6); e, bison (n = 5); and cattle (n = 152). B) Boxplots showing Bray-Curtis dissimilarities between samples within and between cohorts. Boxplots represent the 25th to 75th percentiles, lines within boxes depict medians, whiskers represent the 10th and 90th percentiles, and outliers are plotted as individual points.



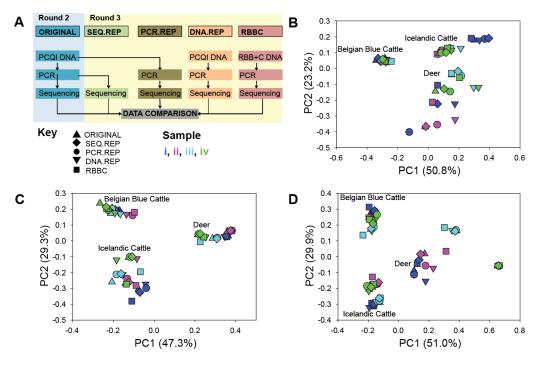
Effect of host species and dietary forage to concentrate ratios on rumen microbial communities. Diets were grouped (Supplementary Table 7) as forage-dominated (F), mixed forage-concentrate (50-70% forage, FC), mixed concentrate-forage (50-70% concentrate, CF), or concentrate-dominated (C). Sparse partial least squares discriminant analysis was used to discriminate between groupings and results represented as heat maps, where the colour represents the association score. Microbial groups (A) bacteria, B) archaea, and C) protozoa) are given on the x-axis, and identified by numbers (Supplementary Tables 1, 3, and 5). The number of samples in each category is in parentheses.


Supplementary Fig. 4

Effect of forage to concentrate ratios on A) bacterial, B) archaeal, and C) protozoal communities. Diets were grouped (Supplementary Table 7) as forage-dominated (F), mixed forage-concentrate (50-70% forage, FC), mixed concentrate-forage (50-70% concentrate, CF), or concentrate-dominated (C). Sparse partial least squares discriminant analysis was used to discriminate between groupings and results represented as heat maps, where the colour represents the association score. Microbial groups are given on the x-axis, and identified by numbers (Supplementary Tables 1, 3, and 5). The number of samples in each category is in parentheses.

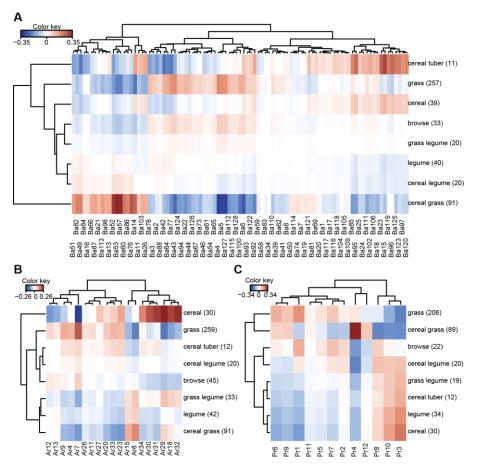

Supplementary Fig. 5

Effect of host lineage on A) bacterial, B) archaeal, and C) protozoal communities. Sparse partial least squares discriminant analysis was used to discriminate between groupings and results represented as heat maps, where the colour represents the association score. Microbial groups are given on the x-axis, and identified by numbers (Supplementary Tables 1, 3, and 5). The number of samples in each category is in parentheses.



Supplementary Fig. 6

Effect of forage type on A) bacterial, B) archaeal, and C) protozoal communities. Diets were classified according to forage type (Supplementary Table 7), i. e., preserved whole crops (PWC), preserved partial crop residues (PPC), and fresh (e. g., pasture, browse) and combinations. Sparse partial least squares discriminant analysis was used to discriminate between groupings and results represented as heat maps, where the colour represents the association score. Microbial groups are given on the x-axis, and identified by numbers (Supplementary Tables 1, 3, and 5). The number of samples in each category is in parentheses.



Correlations between major rumen bacteria, archaea, and protozoa. The upper right triangle depicts Pearson correlation coefficients colour-coded to the scale on the right, and the lower left-hand triangle depicts *P* values (the larger the circle, the greater the significance). Microbial groups are identified by numbers (Supplementary Tables 1, 3, and 5).

Supplementary Fig. 8

Reproducibility of the sample processing pipeline. The reproducibility of the DNA extraction, PCR and sequencing steps was assessed using three sample cohorts (samples 0333-0336, 0468-0471, and 0544, 0546-0548; see Supplementary Data 1) of four samples each (i, ii, iii, iv). A) These samples were originally processed in sequencing round 2 (ORIGINAL). In sequencing round 3, DNA extraction (DNA.REP), PCR (PCR.REP), and sequencing (SEQ.REP) were repeated for these samples. Additionally, DNA was extracted using the RBB+C (RBBC) method instead of the PCQI method. The resulting B) bacterial, C) archaeal, and D) protozoal community data were compared using principal coordinate analysis. The variation explained by each coordinate is given in parentheses. Microbial community compositions and Bray-Curtis dissimilarity matrices have been provided in Supplementary Data 1.

Supplementary Fig. 9

Effect of forage plant on A) bacterial, B) archaeal, and C) protozoal communities. Diets were classified according to forage type (Supplementary Table 7) and combinations. Sparse partial least squares discriminant analysis was used to discriminate between groupings and results represented as heat maps, where the colour represents the association score. Microbial groups are given on the x-axis, and identified by numbers (Supplementary Tables 1, 3, and 5). The number of samples in each category is in parentheses.

Supplementary Table 1 The most abundant and prevalent rumen bacterial (Ba) genus-level groups. The 30 most abundant groups are indicated in bold font.

Ba ^a	Group	Mea	n rel	Maximum	Prevalence				
ID		All sample			Adjusted for	r pre	evalenced	(%) ^e	(%) ^f
1	Corynebacterium	0.1	±	0.0	0.3	±	0.0	12.8	37.9
2	Unclassified ^g Coriobacteriaceae	0.5	±	0.0	0.5	±	0.0	6.2	97.5
3	Adlercreutzia	0.0	±	0.0	0.1	±	0.0	1.0	37.9
4	Unclassified Bacteroidales	8.4	±	0.2	8.4	±	0.3	39.2	100
5	BS11 (Bacteroidales)	1.6	±	0.1	1.7	±	0.1	16.6	93.9
6	BF311 (Bacteroidaceae)	0.7	±	0.0	0.8	±	0.0	10.3	89.5
7	Bacteroides	0.0	±	0.0	0.0	±	0.0	0.4	49.9
8	Unclassified Marinilabiaceae	0.0	±	0.0	0.1	±	0.0	1.1	22.2
9	Unclassified Porphyromonadaceae	0.0	±	0.0	0.0	±	0.0	0.2	3.2
10	Dysgonomonas	0.0	±	0.0	0.4	±	0.1	4.1	1.6
11	Paludibacter	0.1	±	0.0	0.1	±	0.0	2.1	54.5
12	Parabacteroides	0.0	±	0.0	0.0	±	0.0	0.1	4.7
13	Unclassified Prevotellaceae	0.3	±	0.0	0.3	±	0.0	2.8	93.7
14	Prevotella	22.0	±	0.6	22.0	±	0.8	72.9	100
15	RF16 (Bacteroidales)	1.3	±	0.1	1.4	±	0.1	15.4	95.5
16	S24-7 (Bacteroidales)	1.6	±	0.1	1.6	±	0.1	18.4	98.8
17	Unclassified [<i>Paraprevotellaceae</i>] ⁿ	0.8	±	0.0	0.8	±	0.0	18.9	98.7
18	CF231 [Paraprevotellaceae]	0.8	±	0.0	0.9	±	0.0	5.7	98.2
19	YRC22 [Paraprevotellaceae]	1.0	±	0.0	1.1	±	0.0	15.4	98.2
20	[Prevotella] [Paraprevotellaceae]	0.0	±	0.0	0.1	±	0.0	1.8	60.1
21	p-2534-18B5 (<i>Bacteroidales</i>)	0.1	±	0.0	0.4	±	0.0	5.8	17.3
22	SHD-231 (<i>Anaerolinaceae</i>)	0.6	±	0.0	0.6	±	0.0	14.3	90.5
23	YS2 (Cyanobacteria)	0.7	±	0.0	0.8	±	0.0	13.2	91.5
24	Unclassified Elusimicrobiaceae	0.0	±	0.0	0.0	±	0.0	0.8	32.7
25	Unclassified Endomicrobia	0.0	±	0.0	0.1	±	0.0	0.7	38.5

Ba ^a	Group	Mean relative abundance (%, ±SEM ^b)						Maximum	Prevalence
ID		All sample	es (n	$= 684)^{c}$	Adjusted for	or pre	evalence ^d	(%) ^e	(%) ^f
26	Fibrobacter	2.9	±	0.1	3.1	±	0.1	34.7	93.0
27	Unclassified Lactobacillales	0.0	±	0.0	0.1	±	0.0	1.1	4.8
28	Aerococcus	0.0	±	0.0	0.1	±	0.0	0.7	2.2
29	Carnobacterium	0.2	±	0.1	3.2	±	0.5	39.4	6.7
30	Desemzia	0.0	±	0.0	0.7	±	0.1	5.0	4.5
31	Trichococcus	0.0	±	0.0	1.3	±	0.3	25.2	3.5
32	Enterococcus	0.1	±	0.0	1.1	±	0.1	24.6	10.5
33	Vagococcus	0.0	±	0.0	2.1	±	0.7	18.6	1.5
34	Lactobacillus	0.3	±	0.1	1.0	±	0.1	35.7	25.7
35	Pediococcus	0.0	±	0.0	0.9	±	0.2	4.9	1.9
36	Unclassified Leuconostocaceae	0.2	±	0.1	2.3	±	0.3	72.5	9.8
37	Leuconostoc	0.0	±	0.0	0.1	±	0.0	1.2	4.4
38	Lactococcus	0.0	±	0.0	0.9	±	0.2	15.6	4.7
39	Streptococcus	0.5	±	0.2	0.8	±	0.0	70.4	63.0
40	Turicibacter	0.1	±	0.0	0.3	±	0.0	12.0	17.0
41	Unclassified Clostridia	0.0	±	0.0	0.0	±	0.0	0.6	23.0
42	Unclassified Clostridiales	15.3	±	0.3	15.3	±	0.6	46.0	100
43	Unclassified Christensenellaceae	0.9	±	0.0	1.0	±	0.0	8.2	92.4
44	Unclassified Clostridiaceae	0.3	±	0.0	0.3	±	0.0	14.4	90.6
45	02d06 (Clostridiaceae)	0.0	±	0.0	0.4	±	0.2	1.0	0.4
46	Clostridium	0.7	±	0.0	0.7	±	0.0	11.2	98.0
47	Proteiniclasticum	0.0	±	0.0	1.2	±	0.4	13.3	1.6
48	Pseudoramibacter_Eubacterium	0.0	±	0.0	0.1	±	0.0	0.5	15.8
49	Unclassified Lachnospiraceae	6.3	±	0.1	6.3	±	0.2	24.2	100
50	Anaerostipes	0.2	±	0.0	0.2	±	0.0	1.6	85.2
51	Blautia	0.4	±	0.0	0.4	±	0.0	4.8	95.0
52	Butyrivibrio	3.4	±	0.1	3.4	±	0.1	18.2	100
53	Coprococcus	1.1	±	0.0	1.1	±	0.0	5.9	98.4

Ba ^a	Group	Mea	n rel	ative abu	Maximum	Prevalence			
ID		All sample			Adjusted for	r pre	evalenced	(%) ^e	(%) ^f
54	Dorea	0.0	±	0.0	0.1	±	0.0	1.5	57.0
55	Epulopiscium	0.0	±	0.0	0.1	±	0.0	1.0	2.8
56	Lachnospira	0.0	±	0.0	0.1	±	0.0	1.7	13.5
57	Moryella	0.2	±	0.0	0.2	±	0.0	1.1	83.8
58	Pseudobutyrivibrio	0.9	±	0.0	0.9	±	0.0	7.7	94.0
59	Roseburia	0.1	±	0.0	0.1	±	0.0	2.6	50.7
60	Shuttleworthia	0.1	±	0.0	0.2	±	0.0	4.2	71.5
61	[Ruminococcus] (Lachnospiraceae)	0.0	±	0.0	0.0	±	0.0	1.5	45.5
62	Unclassified Peptostreptococcaceae	0.1	±	0.1	0.5	±	0.0	32.3	26.2
63	Peptostreptococcus	0.0	±	0.0	0.3	±	0.2	0.9	0.4
64	Unclassified Ruminococcaceae	7.9	±	0.2	7.9	±	0.3	61.1	100
65	Oscillospira	0.2	±	0.0	0.2	±	0.0	6.4	89.2
66	Ruminococcus	3.6	±	0.1	3.6	±	0.1	30.6	100
67	Unclassified Veillonellaceae	1.5	±	0.2	1.6	±	0.1	49.1	93.0
68	Acidaminococcus	0.0	±	0.0	0.1	±	0.0	1.4	12.4
69	Anaerovibrio	0.0	±	0.0	0.1	±	0.0	0.5	55.0
70	Dialister	0.1	±	0.0	0.5	±	0.0	6.1	17.1
71	Megasphaera	0.0	±	0.0	0.3	±	0.0	3.8	8.9
72	Phascolarctobacterium	0.0	±	0.0	0.2	±	0.0	1.6	2.3
73	Schwartzia	0.0	±	0.0	0.1	±	0.0	0.7	27.6
74	Selenomonas	0.2	±	0.0	0.3	±	0.0	4.3	84.1
75	Sporomusa	0.0	±	0.0	0.3	±	0.0	2.4	7.7
76	Succiniclasticum	0.7	±	0.0	0.8	±	0.0	7.3	97.4
77	Unclassified [Mogibacteriaceae]	0.8	±	0.0	0.8	±	0.0	9.2	99.4
78	Mogibacterium	0.8	±	0.0	0.8	±	0.0	12.6	98.8
79	Unclassified [Tissierellaceae]	0.0	±	0.0	0.0	±	0.0	0.2	1.5
80	Tissierella-Soehngenia	0.0	±	0.0	0.0	±	0.0	0.2	1.0
81	Unclassified Erysipelotrichaceae	0.0	±	0.0	0.0	±	0.0	0.5	47.7

Ba ^a	Group	Mean relative abundance (%, ±SEM ^b)						Maximum	Prevalence
ID		All sample	es (n	= 684) ^c	Adjusted for	or pre	evalenced	(%) ^e	(%) ^f
82	Bulleidia	0.3	±	0.0	0.3	±	0.0	4.5	93.6
83	Erysipelothrix	0.0	±	0.0	0.2	±	0.0	16.1	15.5
84	L7A_E11 (<i>Erysipelotrichaceae</i>)	0.1	±	0.0	0.1	±	0.0	0.8	74.7
85	RFN20 (Erysipelotrichaceae)	0.4	±	0.0	0.4	±	0.0	3.8	93.7
86	Sharpea	0.2	±	0.0	0.5	±	0.0	13.2	47.5
87	[Eubacterium] (Erysipelotrichaceae)	0.0	±	0.0	0.1	±	0.0	2.7	32.5
88	p-75-a5 (Erysipelotrichaceae)	0.1	±	0.0	0.1	±	0.0	1.8	81.7
89	Fusobacterium	0.0	±	0.0	0.1	±	0.0	0.5	6.0
90	Unclassified Leptotrichiaceae	0.0	±	0.0	0.1	±	0.0	0.5	1.6
91	Leptotrichia	0.0	±	0.0	0.3	±	0.1	1.1	0.6
92	Unclassified Victivallaceae	0.4	±	0.0	0.4	±	0.0	8.5	82.5
93	R4-45B [Lentisphaeria]	0.1	±	0.0	0.1	±	0.0	1.9	59.2
94	Unclassified Pirellulaceae	0.1	±	0.0	0.1	±	0.0	3.1	70.2
95	Unclassified Alphaproteobacteria	0.4	±	0.0	0.5	±	0.0	8.5	87.0
96	RF32 (Alphaproteobacteria)	0.3	±	0.1	0.4	±	0.0	37.7	78.8
97	Unclassified Rickettsiales	0.1	±	0.0	0.2	±	0.0	9.7	67.5
98	Sutterella	0.0	±	0.0	0.1	±	0.0	1.1	33.5
99	Pelobacter	0.0	±	0.0	0.1	±	0.0	0.7	8.2
100	0319-6G20 (<i>Myxococcales</i>)	0.0	±	0.0	0.1	±	0.0	0.7	30.4
101	Arcobacter	0.0	±	0.0	0.1	±	0.0	0.5	0.9
102	Campylobacter	0.0	±	0.0	0.0	±	0.0	0.5	25.9
103	Unclassified Succinivibrionaceae	1.2	±	0.2	1.7	±	0.1	43.9	72.1
104	Ruminobacter	0.3	±	0.1	0.7	±	0.0	47.6	52.2
105	Succinivibrio	0.2	±	0.1	0.4	±	0.0	29.5	54.1
106	Unclassified Enterobacteriaceae	0.0	±	0.0	0.2	±	0.0	4.4	14.6
107	Klebsiella	0.0	±	0.0	0.3	±	0.1	3.7	5.0
108	Serratia	0.0	±	0.0	0.1	±	0.0	0.3	1.9
109	Unclassified (SR1)	0.2	±	0.0	0.3	±	0.0	3.3	76.5

Ba ^a	Group	Mea	Mean relative abundance (%, ±SEM ^b)						Prevalence
ID		All sample	samples $(n = 684)^{c}$ Adjusted for prevalence ^d				(%) ^e	(%) ^f	
110	PL-11B10 (Spirochaetes)	0.0	±	0.0	0.1	±	0.0	0.6	18.0
111	Sphaerochaeta	0.1	±	0.0	0.1	±	0.0	1.7	63.3
112	Unclassified Spirochaetaceae	0.0	±	0.0	0.1	±	0.0	0.9	54.5
113	Treponema	0.6	±	0.0	0.7	±	0.0	4.0	97.2
114	Pyramidobacter	0.0	±	0.0	0.1	±	0.0	0.9	61.5
115	TG5 (Dethiosulfovibrionaceae)	0.4	±	0.1	0.7	±	0.0	17.6	53.1
116	F16 (TM7)	0.6	±	0.0	0.7	±	0.0	6.5	96.1
117	Unclassified Mollicutes	0.0	±	0.0	0.0	±	0.0	0.6	32.0
118	Unclassified Anaeroplasmataceae	0.0	±	0.0	0.1	±	0.0	0.6	39.2
119	Anaeroplasma	0.3	±	0.0	0.3	±	0.0	3.4	81.0
120	Unclassified Mycoplasmataceae	0.0	±	0.0	0.1	±	0.0	1.7	22.4
121	RF39 (<i>Mollicut</i> es)	0.9	±	0.0	0.9	±	0.0	7.0	99.0
122	ML615J-28 (Tenericutes)	0.0	±	0.0	0.1	±	0.0	0.6	46.9
123	Unclassified (<i>Opitutae</i> ; HA64)	0.0	±	0.0	0.1	±	0.0	1.1	30.7
124	LD1-PB3 (Verrucomicrobia)	0.0	±	0.0	0.1	±	0.0	0.6	23.7
125	WCHB1-41 (Verrucomicrobia)	0.1	±	0.0	0.1	±	0.0	2.9	63.6
126	Unclassified (WPS-2)	0.1	±	0.0	0.1	±	0.0	0.8	59.9
127	Other groups ⁱ	0.4	±	0.0	0.4	±	0.0	2.8	99.1
128	Exogenous groups ⁱ	0.5	±	0.0	0.6	±	0.0	7.9	86.7

Almost all (>99.1%) bacterial sequences were assigned to the above 126 groups of bacteria. ^aBacteria; ^bstandard error of the mean; ^call samples for which at least 500 bacterial sequencing reads were available for analysis; ^dmean relative abundance in samples that contain that group; ^ethe highest relative abundance observed in any one sample; ^fthe prevalence of a group in all samples (n = 684); ^gindicates the group contains sequences not classified down to the genus level; ^hsquare brackets indicate suggested but not verified taxon designations; ⁱa small proportion of sequences (0.364%) were assigned to a further 556 groups, collectively labelled "other groups", that were not present at >0.5% in even one of the samples; ^jgroups (n = 66, Supplementary Table 10, representing 0.537% of sequences) that are probably transiently introduced to the rumen *via* the environment.

Supplementary Table 2 Mean relative abundances (%, ± standard error of the mean) of bacterial groups summarised by animal species group. The 30 most abundant bacterial groups are indicated in bold font.

	buffalo	cattle	bison	sheep	goat	deer	giraffes	camelids
Number of samples	24	394	14	98	37	60	11	20
Corynebacterium	0.1 ± 0.0	0.2 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0
Unclassified Coriobacteriaceae	0.1 ± 0.0	0.5 ± 0.0	0.8 ± 0.2	0.6 ± 0.1	0.4 ± 0.1	0.8 ± 0.1	0.8 ± 0.4	0.2 ± 0.0
Adlercreutzia	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0					
Unclassified Bacteroidales	6.9 ± 0.8	7.5 ± 0.2	9.1 ± 0.7	8.7 ± 0.5	8.2 ± 0.7	10.2 ± 0.8	15.4 ± 2.7	15.0 ± 1.4
BS11 (Bacteroidales)	2.8 ± 0.6	1.4 ± 0.1	2.3 ± 0.4	1.5 ± 0.3	2.6 ± 0.6	2.0 ± 0.4	0.5 ± 0.2	2.6 ± 0.5
BF311 (Bacteroidaceae)	0.8 ± 0.1	0.8 ± 0.1	0.5 ± 0.1	0.3 ± 0.0	0.4 ± 0.1	0.3 ± 0.1	0.2 ± 0.1	1.6 ± 0.4
Bacteroides	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0					
Unclassified Marinilabiaceae	0.0 ± 0.0							
Unclassified Porphyromonadaceae	0.0 ± 0.0							
Dysgonomonas	0.0 ± 0.0							
Paludibacter	0.2 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.1	0.1 ± 0.0	0.2 ± 0.1	0.0 ± 0.0
Parabacteroides	0.0 ± 0.0							
Unclassified Prevotellaceae	0.3 ± 0.1	0.3 ± 0.0	0.2 ± 0.0	0.3 ± 0.0	0.2 ± 0.0	0.3 ± 0.1	0.2 ± 0.1	0.3 ± 0.1
Prevotella	25.8 ± 2.8	21.4 ± 0.8	15.1 ± 1.3	21.5 ± 1.8	30.8 ± 2.2	22.0 ± 1.1	28.4 ± 4.1	19.8 ± 2.0
RF16 (Bacteroidales)	7.1 ± 0.8	1.1 ± 0.1	0.9 ± 0.2	0.9 ± 0.2	1.4 ± 0.2	1.5 ± 0.2	1.7 ± 0.5	1.1 ± 0.3
S24-7 (Bacteroidales)	0.9 ± 0.2	1.7 ± 0.1	2.5 ± 0.8	1.7 ± 0.2	2.3 ± 0.6	1.3 ± 0.2	1.6 ± 0.6	0.7 ± 0.1
Unclassified [Paraprevotellaceae]	0.6 ± 0.0	0.6 ± 0.0	0.8 ± 0.1	0.8 ± 0.1	0.7 ± 0.1	1.9 ± 0.4	1.0 ± 0.4	1.3 ± 0.2
CF231 [Paraprevotellaceae]	1.1 ± 0.1	0.7 ± 0.0	0.9 ± 0.2	0.5 ± 0.0	1.1 ± 0.2	1.4 ± 0.2	1.9 ± 0.3	1.6 ± 0.3
YRC22 [Paraprevotellaceae]	0.9 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	0.7 ± 0.1	0.7 ± 0.1	2.0 ± 0.2	2.6 ± 0.5	0.9 ± 0.2
[Prevotella] [Paraprevotellaceae]	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.1	0.1 ± 0.0
p-2534-18B5 (<i>Bacteroidales</i>)	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	0.3 ± 0.3	0.0 ± 0.0
SHD-231 (Anaerolinaceae)	0.3 ± 0.1	0.5 ± 0.0	0.7 ± 0.2	0.6 ± 0.1	1.5 ± 0.6	0.6 ± 0.2	0.5 ± 0.2	0.1 ± 0.0

	buffalo	cattle	bison	sheep	goat	deer	giraffes	camelids
YS2 (Cyanobacteria)	2.5 ± 0.5	0.7 ± 0.1	0.2 ± 0.1	0.2 ± 0.0	0.4 ± 0.1	0.6 ± 0.1	1.0 ± 0.5	0.6 ± 0.2
Unclassified Elusimicrobiaceae	0.0 ± 0.0							
Unclassified Endomicrobia	0.0 ± 0.0							
Fibrobacter	4.4 ± 0.6	3.8 ± 0.2	2.5 ± 0.5	1.9 ± 0.3	1.6 ± 0.3	0.9 ± 0.1	0.7 ± 0.2	0.6 ± 0.1
Unclassified Lactobacillales	0.0 ± 0.0							
Aerococcus	0.0 ± 0.0							
Carnobacterium	0.0 ± 0.0	0.3 ± 0.1	0.0 ± 0.0	0.4 ± 0.3	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Desemzia	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Trichococcus	0.0 ± 0.0	0.1 ± 0.1	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Enterococcus	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.6 ± 0.3	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Vagococcus	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.2	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Lactobacillus	0.1 ± 0.0	0.2 ± 0.1	0.0 ± 0.0	0.3 ± 0.3	2.0 ± 1.3	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Pediococcus	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.1	0.1 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Unclassified Leuconostocaceae	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	1.2 ± 0.8	0.6 ± 0.6	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Leuconostoc	0.0 ± 0.0							
Lactococcus	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Streptococcus	0.1 ± 0.0	0.5 ± 0.2	0.1 ± 0.0	0.4 ± 0.2	2.2 ± 0.9	0.1 ± 0.0	0.1 ± 0.0	0.0 ± 0.0
Turicibacter	0.5 ± 0.5	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0
Unclassified Clostridia	0.0 ± 0.0							
Unclassified Clostridiales	9.8 ± 0.8	16.3 ± 0.4	18.5 ± 1.3	16.5 ± 1.0	11.5 ± 0.8	15.2 ± 0.9	6.8 ± 0.9	13.8 ± 0.9
Unclassified Christensenellaceae	1.4 ± 0.5	1.0 ± 0.1	0.9 ± 0.1	1.1 ± 0.1	0.5 ± 0.1	0.5 ± 0.1	0.3 ± 0.2	1.6 ± 0.5
Unclassified Clostridiaceae	0.9 ± 0.6	0.3 ± 0.0	0.2 ± 0.0	0.4 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.1	0.2 ± 0.0
02d06 (<i>Clostridiaceae</i>)	0.0 ± 0.0							
Clostridium	0.7 ± 0.1	0.8 ± 0.0	0.5 ± 0.1	0.7 ± 0.1	0.4 ± 0.1	0.5 ± 0.1	0.2 ± 0.0	0.7 ± 0.1
Proteiniclasticum	0.0 ± 0.0							
Pseudoramibacter_Eubacterium	0.0 ± 0.0							

Coprococcus0.7 ± 0.11.2 ± 0.01.0 ± 0.10.8 ± 0.10.9 ± 0.21.4 ± 0.10.5 ± 0.10.9 ± 0.1Dorea0.0 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.0 ± 0		buffalo	cattle	bison	sheep	goat	deer	giraffes	camelids
Blautia0.1 ± 0.00.4 ± 0.00.8 ± 0.10.4 ± 0.10.3 ± 0.10.5 ± 0.10.2 ± 0.10.3 ± 0.1Butyrivibrio1.3 ± 0.24.1 ± 0.14.9 ± 0.53.3 ± 0.32.1 ± 0.31.7 ± 0.21.5 ± 0.23.4 ± 0.1Coproaccus0.7 ± 0.11.2 ± 0.01.0 ± 0.10.8 ± 0.10.9 ± 0.21.4 ± 0.10.5 ± 0.10.9 ± 0.1Darea0.0 ± 0.00.0 ± 0	Unclassified Lachnospiraceae	3.0 ± 0.3	6.7 ± 0.2	7.7 ± 0.4	6.0 ± 0.4	4.4 ± 0.4	6.9 ± 0.4	4.3 ± 0.8	5.8 ± 0.5
Butyrivibrio1.3 ± 0.24.1 ± 0.14.9 ± 0.53.3 ± 0.32.1 ± 0.31.7 ± 0.21.5 ± 0.23.4 ± 0.7Coprococcus0.7 ± 0.11.2 ± 0.01.0 ± 0.10.8 ± 0.10.9 ± 0.21.4 ± 0.10.5 ± 0.10.9 ± 0.1Dorea0.0 ± 0.0 <td>Anaerostipes</td> <td>0.2 ± 0.0</td> <td>0.2 ± 0.0</td> <td>0.3 ± 0.1</td> <td>0.2 ± 0.0</td> <td>0.1 ± 0.0</td> <td>0.1 ± 0.0</td> <td>0.0 ± 0.0</td> <td>0.1 ± 0.0</td>	Anaerostipes	0.2 ± 0.0	0.2 ± 0.0	0.3 ± 0.1	0.2 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0
Coprococcus0.7 ± 0.11.2 ± 0.01.0 ± 0.10.8 ± 0.10.9 ± 0.21.4 ± 0.10.5 ± 0.10.9 ± 0.1Dorea0.0 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.2 ± 0.00.0 ± 0	Blautia	0.1 ± 0.0	0.4 ± 0.0	0.8 ± 0.1	0.4 ± 0.1	0.3 ± 0.1	0.5 ± 0.1	0.2 ± 0.1	0.3 ± 0.1
Dorea0.0 ± 0.00.0 ± 0.00.0 ± 0.00.0 ± 0.00.0 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.0Epulopiscium0.0 ± 0.00.0 ±	Butyrivibrio	1.3 ± 0.2	4.1 ± 0.1	4.9 ± 0.5	3.3 ± 0.3	2.1 ± 0.3	1.7 ± 0.2	1.5 ± 0.2	3.4 ± 0.7
Epulopiscium 0.0 ± 0.0 0.0 ± 0	Coprococcus	0.7 ± 0.1	1.2 ± 0.0	1.0 ± 0.1	0.8 ± 0.1	0.9 ± 0.2	1.4 ± 0.1	0.5 ± 0.1	0.9 ± 0.1
Lachnospira 0.0 ± 0.0 $0.0 \pm 0.$	Dorea	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0				
Moryella 0.0 ± 0.0 0.2 ± 0.0 0.3 ± 0.1 0.1 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 Pseudobutyrivibrio 1.0 ± 0.1 1.1 ± 0.1 1.0 ± 0.2 0.6 ± 0.1 0.8 ± 0.2 0.5 ± 0.1 0.3 ± 0.1 0.7 ± 0.2 Roseburia 0.0 ± 0.0 0.1 ± 0.0 $0.0 \pm 0.$	Epulopiscium	0.0 ± 0.0							
Pseudobutyrivibrio1.0 ± 0.11.1 ± 0.11.0 ± 0.20.6 ± 0.10.8 ± 0.20.5 ± 0.10.3 ± 0.10.7 ± 0.2Roseburia0.0 ± 0.00.0 ± 0.00.0 ± 0.00.0 ± 0.00.0 ± 0.00.0 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.1 ± 0.00.0 ± 0.0	Lachnospira	0.0 ± 0.0							
Roseburia 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0	Moryella	0.0 ± 0.0	0.2 ± 0.0	0.3 ± 0.1	0.1 ± 0.0	0.2 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0
Shuttleworthia 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.1 0.1 ± 0.0 0.1 ± 0.0 $0.0 \pm$	Pseudobutyrivibrio	1.0 ± 0.1	1.1 ± 0.1	1.0 ± 0.2	0.6 ± 0.1	0.8 ± 0.2	0.5 ± 0.1	0.3 ± 0.1	0.7 ± 0.2
[Ruminococcus] (Lachnospiraceae) 0.0 ± 0.0 0.0 ± 0	Roseburia	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.1	0.1 ± 0.0				
Unclassified Peptostreptococcaceae 1.5 ± 1.3 0.1 ± 0.1 0.0 ± 0.0 $0.0 \pm$	Shuttleworthia	0.1 ± 0.0	0.2 ± 0.0	0.2 ± 0.1	0.1 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.0
Peptostreptococcus 0.0 ± 0.0 0	[Ruminococcus] (Lachnospiraceae)	0.0 ± 0.0							
Unclassified Ruminococcaceae 4.6 ± 0.7 7.8 ± 0.2 8.6 ± 0.4 10.0 ± 0.9 5.3 ± 0.4 9.1 ± 0.4 9.8 ± 2.8 8.2 ± 0.8 Oscillospira 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 0.7 ± 0.2 0.3 ± 0.1 0.4 ± 0.1 Ruminococcus 2.0 ± 0.2 3.9 ± 0.1 5.7 ± 1.1 3.5 ± 0.5 3.4 ± 0.7 3.6 ± 0.4 2.4 ± 0.7 3.0 ± 0.4 Unclassified Veillonellaceae 0.1 ± 0.0 0.3 ± 0.1 0.3 ± 0.1 2.5 ± 0.7 1.6 ± 0.4 4.5 ± 0.8 2.4 ± 1.6 5.5 ± 0.9 Acidaminococcus 0.0 ± 0.0 Anaerovibrio 0.1 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 Dialister 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 Megasphaera 0.0 ± 0.0 Phascolarctobacterium 0.0 ± 0.0	Unclassified Peptostreptococcaceae	1.5 ± 1.3	0.1 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.1	0.0 ± 0.0
Oscillospira 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 0.7 ± 0.2 0.3 ± 0.1 0.4 ± 0.1 Ruminococcus 2.0 ± 0.2 3.9 ± 0.1 5.7 ± 1.1 3.5 ± 0.5 3.4 ± 0.7 3.6 ± 0.4 2.4 ± 0.7 3.0 ± 0.4 Unclassified Veillonellaceae 0.1 ± 0.0 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 2.5 ± 0.7 1.6 ± 0.4 4.5 ± 0.8 2.4 ± 1.6 5.5 ± 0.9 Acidaminococcus 0.0 ± 0.0 <th< td=""><td>Peptostreptococcus</td><td>0.0 ± 0.0</td><td>0.0 ± 0.0</td></th<>	Peptostreptococcus	0.0 ± 0.0							
Ruminococcus 2.0 ± 0.2 3.9 ± 0.1 5.7 ± 1.1 3.5 ± 0.5 3.4 ± 0.7 3.6 ± 0.4 2.4 ± 0.7 3.0 ± 0.4 Unclassified Veillonellaceae 0.1 ± 0.0 0.3 ± 0.1 0.3 ± 0.1 2.5 ± 0.7 1.6 ± 0.4 4.5 ± 0.8 2.4 ± 1.6 5.5 ± 0.9 Acidaminococcus 0.0 ± 0.0 Anaerovibrio 0.1 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 <th< td=""><td>Unclassified Ruminococcaceae</td><td>4.6 ± 0.7</td><td>7.8 ± 0.2</td><td>8.6 ± 0.4</td><td>10.0 ± 0.9</td><td>5.3 ± 0.4</td><td>9.1 ± 0.4</td><td>9.8 ± 2.8</td><td>8.2 ± 0.8</td></th<>	Unclassified Ruminococcaceae	4.6 ± 0.7	7.8 ± 0.2	8.6 ± 0.4	10.0 ± 0.9	5.3 ± 0.4	9.1 ± 0.4	9.8 ± 2.8	8.2 ± 0.8
Unclassified Veillonellaceae 0.1 ± 0.0 0.3 ± 0.1 0.3 ± 0.1 2.5 ± 0.7 1.6 ± 0.4 4.5 ± 0.8 2.4 ± 1.6 5.5 ± 0.9 Acidaminococcus 0.0 ± 0.0 <td< td=""><td>Oscillospira</td><td>0.1 ± 0.0</td><td>0.1 ± 0.0</td><td>0.2 ± 0.0</td><td>0.2 ± 0.0</td><td>0.1 ± 0.0</td><td>0.7 ± 0.2</td><td>0.3 ± 0.1</td><td>0.4 ± 0.1</td></td<>	Oscillospira	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	0.1 ± 0.0	0.7 ± 0.2	0.3 ± 0.1	0.4 ± 0.1
Acidaminococcus 0.0 ± 0.0 $0.0 $	Ruminococcus	2.0 ± 0.2	3.9 ± 0.1	5.7 ± 1.1	3.5 ± 0.5	3.4 ± 0.7	3.6 ± 0.4	2.4 ± 0.7	3.0 ± 0.4
Anaerovibrio 0.1 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 Dialister 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.0 ± 0.0	Unclassified Veillonellaceae	0.1 ± 0.0	0.3 ± 0.1	0.3 ± 0.1	2.5 ± 0.7	1.6 ± 0.4	4.5 ± 0.8	2.4 ± 1.6	5.5 ± 0.9
Dialister 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 Megasphaera 0.0 ± 0.0 0	Acidaminococcus	0.0 ± 0.0							
Megasphaera 0.0 ± 0.0 $0.0 \pm 0.$	Anaerovibrio	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0
Phascolarctobacterium 0.0 ± 0.0 <th< td=""><td>Dialister</td><td>0.0 ± 0.0</td><td>0.1 ± 0.0</td><td>0.0 ± 0.0</td><td>0.2 ± 0.1</td><td>0.0 ± 0.0</td><td>0.0 ± 0.0</td><td>0.0 ± 0.0</td><td>0.0 ± 0.0</td></th<>	Dialister	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.2 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Schwartzia 0.0 ± 0.0 0.1 ± 0.0	Megasphaera	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0					
	Phascolarctobacterium	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Selenomonas 0.1 ± 0.0 0.2 ± 0.0 0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.3 ± 0.0 0.4 ± 0.2 0.2 ± 0.0	Schwartzia	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0
	Selenomonas	0.1 ± 0.0	0.2 ± 0.0	0.3 ± 0.1	0.2 ± 0.1	0.3 ± 0.1	0.3 ± 0.0	0.4 ± 0.2	0.2 ± 0.0

	buffalo	cattle	bison	sheep	goat	deer	giraffes	camelids
Sporomusa	0.0 ± 0.0	0.1 ± 0.1	0.0 ± 0.0	0.1 ± 0.0				
Succiniclasticum	0.4 ± 0.1	0.8 ± 0.0	1.6 ± 0.3	0.6 ± 0.1	0.6 ± 0.1	0.4 ± 0.0	1.0 ± 0.2	0.5 ± 0.1
Unclassified [Mogibacteriaceae]	0.6 ± 0.2	0.8 ± 0.0	0.7 ± 0.1	1.3 ± 0.1	0.4 ± 0.0	0.7 ± 0.1	0.6 ± 0.2	0.7 ± 0.1
Mogibacterium	0.6 ± 0.2	0.8 ± 0.0	0.9 ± 0.1	1.1 ± 0.1	0.5 ± 0.1	0.6 ± 0.1	0.2 ± 0.0	0.4 ± 0.1
Unclassified [Tissierellaceae]	0.0 ± 0.0							
Tissierella-Soehngenia	0.0 ± 0.0							
Unclassified Erysipelotrichaceae	0.0 ± 0.0							
Bulleidia	0.1 ± 0.0	0.3 ± 0.0	0.3 ± 0.1	0.4 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	0.1 ± 0.0	0.2 ± 0.1
Erysipelothrix	0.0 ± 0.0							
L7A_E11 (Erysipelotrichaceae)	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.1	0.1 ± 0.0
RFN20 (Erysipelotrichaceae)	0.8 ± 0.1	0.4 ± 0.0	0.1 ± 0.0	0.3 ± 0.0	0.3 ± 0.0	0.1 ± 0.0	0.4 ± 0.2	0.4 ± 0.1
Sharpea	0.0 ± 0.0	0.2 ± 0.0	0.0 ± 0.0	0.5 ± 0.2	0.0 ± 0.0	0.2 ± 0.2	0.0 ± 0.0	0.1 ± 0.1
[Eubacterium] (Erysipelotrichaceae)	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
p-75-a5 (<i>Erysipelotrichaceae</i>)	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0
Fusobacterium	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0					
Unclassified Leptotrichiaceae	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0					
Leptotrichia	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Unclassified Victivallaceae	0.6 ± 0.1	0.4 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.4 ± 0.1	0.2 ± 0.0	0.3 ± 0.1	0.2 ± 0.1
R4-45B [Lentisphaeria]	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.1	0.0 ± 0.0
Unclassified Pirellulaceae	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.3 ± 0.1	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Unclassified Alphaproteobacteria	1.8 ± 0.3	0.4 ± 0.0	0.2 ± 0.0	0.2 ± 0.0	0.3 ± 0.1	0.3 ± 0.1	0.2 ± 0.1	0.2 ± 0.1
RF32 (Alphaproteobacteria)	0.5 ± 0.1	0.2 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.3 ± 0.1	0.1 ± 0.0	0.3 ± 0.1	0.1 ± 0.0
Unclassified Rickettsiales	0.6 ± 0.2	0.1 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	1.0 ± 0.8	0.0 ± 0.0
Sutterella	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0					
Pelobacter	0.0 ± 0.0							
0319-6G20 (Myxococcales)	0.0 ± 0.0							

	buffalo	cattle	bison	sheep	goat	deer	giraffes	camelids
Arcobacter	0.0 ± 0.0							
Campylobacter	0.1 ± 0.0	0.0 ± 0.0						
Unclassified Succinivibrionaceae	1.7 ± 0.5	1.6 ± 0.2	2.4 ± 1.2	0.2 ± 0.1	2.3 ± 0.8	0.1 ± 0.0	0.1 ± 0.0	0.0 ± 0.0
Ruminobacter	1.3 ± 0.4	0.2 ± 0.0	0.4 ± 0.2	0.1 ± 0.1	1.1 ± 0.6	0.0 ± 0.0	1.8 ± 1.6	0.0 ± 0.0
Succinivibrio	0.2 ± 0.0	0.3 ± 0.1	0.1 ± 0.0	0.2 ± 0.1	0.3 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Unclassified Enterobacteriaceae	0.4 ± 0.2	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Klebsiella	0.4 ± 0.2	0.0 ± 0.0						
Serratia	0.0 ± 0.0							
Unclassified (SR1)	0.3 ± 0.0	0.3 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.4 ± 0.3	0.2 ± 0.1
PL-11B10 (Spirochaetes)	0.0 ± 0.0							
Sphaerochaeta	0.1 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.1	0.0 ± 0.0	0.2 ± 0.1	0.0 ± 0.0
Unclassified Spirochaetaceae	0.0 ± 0.0							
Treponema	0.3 ± 0.0	0.7 ± 0.0	0.7 ± 0.1	0.4 ± 0.1	0.6 ± 0.1	0.5 ± 0.1	1.0 ± 0.4	0.5 ± 0.1
Pyramidobacter	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0					
TG5 (Dethiosulfovibrionaceae)	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.3 ± 0.1	0.7 ± 0.2	0.9 ± 0.2	0.4 ± 0.2	1.6 ± 0.4
F16 (TM7)	1.1 ± 0.1	0.7 ± 0.0	0.3 ± 0.0	0.5 ± 0.1	0.3 ± 0.1	0.4 ± 0.0	0.5 ± 0.1	0.6 ± 0.1
Unclassified Mollicutes	0.0 ± 0.0							
Unclassified Anaeroplasmataceae	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0					
Anaeroplasma	0.8 ± 0.1	0.3 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.3 ± 0.1	0.1 ± 0.0	0.5 ± 0.3	0.4 ± 0.1
Unclassified Mycoplasmataceae	0.3 ± 0.1	0.0 ± 0.0						
RF39 (<i>Mollicutes</i>)	1.5 ± 0.2	1.1 ± 0.0	0.7 ± 0.1	0.7 ± 0.1	0.4 ± 0.1	0.8 ± 0.1	0.3 ± 0.1	1.0 ± 0.1
ML615J-28 (Tenericutes)	0.0 ± 0.0	0.1 ± 0.0						
Unclassified (Opitutae; HA64)	0.1 ± 0.0	0.0 ± 0.0	0.2 ± 0.1	0.0 ± 0.0				
LD1-PB3 (Verrucomicrobia)	0.0 ± 0.0							
WCHB1-41 (Verrucomicrobia)	0.2 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.3 ± 0.2	0.0 ± 0.0
Unclassified (WPS-2)	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0

Supplementary Table 3 The most abundant and prevalent rumen archaeal (Ar) species-level groups. The 5 most abundant groups are indicated in bold font.

Ar ^a	Group				bundance (%,			Maximum	Prevalence
ID				ples	Adjus			(%) ^e	(%) ^f
		$(n = 704)^{c}$ prevalence ^d							
1	No BLAST hit	0.0	±	0.0	0.1	±	0.0	0.8	4.4
2	Methanobacterium formicicum	0.0	±	0.0	0.2	±	0.1	1.1	0.9
3	Methanobacterium palustre	0.0	±	0.0	0.2	±	0.1	0.6	1.0
4	Methanobacterium sp.	0.6	±	0.1	1.3	±	0.1	13.2	44.7
5	Methanobrevibacter acididurans	0.0	±	0.0	0.6	±	0.1	2.9	8.2
6	Methanobrevibacter boviskoreani	0.9	±	0.2	15.9	±	2.5	86.6	5.7
7	Methanobrevibacter gottschalkii clade	46.9	±	0.8	46.9	±	1.8	99.5	100
8	Methanobrevibacter ruminantium clade	27.1	±	0.8	27.3	±	1.0	91.2	99.1
9	Methanobrevibacter smithii	0.5	±	0.0	0.6	±	0.0	20.4	77.0
10	Methanobrevibacter sp. RT	0.0	±	0.0	0.2	±	0.1	0.5	0.6
11	Methanobrevibacter wolinii	1.0	±	0.2	2.5	±	0.1	69.4	40.6
12	Methanosphaera cuniculi	0.2	±	0.0	0.7	±	0.1	7.3	27.4
13	Methanosphaera sp. Group 5	2.1	±	0.2	3.0	±	0.1	72.9	71.3
14	Methanosphaera sp. A4	0.1	±	0.0	1.4	±	0.2	7.2	5.1
15	Methanosphaera sp. ISO3-F5	5.7	±	0.3	5.8	±	0.2	73.7	97.4
16	Methanocorpusculum sinense	0.0	±	0.0	0.3	±	0.1	1.2	0.9
17	Methanoculleus sp.	0.0	±	0.0	0.3	±	0.2	0.6	0.4
18	Methanomicrobium mobile	0.7	±	0.2	3.4	±	0.3	75.9	21.6
19	Methanosaeta concilii	0.0	±	0.0	0.4	±	0.3	1.2	0.4
20	Methanimicrococcus blatticola	0.6	±	0.1	2.1	±	0.1	39.0	30.7
21	Methanosarcina horonobensis	0.0	±	0.0	0.2	±	0.1	0.7	0.7
22	Methanosarcina mazei	0.0	±	0.0	0.6	±	0.2	4.4	2.0
23	<i>Mmc.⁹;</i> Group 10 sp.	3.0	±	0.2	3.6	±	0.1	85.8	84.8
24	Mmc; Candidatus Methanomethylophilus alvus	0.8	±	0.2	6.3	±	0.7	84.6	13.2

Ar ^a	Group	Mean relative abunda	ance (%, ±SEM ^b)	Maximum	Prevalence
ID		All samples $(n = 704)^{c}$	Adjusted for prevalence ^d	(%) ^e	(%) ^f
25	Mmc; Group 11 sp. BRNA1	0.0 ± 0.0	0.2 ± 0.0	1.6	3.0
26	Mmc.; Group 11 sp. CRM1	0.2 ± 0.1	0.6 ± 0.0	32.6	26.4
27	Mmc.; Group 11 sp. ISO4-G11	0.2 ± 0.0	0.5 ± 0.0	12.3	43.5
28	Mmc.; Group 11 sp. from human dental plaque	0.0 ± 0.0	0.3 ± 0.1	1.8	1.7
29	Mmc.; Group 12 sp. ISO4-H5	6.5 ± 0.4	7.4 ± 0.3	67.9	87.1
30	<i>Mmc.</i> ; Group 3b sp.	0.1 ± 0.0	0.3 ± 0.0	1.9	26.0
31	Mmc.; Group 4 sp. MpT1	1.0 ± 0.1	1.4 ± 0.1	12.8	70.5
32	Mmc.; Group 8 sp.	0.4 ± 0.0	0.8 ± 0.0	14.0	51.8
33	Mmc.; Group 9 sp.	1.2 ± 0.1	1.7 ± 0.1	38.0	72.4
34	Other groups ^h	0.0 ± 0.0	0.1 ± 0.0	0.9	63.2

^aArchaea; ^bstandard error of the mean; ^call samples for which at least 100 archaea sequencing reads were available for analysis; ^dmean relative abundance in samples that contain that group; ^ethe highest relative abundance observed in any one sample; [†]the prevalence of a group in all samples (n = 704); ^gMmc., Methanomassiliicoccaceae; ^hrelative abundance <0.5% in any one sample.

Supplementary Table 4 Mean relative abundances (%, ± standard error of the mean) of archaeal groups summarised by animal species group. The five most archaeal abundant groups are indicated in bold font.

	buffalo	cattle	bison	sheep	goat	deer	giraffes	camelids
Number of samples	26	396	14	106	52	59	12	20
Methanobacterium formicicum	0.0 ± 0.0							
Methanobacterium palustre	0.0 ± 0.0							
Methanobacterium sp.	0.3 ± 0.1	0.7 ± 0.1	0.5 ± 0.2	0.4 ± 0.1	0.3 ± 0.1	0.1 ± 0.0	0.0 ± 0.0	1.3 ± 0.6
Methanobrevibacter acididurans	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.2	0.1 ± 0.1
Methanobrevibacter boviskoreani	0.0 ± 0.0	1.5 ± 0.4	0.0 ± 0.0	0.6 ± 0.4	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Methanobrevibacter gottschalkii clade	55.7 ± 3.2	42.6 ± 1.0	52.9 ± 5.9	54.5 ± 2.1	57.2 ± 3.6	52.7 ± 3.3	44.5 ± 7.7	24.9 ± 4.5
Methanobrevibacter ruminantium clade	14.4 ± 2.5	31.6 ± 0.9	30.4 ± 6.3	25.7 ± 2.0	18.3 ± 2.7	17.0 ± 2.7	21.8 ± 5.3	37.3 ± 5.0
Methanobrevibacter smithii	1.1 ± 0.2	0.3 ± 0.0	0.4 ± 0.1	0.4 ± 0.0	0.3 ± 0.1	0.3 ± 0.1	0.5 ± 0.2	3.5 ± 1.2
Methanobrevibacter sp. RT	0.0 ± 0.0							
Methanobrevibacter wolinii	2.4 ± 0.6	0.5 ± 0.2	0.6 ± 0.4	1.5 ± 0.7	3.6 ± 1.3	0.2 ± 0.1	1.7 ± 0.9	2.8 ± 1.8
Methanosphaera cuniculi	0.1 ± 0.1	0.1 ± 0.0	0.2 ± 0.1	0.3 ± 0.1	0.1 ± 0.1	0.3 ± 0.1	0.2 ± 0.2	0.1 ± 0.0
Methanosphaera sp. Group 5	0.4 ± 0.2	1.3 ± 0.3	1.6 ± 0.4	1.8 ± 0.2	1.5 ± 0.5	7.6 ± 1.3	3.2 ± 1.4	4.5 ± 1.7
<i>Methanosphaera</i> sp. A4	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Methanosphaera sp. ISO3-F5	2.2 ± 0.4	4.9 ± 0.3	6.2 ± 2.0	7.3 ± 0.9	3.2 ± 0.5	9.5 ± 2.1	6.9 ± 2.9	9.3 ± 1.9
Methanocorpusculum sinense	0.0 ± 0.0							
Methanoculleus sp.	0.0 ± 0.0							
Methanomicrobium mobile	0.3 ± 0.2	0.5 ± 0.1	0.0 ± 0.0	0.3 ± 0.1	5.0 ± 2.4	0.1 ± 0.0	0.1 ± 0.1	0.4 ± 0.2
Methanosaeta concilii	0.0 ± 0.0							
Methanimicrococcus blatticola	0.4 ± 0.3	0.3 ± 0.1	0.0 ± 0.0	0.2 ± 0.1	0.2 ± 0.1	2.7 ± 0.8	1.6 ± 1.2	0.4 ± 0.2
Methanosarcina horonobensis	0.0 ± 0.0							
Methanosarcina mazei	0.0 ± 0.0							
<i>Mmc.</i> ^a ; Group 10 sp.	3.4 ± 0.5	3.3 ± 0.2	4.3 ± 1.2	1.6 ± 0.2	0.9 ± 0.2	3.1 ± 0.6	3.5 ± 2.0	5.1 ± 1.1

	buffalo	cattle	bison	sheep	goat	deer	giraffes	camelids
Mmc; Candidatus Methanomethylophilus alvus	0.0 ± 0.0	1.5 ± 0.4	0.0 ± 0.0					
<i>Mmc</i> ; Group 11 sp. BRNA1	0.0 ± 0.0							
Mmc.; Group 11 sp. CRM1	0.1 ± 0.1	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.1	0.2 ± 0.2	0.5 ± 0.2	0.0 ± 0.0
Mmc.; Group 11 sp. ISO4-G11	0.1 ± 0.0	0.2 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.1	0.1 ± 0.0	0.4 ± 0.3	0.2 ± 0.1
Mmc.; Group 11 sp. from human dental plaque	0.0 ± 0.0							
Итс.; Group 12 sp. ISO4-H5	16.2 ± 2.6	7.8 ± 0.5	1.7 ± 0.7	3.0 ± 0.5	5.8 ± 1.5	3.3 ± 0.9	7.2 ± 2.3	4.5 ± 2.0
Mmc.; Group 3b sp.	0.2 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.4 ± 0.2	0.1 ± 0.0
Mmc.; Group 4 sp. MpT1	1.3 ± 0.2	1.2 ± 0.1	0.2 ± 0.1	0.7 ± 0.1	0.5 ± 0.2	0.7 ± 0.3	0.5 ± 0.3	0.6 ± 0.2
Mmc.; Group 8 sp.	0.1 ± 0.0	0.6 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.3 ± 0.1	0.3 ± 0.1	0.1 ± 0.0	0.0 ± 0.0
<i>Mmc.</i> ; Group 9 sp.	1.2 ± 0.3	0.7 ± 0.1	0.4 ± 0.1	1.2 ± 0.2	2.2 ± 0.7	1.5 ± 0.5	6.5 ± 2.1	4.8 ± 2.2

Metabolic classification of rumen meth	anogens.
Metabolism	Groups
Hydrogenotrophs ^a	Methanobacterium spp.,
	Methanobrevibacter spp.,
	Methanocorpusculum spp.,
	Methanoculleus spp.,
	Methanomicrobium spp.
Hydrogen dependent methylotrophs ^b	Methanosphaera spp.,
	Methanimicrococcus spp., members
	of Methanomassiliicoccaceae
Aceticlastic methanogens ^c	<i>Methanosaeta</i> spp.
Generalists	Methanosarcina spp.
Unclassified metabolism	Other groups, No BLAST hits
^a Form methane from hydrogen plus ca	arbon dioxide, and some can use
formate.	
^b Form methane from hydrogen plus m	ethyl groups.

Supplementary Table 5

[°]Form methane from nydrogen plus methyl groups

Supplementary Table 6

The most abundant and prevalent rumen protozoal (Pr) genus-level groups.

Pr ^a	Group	Mean rela	tive	abundar	ice (%, ±SEN			Maximum	Prevalence
ID		All sample	es (n) = 592) ^c	Adjusted for	or pre	evalence ^d	(%) ^e	(%) ^f
1	Anoplodinium-Diplodinium	5.2	±	0.4	6.6	±	0.3	70.8	78.7
2	Enoploplastron	1.1	±	0.3	6.1	±	0.6	66.8	17.7
3	Entodinium	38.2	±	1.2	38.3	±	1.6	99.9	99.8
4	Epidinium	16.5	±	1.0	18.0	±	0.8	99.7	91.6
5	Eremoplastron-Diploplastron	4.4	±	0.3	5.8	±	0.3	74.5	75.5
6	Eudiplodinium	6.9	±	0.5	8.0	±	0.4	97.7	85.8
7	Metadinium	3.9	±	0.4	6.4	±	0.3	87.9	60.5
8	Ophryoscolex	2.0	±	0.3	5.4	±	0.4	59.6	37.5
9	Ostracodinium	6.8	±	0.5	9.0	±	0.4	73.4	75.3
10	Polyplastron	5.7	±	0.4	6.9	±	0.3	99.1	82.8
11	Dasytricha	3.4	±	0.2	4.2	±	0.2	45.9	79.4
12	Isotricha	6.0	±	0.5	6.9	±	0.3	99.4	86.7
13	No BLAST hit	0.0	±	0.0	0.1	±	0.1	0.3	0.5
14	Other groups ^g	0.0	±	0.0	0.0	±	0.0	0.0	45.4

^aProtozoa, ^bstandard error of the mean; ^call samples for which at least 100 protozoal sequencing reads were available for analysis; ^dmean relative abundance in samples that contain that group; ^ethe highest relative abundance observed in any one sample; ^fthe prevalence of a group in all samples (n = 592); ^grelative abundance <0.5% in any one sample.

Supplementary Table 7

Diet classifications.		
Criterion	Categories ^a	Examples
Forage to	F	Forage- or browse-
concentrate ratio		dominated (>70% forage or
		browse)
	FC	Mixed forage-concentrate
		(50-70% forage or browse)
	CF	Mixed concentrate-forage
		(50-70% concentrate)
	С	Concentrate-dominated
		(>70% concentrate)
Forage type (for diets	Preserved whole crops	Chaff, hay, haylage, silage
with >30% forage)	(PWC)	
	Preserved non-seed	Straw, stover
	residues of crops	
	(PPC)	
	Fresh	Pasture (grass, clover,
		forage plantain, etc.) and
		browse
Forage plant (for	Legume	Acacia, alfalfa, clover,
diets with >30%		leadtree
forage)		
	Cereal	Maize, barley, rice, sorghum,
		wheat
	Tuber	Cassava
	Browse	Leaves, twigs, or other high-
		growing vegetation such as
		acacia (camelthorn), berry
		leaf, leadtree, matagouri,
		willow
	Grass	Ryegrass, sugarcane, and
		other tropical grasses
^a Some diets contain co	proponents that fall into m	ultiple categories For

^aSome diets contain components that fall into multiple categories. For example, acacia and leadtrees are both legumes and shrubs. Also, animals may be fed a mixture of forage plants and types.

Supplementary Table 8 Identities of the 50 most abundant and prevalent bacterial operational taxonomic units (OTUs^a).

DTU	Abundance	Prevalence	Taxonomic assignment	Best BLAS	Γ match [⊳]			
	(%)	(%)		Material	Name	Strain	Accession	Similarit (%)
703605	0.12	63.01	Unclassified Bacteroidales	Cultured:	Bacteroidetes bacterium	G4	AB730781	100.0
				Type:	Odoribacter splanchnicus	1651/6	CP002544	81.9
454127	0.25	68.13	Prevotella	Cultured:	Prevotella ruminicola	Bryant 23	CP002006	100.0
				Type:	Prevotella ruminicola	Bryant 23	CP002006	100.0
64059	0.24	14.62	Prevotella	Cultured:	Prevotella ruminicola	Tc2-3	AF218617	99.4
				Type:	Prevotella histicola	T05-04	AB547685	90.7
762328	0.16	65.64	Prevotella	Cultured:	Prevotella ruminicola	BPI-34	AB501152	99.4
				Type:	Prevotella ruminicola	Bryant 23	CP002006	98.6
177612	0.13	56.29	Prevotella	Cultured:	Prevotella sp.	RM13	AB730677	99.2
				Type:	Prevotella ruminicola	Bryant 23	CP002006	93.2
142948	0.56	51.46	Prevotella	Cultured:	Prevotella aff. ruminicola	Tc2-24	AJ009933	95.3
				Type:	Prevotella ruminicola	Bryant 23	CP002006	91.5
1644	0.20	58.63	Prevotella	Cultured:	Prevotella sp.	BP1-145	AB501165	94.9
				Type:	Prevotella ruminicola	Bryant 23	CP002006	91.8
16566	0.14	55.41	Prevotella	Cultured:	Rumen bacterium	YŚ1	AF544206	94.5
				Type:	Prevotella ruminicola	Bryant 23	CP002006	89.4
576819	0.13	38.74	Prevotella	Cultured:	Prevotella aff. ruminicola	Tc2-24	AJ009933	94.1
				Type:	Prevotella ruminicola	Bryant 23	CP002006	93.0
369625	0.19	11.26	Prevotella	Cultured:	Prevotella ruminicola	Tf2-5	AF218620	93.3
				Type:	Prevotella bryantii	B14	AJ006457	89.6
58624	0.20	56.14	Prevotella	Cultured:	Prevotella ruminicola	CA61	AB849449	92.7
				Type:	Prevotella ruminicola	Bryant 23	CP002006	91.6
272296	0.16	18.27	Prevotella	Cultured:	Prevotella aff. ruminicola	Tc2-24	AJ009933	92.2
		-		Type:	Prevotella brevis	GA33	AJ011682	90.8
344518	0.13	37.13	Prevotella	Cultured:	Prevotella ruminicola	Tc2-28	AF218619	92.2
				Type:	Prevotella ruminicola	Bryant 23	CP002006	89.8
359129	0.12	34.94	Prevotella	Cultured:	Rumen bacterium	R-9	AB239482	91.6
	0=	0.110.1		Type:	Prevotella amnii	JCM 14753	AB547670	89.2
362266	0.16	68.27	Prevotella	Cultured:	Prevotella sp.	R79	AB730668	91.3
				Type:	Prevotella maculosa	W1609	EF534315	88.2
758091	0.13	27.05	Prevotella	Cultured:	Prevotella ruminicola	Tc2-28	AF218619	89.5
				Type:	Prevotella oulorum	WPH 179	NR 029147	88.4
282075	0.22	42.25	Prevotella	Cultured:	Prevotella sp.	G57	AB730821	88.8
	·			Type:	Prevotella shahii	EHS11	AB108825	88.6
192371	0.10	61.70	Prevotella	Cultured:	Prevotella ruminicola	Tc2-28	AF218619	88.1
	0.1.0	5		Type:	Prevotella loescheii	Loesche 8B	AY836508	87.3
658563	0.13	59.06	RF16 (Bacteroidales)	Cultured:	Rumen bacterium	YS3	AF544208	93.8
	0.10	55.00		Type:	Bacteroides coprophilus	CB42	AB260026	82.4

OTU	Abundance	Prevalence	Taxonomic assignment	Best BLAST				
	(%)	(%)		Material	Name	Strain	Accession	Similarity (%)
480108	0.48	72.95	Fibrobacter	Cultured:	Fibrobacter succinogenes	R	AJ505938	100.0
				Type:	Fibrobacter succinogenes	S85	AJ496032	99.6
301049	0.15	64.04	Fibrobacter	Cultured:	Fibrobacter succinogenes	FGL 25	GU999989	99.4
				Type:	Fibrobacter succinogenes	S85	AJ496032	91.2
245302	0.23	70.03	Fibrobacter	Cultured:	Fibrobacter succinogenes	MC1	M62693	97.4
				Type:	Fibrobacter succinogenes	S85	AJ496032	90.4
97093	0.13	36.11	Fibrobacter	Cultured:	Fibrobacter succinogenes	AL225	AB275484	96.9
				Type:	Fibrobacter succinogenes subsp. elongatus	HM2	GU269553	93.1
25104	0.17	43.86	Fibrobacter	Cultured:	Fibrobacter succinogenes	FGL 25	GU999989	95.9
				Type:	Fibrobacter succinogenes subsp. elongatus	HM2	GU269553	93.3
439520	0.18	3.65	Carnobacterium	Cultured:	Carnobacterium sp.	LV62:W1	AF076637	100.0
				Type:	Carnobacterium inhibens	K1	Z73313	98.6
60575	0.14	6.43	Lactobacillus	Cultured:	Swine fecal bacterium	RF1A-Xy14	FJ753771	99.8
				Type:	Lactobacillus mucosae	S32	AB289204	99.8
451201	0.19	4.68	Unclassified Leuconostocaceae	Cultured:	<i>Wei</i> ssella sp.	H17	AB671284	99.8
				Туре:	Weissella hellenica	LV346	X95981	99.8
178763	0.22	43.57	Streptococcus	Cultured:	Streptococcus equinus	C3	JQ837459	100.0
				Type:	Streptococcus lutetiensis	S182	DQ232532	99.8
248019	0.43	75.44	Unclassified Clostridiales	Cultured:	Clostridiales bacterium	R2	AB730625	99.8
				Type:	Clostridium straminisolvens	CSK1	AB125279	87.5
205298	0.08	65.35	Unclassified Clostridiales	Cultured:	Lachnospiraceae bacterium	RM29	AB730686	99.6
				Туре:	Eubacterium oxidoreducens	G41	FR733672	91.6
662614	0.08	66.37	Unclassified Clostridiales	Cultured:	Lachnospiraceae bacterium	CA43	AB849443	98.9
				Type:	Roseburia hominis	A2-183	CP003040	90.6
206943	0.14	72.95	Unclassified Clostridiales	Cultured:	Rumen bacterium	R-7	AB239481	97.8
				Type:	Clostridium clariflavum	EBR45	AB186359	85.9
327162	0.27	78.22	Unclassified Clostridiales	Cultured:	Clostridiales bacterium	R47	AB730648	97.0
				Type:	Clostridium clariflavum	EBR45	AB186359	85.2
113096	0.06	58.63	Unclassified Clostridiales	Cultured:	Clostridiales bacterium	P37	AB730749	96.5
				Type:	Clostridium clariflavum	EBR45	AB186359	85.5
90393	0.50	82.89	Unclassified Clostridiales	Cultured:	Clostridiales bacterium	P37	AB730749	96.3
				Type:	Clostridium clariflavum	EBR45	AB186359	85.9
250686	0.07	61.26	Unclassified Clostridiales	Cultured:	Clostridiales bacterium	R47	AB730648	95.9
				Type:	Clostrididum cellulolyuticum	H10	CP001348	85.8
4854	0.05	63.01	Unclassified Clostridiales	Cultured:	Clostridiales bacterium	R47	AB730648	95.7
				Type:	Clostridium cellobioparum	Cc	NR_026104	88.5
330704	0.17	67.98	Unclassified Clostridiales	Cultured:	Clostridiales bacterium	R47	AB730648	95.1
	-			Type:	Clostridium clariflavum	EBR45	NR_102987	85.3
232168	0.05	61.55	Unclassified Clostridiales	Cultured:	Clostridiales bacterium	R47	AB730648	94.7
				Type:	Clostridium cellobioparum	Cc	NR 026104	88.5
137925	0.05	57.60	Unclassified Clostridiales	Cultured:	Clostridiales bacterium	P37	AB730749	93.7

OTU	Abundance	Prevalence	Taxonomic assignment	Best BLAS	T match [⊳]			
	(%)	(%)	-	Material	Name	Strain	Accession	Similarity (%)
				Type:	Clostridium clariflavum	EBR45	AB186359	85.7
311462	0.06	60.09	Unclassified Clostridiales	Cultured:	Clostridium sp.	DR6A	Y10028	92.5
				Type:	Clostridium amygdalinum	BR-10	AY353957	91.9
426876	0.12	61.55	Unclassified Clostridiales	Cultured:	Clostridium straminisolvens	CSK1	AB125279	85.4
				Type:	Clostridium straminisolvens	CSK1	AB125279	85.4
60316	0.07	62.72	Mogibacterium	Cultured:	Swine manure bacterium	37-2	AY167964	89.6
			C C	Туре:	Mogibacterium neglectum	P9a-h	AB037875	89.0
404437	0.04	57.89	Mogibacterium	Cultured:	Swine manure bacterium	37-2	AY167964	88.9
			C C	Type:	Mogibacterium vescum	D5-2	AB021702	88.6
10546	0.11	65.06	Unclassified Christensenellaceae	Cultured:	Christensenella minuta	YIT 12065	AB490809	87.4
				Type:	Christensenella minuta	YIT 12065	AB490809	87.4
98494	0.15	59.80	Unclassified Christensenellaceae	Cultured:	Clostridiales bacterium	P37	AB730749	87.3
				Type:	Christensenella minuta	YIT 12065	AB490809	86.8
34178	0.06	58.04	Clostridium	Cultured:	Rumen bacterium	NK4A65	GU324373	96.2
				Type:	Saccharofermentans acetigenes	P6	AB910750	91.6
698124	0.26	64.04	Unclassified Lachnospiraceae	Cultured:	Lachnospiraceae bacterium	R62	AB730658	99.8
			•	Type:	Clostridium hylemonae	TN-271	AB910737	85.7
605934	0.07	58.48	Unclassified Lachnospiraceae	Cultured:	Lachnospiraceae bacterium	CG2	AB849413	93.8
			•	Type:	Clostridium jejuense	HY-35-12	AY494606	92.3
301314	0.05	58.92	Butyrivibrio	Cultured:	Butyrivibrio hungatei	AR10	FJ794074	100.0
			2	Type:	Butyrivibrio hungatei	JK615	AJ428553	99.4
164551	0.04	57.60	Butyrivibrio	Cultured:	Butyrivibrio sp.	G18	AB730792	98.0
				Type:	Butyrivibrio proteoclasticus	B316	CP001810	95.1
287012	0.25	54.53	Butyrivibrio	Cultured:	Butyrivibrio sp.	P79	AB730778	92.0
			,	Type:	Butyrivibrio fibrisolvens	D1	U41172	89.3
550791	0.16	57.89	Butyrivibrio	Cultured:	Butyrivibrio sp.	P79	AB730778	90.8
				Type:	Clostridium clostridioforme	Bryant T90	M59089	89.0
493059	0.35	80.85	Butyrivibrio	Cultured:	Butyrivibrio sp.	P79	AB730778	90.4
				Type:	Clostrididum xylanivorans	HESP1	AF116920	89.7
495334	0.13	63.01	Butyrivibrio	Cultured:	Butyrivibrio sp.	P79	AB730778	90.0
				Type:	Clostrididum xylanivorans	HESP1	AF116920	89.8
234051	0.07	64.33	Coprococcus	Cultured:	Lachnospiraceae bacterium	RM2	AB730670	99.8
			•	Type:	Eubacterium ruminantium	GA 195	AB008552	97.1
109054	0.05	59.65	Moryella	Cultured:	Desulfotomaculum sp.	CYP1	DQ479411	93.9
			-	Type:	Desulfotomaculum guttoideum	50	Y11568	93.5
237285	0.41	86.99	Pseudobutyrivibrio	Cultured:	Butyrivibrio sp.	3	EU714406	100.0
'	-		,	Type:	Pseudobutyrivibrio ruminis	A12-1	X95893	98.5
139212	0.18	80.56	Unclassified Ruminococcaceae	Cultured:	Rumen bacterium	NK4A237	GU324386	100.0
				Type:	Saccharofermentans acetigenes	P6	AB910750	87.8
237588	0.07	57.89	Unclassified Ruminococcaceae	Cultured:	Rumen bacterium	NK3A39	GU324361	99.6
				Type:	Ruminococcus bicirculans	80/3	HF545616	90.4

OTU	Abundance	Prevalence	Taxonomic assignment	Best BLAS	T match [⊳]			
	(%)	(%)		Material	Name	Strain	Accession	Similarity (%)
494938	0.08	68.57	Unclassified Ruminococcaceae	Cultured:	Rumen bacterium	NK4A76	GU324387	99.4
				Type:	Saccharofermentans acetigenes	P6	AB910750	87.4
751129	0.08	67.40	Unclassified Ruminococcaceae	Cultured:	Rumen bacterium	NK4A214	GU324404	95.2
				Type:	Oscillibacter ruminantium	GH1	JF750939	88.8
577394	0.05	58.19	Unclassified Ruminococcaceae	Cultured:	Rumen bacterium	NK4A214	GU324404	94.8
				Type:	Oscillibacter ruminantium	GH1	JF750939	88.8
401207	0.12	77.05	Unclassified Ruminococcaceae	Cultured:	Rumen bacterium	NK4A214	GU324404	94.4
				Type:	Oscillibacter ruminantium	GH1	JF750939	88.0
732718	0.14	15.79	Unclassified Ruminococcaceae	Cultured:	Blautia wexlerae	WAL 14507	EF036467	93.9
				Type:	Blautia wexlerae	WAL 14507	EF036467	93.9
295461	0.15	50.15	Unclassified Ruminococcaceae	Cultured:	Anaerotruncus colihominis	WAL 14565	NR_027558	87.6
				Туре:	Anaerotruncus colihominis	WAL 14565	NR_027558	87.6
580981	0.14	37.57	Ruminococcus	Cultured:	Ruminococcaceae bacterium	P7	AB730726	94.6
				Type:	Ruminococcus bromii	ATCC 27255	L76600	93.4
268113	0.11	64.77	Succiniclasticum	Cultured:	Succiniclasticum ruminis	SE10	X81137	99.8
				Type:	Succiniclasticum ruminis	SE10	X81137	99.8
284365	0.27	75.58	Succiniclasticum	Cultured:	Succiniclasticum ruminis	SE10	X81137	93.8
				Type:	Succiniclasticum ruminis	SE10	X81137	93.8
694360	0.06	64.91	RFN20 (Erysipelotrichaceae)	Cultured:	Acholeplasma axanthum	118	AJ311394	84.7
				Туре:	Acholeplasma parvum	H23M	AY538170	84.6
410550	0.13	65.35	Unclassified Victivallaceae	Cultured:	Cytophaga sp.	PRPR22	DQ903989	88.3
				Type:	Hydrogenispora ethanolica	LX-B	AB669474	87.9
365725	0.24	17.54	Unclassified Succinivibrionaceae	Cultured:	Succinivibrio dextrinosolvens	0554	Y17600	96.7
				Type:	Succinivibrio dextrinosolvens	0554	Y17600	96.7
15480	0.26	34.06	Unclassified Succinivibrionaceae	Cultured:	Succinivibrio dextrinosolvens	CA76	AB849336	86.4
				Type:	Succinivibrio dextrinosolvens	0554	Y17600	86.2
722152	0.56	17.98	Unclassified Succinivibrionaceae	Cultured:	Haemophilus sputorum	HK 2154	JF506645	86.0
				Type:	Haemophilus sputorum	CCUG 13788	JF506642	86.0
9138	0.23	22.37	Ruminobacter	Cultured:	Ruminobacter sp.	RM87	AB730720	97.1
				Туре:	Ruminobacter amylophilus	H-18	Y15992	96.9
571472	0.19	6.87	Succinivibrio	Cultured:	Succinivibrio dextrinosolvens	0554	Y17600	96.5
				Туре:	Succinivibrio dextrinosolvens	0554	Y17600	96.5
60839	0.08	64.91	Unclassified (SR1)	Cultured:	Sulfurospirillum alkalitolerans	HTRB-L1	GQ863490	84.1
			· ·	Type:	Sulfurospirillum alkalitolerans	HTRB-L1	GQ863490	84.1

^aThe 77 most abundant and prevalent OTUs represented 12.9% of all sequence data (588,053 of 4,557,252 sequencing reads for 684 samples). These were the unique OTUs from the 50 most abundant (i. e., mean number of reads per samples) and 50 most prevalent (i. e., the number of samples in which the OTU was detected). ^bMatches and similarities were calculated using megablast against the nt database on 4 November 2014, minimum sequence alignment was 250 bp.

Supplementary Table 9 Identities of the 50 most abundant and prevalent archaeal operational taxonomic units (OTUs^a).

OTU	Abundance	Prevalence	Taxonomic assignment	Best BLAS	T match ^b			
	(%)	(%)	,	Material	Name	Strain	Accession	Similarity (%)
3313	0.24	35.94	Methanobacterium sp.	Cultured:	Methanobacterium flexile	GH	NR_116276	98.45
				Type:	Methanobacterium flexile	GH	NR_116276	98.45
7020	0.97	4.69	Methanobrevibacter boviskoreani	Cultured:	Methanobrevibacter sp.	AbM4	AJ550156	100
				Type:	Methanobrevibacter boviskoreani	JH1	NR_118565	100
042	0.22	69.60	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	110	EF112194	100
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	98.68
5935	23.83	100.00	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	99.78
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	98.9
'973	1.91	87.07	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	SM9	AJ009958	99.56
			-	Type:	Methanobrevibacter millerae	ZA-10	NR_042785	98.68
30520	2.30	77.56	Methanobrevibacter gottschalkii clade	Cultured:	Methanogenic archaeon	LGM-ZA4	KF649310	99.53
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	98.25
12472	3.14	84.23	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	SM9	AJ009958	99.34
			-	Type:	Methanobrevibacter millerae	ZA-10	NR_042785	98.02
23113	0.59	85.94	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	99.34
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	98.47
3186	0.22	54.97	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	99.34
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	98.47
383	0.11	52.98	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	110	EF112194	99.33
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	97.46
31163	0.14	45.74	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	110	EF112194	99.33
			ũ	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	98.03
8158	0.47	58.81	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	99.13
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	98.27
80	0.39	69.18	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	99.12
			-	Туре:	Methanobrevibacter gottschalkii	HO	NR_044789	98.25
3622	0.15	55.97	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	99.12
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	98.25
24768	0.69	65.34	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	99.12
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	98.25
6049	0.21	60.94	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	110	EF112194	99.1
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	97.81
866	0.10	48.15	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	98.9
			•	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	98.03
14179	0.25	32.67	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	SM9	AJ009958	98.9
			5	Type:	Methanobrevibacter millerae	ZA-10	NR_042785	98.02
29352	0.14	41.90	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	98.9
				Type:	Methanobrevibacter gottschalkii	HO	NR 044789	98.03

ΟΤυ	Abundance	Prevalence	Taxonomic assignment	Best BLAST match ^b						
	(%)	(%)	-	Material	Name	Strain	Accession	Similarity (%)		
2221	0.17	66.34	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	98.68		
			-	Type:	Methanobrevibacter smithii	PS	CP000678	98.02		
14816	0.32	70.74	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	98.46		
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	97.59		
24688	0.91	89.06	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	98.24		
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	97.37		
3477	0.12	42.61	Methanobrevibacter gottschalkii clade	Cultured:	Methanogenic archaeon	LGM-ZA4	KF649310	97.87		
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	96.71		
28940	0.13	53.98	Methanobrevibacter gottschalkii clade	Cultured:	Methanobrevibacter sp.	1Y	DQ135988	96.48		
			-	Type:	Methanobrevibacter gottschalkii	HO	NR_044789	95.61		
4830	10.98	94.60	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	AK-87	AY615202	100		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	99.12		
30008	0.21	51.56	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	M1	CP001719	100		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	100		
23690	0.41	62.22	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	NT7	AJ009959	99.78		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	98.89		
4213	0.17	56.53	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	AK-87	AY615202	99.56		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	98.68		
24771	0.35	34.80	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	Z4	AY196670	99.56		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	98.69		
5808	0.18	57.81	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	Z4	AY196670	99.34		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	98.45		
18930	2.32	70.45	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	Z4	AY196670	99.12		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	98.89		
19640	0.12	46.88	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	Z4	AY196670	99.12		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	98.01		
2022	0.08	42.47	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	Z4	AY196670	98.89		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	97.79		
30272	0.11	50.57	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	NT7	AJ009959	98.89		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	98.89		
10213	3.62	56.25	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	Z4	AY196670	98.45		
				Type:	Methanobrevibacter olleyae	KM1H5-1P	NR_043024	98.01		
24733	0.73	76.14	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	Z4	AY196670	98.45		
		-		Type:	Methanobrevibacter ruminantium	M1	CP001719	97.35		
12140	0.12	50.28	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	AK-87	AY615202	98.01		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	97.12		
15117	0.26	55.97	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	NT7	AJ009959	97.57		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	97.57		
21114	0.10	42.19	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	SM9	AJ009958	97.12		
	00			Type:	Methanobrevibacter millerae	ZA-10	NR 042785	96.26		
11748	0.19	46.59	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	NT7	AJ009959	96.9		

JTU	Abundance	Prevalence	lence Taxonomic assignment	Best BLAST match ^b						
	(%)	(%)	, i i i i i i i i i i i i i i i i i i i	Material	Name	Strain	Accession	Similarity (%)		
				Type:	Methanobrevibacter ruminantium	M1	CP001719	96.46		
6071	0.59	77.27	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	NT7	AJ009959	96.68		
				Type:	Methanobrevibacter olleyae	KM1H5-1P	NR 043024	96.46		
23917	0.28	69.18	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter smithii	ALI-A	AY196667	96.48		
				Type:	Methanobrevibacter smithii	PS	CP000678	96.48		
3174	0.10	42.90	Methanobrevibacter ruminantium clade	Cultured:	Methanobrevibacter sp.	AK-87	AY615202	96.02		
				Type:	Methanosphaera stadtmanae	MCB-3	CP000102	95.35		
1149	0.62	28.84	Methanobrevibacter wolinii	Cultured:	Methanobrevibacter sp	AbM4	AJ550156	94.74		
				Type:	Methanobrevibacter boviskoreani	JH1	NR_118565	94.74		
17220	3.24	94.03	Methanosphaera sp. ISO3-F5	Cultured:	Methanosphaera stadtmanae	MCB-3	CP000102	95.81		
				Type:	Methanosphaera stadtmanae	MCB-3	CP000102	95.81		
13735	0.27	65.06	Methanosphaera sp. ISO3-F5	Cultured:	Methanosphaera stadtmanae	MCB-3	CP000102	94.26		
			· ·	Type:	Methanosphaera stadtmanae	MCB-3	CP000102	94.26		
3203	1.37	55.54	Methanosphaera sp. Group 5	Cultured:	Methanosphaera cuniculi	1R7	NR_104874	96.47		
				Type:	Methanosphaera cuniculi	1R7	NR_104874	96.47		
18417	0.68	17.90	Methanomicrobium mobile	Cultured:	Methanomicrobium mobile	BP	NR_044726	100		
				Type:	Methanomicrobium mobile	BP	NR 044726	100		
1562	0.17	15.48	Methanimicrococcus blatticola	Cultured:	Methanimicrococcus blatticola	PA	NR_115170	94.24		
				Type:	Methanimicrococcus blatticola	PA	NR_115170	94.24		
21128	0.22	6.11	Methanimicrococcus blatticola	Cultured:	Methanimicrococcus blatticola	PY-22	JQ268014	94.91		
				Type:	Methanimicrococcus blatticola	PA	NR 115170	93.14		
10999	0.46	54.40	<i>Mmc.^c;</i> Group 10 sp.	Cultured:	Archaeon	PY-11	JQ268005	96.01		
				Type:	Methanomassiliicoccus luminyensis	B10	NR 118098	88.74		
19443	0.46	42.61	<i>Mmc;</i> Group 10 sp.	Cultured:	Methanogenic archaeon	CH1270	DQ445723	95.49		
				Type:	Methanomassiliicoccus luminyensis	B10	NR 118098	88.52		
21341	0.90	60.23	Mmc; Group 10 sp.	Cultured:	Methanogenic archaeon	WGK1	GQ339877	95.11		
				Туре:	Methanomassiliicoccus luminyensis	B10	NR 118098	88.94		
22286	1.08	9.09	Mmc; Candidatus Methanomethylophilus alvus	Cultured:	Candidatus Methanomethylophilus alvus	Mx1201	CP004049	98.89		
				Type:	Methanomassiliicoccus luminyensis	B10	NR_118098	84.55		
15334	0.27	0.43	Mmc; Candidatus Methanomethylophilus alvus	Cultured:	Candidatus Methanomethylophilus alvus	Mx1201	CP004049	97.81		
				Type:	Methanomassiliicoccus luminyensis	B10	NR_118098	84.35		
9844	0.18	8.95	Mmc; Group 11 sp. CRM1	Cultured:	Thermoplasmatales archaeon	BRNA1	CP002916	96.89		
				Type:	Thermoplasma acidophilum	122-1B2	AL445067	80.57		
16960	0.22	40.77	Mmc; Group 11 sp. ISO4-G11	Cultured:	Thermoplas matales archaeon	BRNA1	CP002916	97.11		
				Type:	Thermoplasma acidophilum	122-1B2	AL445067	81.06		
25835	1.76	56.39	Mmc; Group 12 sp. ISO4-H5	Cultured:	Candidatus Methanomethylophilus alvus	Mx1201	CP004049	97.12		
	-			Type:	Methanomassiliicoccus luminyensis	B10	NR 118098	84.99		
28326	3.21	63.35	Mmc; Group 12 sp. ISO4-H5	Cultured:	Candidatus Methanomethylophilus alvus	Mx1201	CP004049	96.02		
				Type:	Methanomassiliicoccus luminyensis	B10	NR_118098	85.21		
30594	0.90	63.21	Mmc; Group 12 sp. ISO4-H5	Cultured:	Archaeon	PY-11	JQ268005	95.14		
			,	Type:	Methanomassiliicoccus luminyensis	B10	NR_118098	87.61		

OTU	Abundance (%)	Prevalence	Taxonomic assignment	Best BLAST match ^b						
		(%)		Material	Name	Strain	Accession	Similarity (%)		
25646	0.23	41.19	Mmc; Group 4 sp. MpT1	Cultured:	Archaeon	PY-11	JQ268005	96.67		
				Туре:	Methanomassiliicoccus luminyensis	B10	NR_118098	89.18		
25606	0.61	58.81	<i>Mmc;</i> Group 4 sp. MpT1	Cultured:	Archaeon	PY-11	JQ268005	96.24		
				Туре:	Methanomassiliicoccus luminyensis	B10	NR_118098	89.16		
7359	0.23	34.38	<i>Mmc;</i> Group 8 sp.	Cultured:	Methanogenic archaeon	WGK1	GQ339877	97.11		
				Туре:	Methanomassiliicoccus luminyensis	B10	NR_118098	88.27		
10221	0.48	51.42	<i>Mmc;</i> Group 9 sp.	Cultured:	Methanogenic archaeon	DCM1	GQ339876	96.01		
				Type:	Methanomassiliicoccus luminyensis	B10	NR_118098	85.68		

^aThe 64 most abundant and prevalent OTUs represented 76.2% of all sequence data (696,612 of 914,807 sequencing reads for 704 samples). These were the unique OTUs from the 50 most abundant (i. e., mean number of reads per samples) and 50 most prevalent (i. e., the number of samples in which the OTU was detected).^bMatches and similarities were calculated using megablast against the nt database on 19 November 2014, minimum sequence alignment was 420 bp. ^c*Mmc*, *Methanomassiliicoccaceae*.

Supplementary Table 10 Bacterial groups considered to be exogenous to the rumen.

Group			ative nce	Maximum	Prevalence	
Cloup	(%, ±SEM ^a)			(%) ^c	(%) ^d	
			ples		(79)	
		= 68				
Unclassified Actinomycetaceae	0.0	±	0.0	0.7	11.5	
Brevibacterium	0.1	±	0.1	40.3	7.2	
Dietzia	0.0	±	0.0	0.9	10.0	
Leucobacter	0.0	±	0.0	0.9	5.0	
Arthrobacter	0.1	±	0.1	30.7	11.7	
Nesterenkonia	0.0	±	0.0	0.6	3.1	
Rhodococcus	0.0	±	0.0	2.9	18.2	
Unclassified Nocardiopsaceae	0.0	±	0.0	11.7	12.1	
Nocardiopsis	0.0	±	0.0	0.5	1.1	
Sanguibacter	0.0	±	0.0	1.7	3.3	
Streptomyces	0.0	±	0.0	0.5	5.8	
Wautersiella	0.0	±	0.0	0.6	2.6	
Unclassified <i>Flavobacteriaceae</i>	0.0	±	0.0	10.5	2.6	
Sphingobacterium	0.0	±	0.0	0.7	4.3	
Unclassified Streptophyta	0.2	±	0.0	15.2	44.6	
Unclassified Bacillales	0.1	±	0.0	24.0	5.7	
Exiguobacterium	0.0	±	0.0	10.6	5.7	
Unclassified Bacillaceae	0.0	±	0.0	7.6	13.3	
Bacillus	0.1	±	0.0	9.8	34.6	
Unclassified <i>Listeriaceae</i>	0.0	±	0.0	11.6	0.8	
Brochothrix	0.0	±	0.0	0.6	0.3	
Unclassified Paenibacillaceae	0.0	±	0.0	0.5	4.9	
Brevibacillus	0.0	±	0.0	5.7	5.6	
Paenibacillus	0.0	±	0.0	8.6	14.8	
Unclassified Planococcaceae	0.0	±	0.0	13.7	14.2	
Kurthia	0.0	±	0.0	20.3	2.0	
Lysinibacillus	0.2	±	0.0	14.6	9.5	
Planococcus	0.3	±	0.2	91.3	4.7	
Planomicrobium	0.0	±	0.0	2.7	3.8	
Rummeliibacillus	0.1	±	0.0	24.1	11.7	
Solibacillus	0.4	±	0.1	44.1	13.7	
Sporosarcina	0.0	±	0.0	1.3	3.8	
Ureibacillus	0.0	±	0.0	0.9	4.2	
Jeotgalicoccus	0.0	±	0.0	0.7	6.2	
Macrococcus	0.0	±	0.0	0.9	1.2	
Salinicoccus	0.0	±	0.0	2.7	3.5	
Staphylococcus	0.1	±	0.0	26.8	16.3	
Laceyella	0.0	±	0.0	0.6	3.1	
Planifilum	0.0	±	0.0	0.5	2.8	
Thermoactinomyces	0.0	±	0.0	1.5	8.3	
Alkalibacterium	0.0	±	0.0	6.6	3.8	
Facklamia	0.0	±	0.0	0.7	9.1	
Alkaliphilus	0.1	±	0.0	23.6	5.6	

	N 4				
Croup	Mean relative abundance			Maximum	Prevalence
Group				(0/) ^C	(%) ^d
	(%, ±SEM ^a)			(%) ^c	(%)
	All samples (<i>n</i> = 684) ^b				
	· ·		/	4.0	
Brevundimonas	0.0	±	0.0	1.6	9.5
Unclassified Rhizobiales	0.0	±	0.0	2.9	10.6
Ochrobactrum	0.0	±	0.0	0.7	3.1
Agrobacterium	0.0	±	0.0	0.7	18.9
Unclassified Rhodobacteraceae	0.0	±	0.0	0.8	4.9
Rhodobacter	0.2	±	0.1	30.1	6.8
Acetobacter	0.0	±	0.0	0.5	8.3
Mitochondria	0.0	±	0.0	1.7	15.5
Unclassified Erythrobacteraceae	0.0	±	0.0	0.5	6.8
Unclassified Sphingomonadaceae	0.0	±	0.0	0.8	5.2
Unclassified Comamonadaceae	0.0	±	0.0	0.7	10.0
Comamonas	0.2	±	0.1	28.0	11.8
Delftia	0.0	±	0.0	1.2	2.7
Variovorax	0.0	±	0.0	3.5	3.8
Unclassified Aeromonadaceae	0.0	±	0.0	2.6	2.4
Shewanella	0.0	±	0.0	4.4	2.8
Bibersteinia	0.0	±	0.0	2.1	2.7
Acinetobacter	0.2	±	0.0	28.0	16.8
Moraxella	0.0	±	0.0	10.4	3.0
Psychrobacter	0.0	±	0.0	5.5	2.8
Unclassified Pseudomonadaceae	0.0	±	0.0	0.7	7.2
Pseudomonas	0.2	±	0.1	35.2	19.7
Stenotrophomonas		±	0.0	30.2	11.0

^aStandard error of the mean; ^ball samples for which at least 500 bacterial sequencing reads were available for analysis; ^cthe highest relative abundance observed in any one sample; ^dthe prevalence of a group in all samples (n = 684).