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OBJECTIVES: 
 

1. To determine whether incomplete rigor mortis resolution and 'cold shock' play a 
role in development of tough fish syndrome (TFS) in tropical Saddletail snapper. 

 
2. To identify links between TFS and specific physiological factors in tropical 

Saddletail snapper. 
 

3. Communicate findings and recommendations to stakeholders and assist with 
implementation of any changes to fishing or handling practices required. 
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NON-TECHNICAL SUMMARY 
 
OUTCOMES ACHIEVED TO DATE  
 
Saddletail snapper has been an under-valued table species in Australia due to consumer 
perceptions of toughness and inconsistent quality. The factors influencing cooked muscle 
toughness were investigated by instrumental texture, chemical analyses, electron 
microscopy and fish aging techniques. The major outcome of this project was 
identification of age as a significant driver of increased toughness in cooked Saddletail. 
Seasonal influences were also shown to have an influence on texture variation in cooked 
Saddletail muscle. 
 
Onboard handling and chilling practices do not appear to be a strong contributing factor to 
toughness of Saddletail muscle. However, synergistic effects of fish age and chilling 
abuse have not been investigated to date. 
 
Size differences between male and female Saddletail snapper were observed. Male 
Saddletail are significantly larger than females of the same age, and fish size did not 
correlate directly to age for either males or females. This is a complicating factor with 
regard to employing a simple size to age formula for eliminating older and therefore 
tougher fish entering the supply chain.  
 
Saddletail snapper represent a major resource within the offshore fisheries of northern 
Australia. Current catch rates are well below triggers for management reviews. However, 
more licences are unlikely to be issued to new participants in any of the fisheries. This 
fact ensures that current stakeholders have little opportunity to expand their operations to 
maintain economic viability against ever increasing costs by increasing effort. Ongoing 
economic viability will only be assured through increasing the value of the resource 
through improved product quality.  
 
Suppliers of red snappers (both Crimson and Saddletail) have endured a crisis of 
confidence in recent years. Ongoing complaints of toughness of cooked fillets have 
resulted in both species becoming highly distrusted by food service and restaurant 
operators alike. This has resulted in suppliers of both species being unable to command 
suitable pricing and undervaluation of the resource. 
 
This project has investigated the possible causes of toughness issues in Saddletail 
snapper. Both direct handling and biological causes have been investigated during the 
course of this work. Handling practices were observed directly onboard vessels. Data 
collected included temperature profiles of fish and the chilling tanks, assessment of rigor 
mortis progression, as well as collection of biological data and tissue samples. 
 
Toughness was measured on cooked fillets using an Instron texture analyser, 
incorporating a standardised cooking protocol. Chemical analyses relating to muscle 
firmness were conducted to provide a better understanding of the physiochemical 
microstructure of the Saddletail muscle tissue. Electron microscopy methods were also 
employed to assist in developing this understanding.  
 
Another method that became critical to the success of this project was the extraction of 
fish otoliths for the determination of age. Age was found to be a fundamental driver in the 
development of toughness in Saddletail.  
 
Although males are much larger than females of the same age, the increase in cooked 
muscle toughness increases with age at almost the same rate. This research also 
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revealed that both males and females grow very slowly after 7 to 10 years of age, so that 
fish of this age are not very different in size from those of 20 years of age.  
 
Seasonal influences were also determined to influence the texture of cooked Saddletail. 
These influences are more difficult to explain with certainty. However, the most likely 
causes are either sexual maturity or food availability, or even a combination of both.  
 
Onboard handling practices were not found to directly contribute to toughness issues in 
Saddletail. Chilling practices observed were found to vary greatly in efficacy. However, 
the potential exists for a synergistic effect of older and tougher fish becoming tougher due 
to ‘cold shortening’ through chilling abuse. This potential is certainly worth investigating 
further. 
 
The information from this research provides stakeholders with a clear understanding of 
the contributing factors of tough fish syndrome in Saddletail snapper. More work is 
required to develop simplified tools that allow fishery operators to quickly and efficiently 
remove fish that pose a significant risk. The development of these tools will require 
regular stakeholder consultation due to their highly commercial nature. Successful 
implementation of such measures would increase market confidence in the species and 
provide an opportunity to develop value added products with fish deemed unsuitable for 
premium table fish markets. 
 
 
KEYWORDS: 
Saddletail snapper, Lutjanus malabaricus, flesh toughness, fish texture, fish age, 
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1 Background 
 
This project application was developed at the specific urging of the reef fish supply chain 
in both Queensland and the Northern Territory. The Western Australian northern 
demersal fishers also strongly support the project. All jurisdictions are suffering large 
revenue losses caused by Tough Fish Syndrome (TFS). Outcomes from this research will 
directly address the profitability of reef fish fisheries and the demand for high quality 
Australian premium product. 
 
TFS is exhibited by some tropical reef fish in which the texture of the flesh toughens 
severely after cooking, rendering the fish inedible. Such flesh toughness only manifests 
on the consumer plate. Prior to this point the fish is not visually different to any other. The 
raw flesh has similar texture to that of non-tough fish, but upon cooking a ‘tough’ fish will 
have a texture that is described as “extremely rubbery”/ “car tyre-like”. Market awareness 
of the risk is now widely entrenched with buyers refusing to handle specific reef fish. 
Queensland wholesalers (Cardinal Seafoods; Mackay Reef, pers. comm.) refuse to buy 
Grassy snapper off the boats as they consider the risk of toughness occurring to be too 
high. TFS is consequently causing significant revenue loss for the industry, none more 
greatly evidenced than by the recent cancellation of large retail supply contracts. 
 
TFS has been observed for several years, with increasing reported incidence over the last 
3-4 years. As most of the available evidence is subjective, it is difficult to accurately state 
the real incidence. Rigorous data on the incidence of TFS within catches is needed to 
illustrate the factors that cause the toughness. This data can be very expensive to obtain 
due to the extremely large sample populations required, but by working cooperatively with 
Industry costs can be minimised.  
 
TFS is reported across all reef fisheries and in fish caught by all methods of capture: 
dropline, trap and trawl. The problem appears to be pervasive and affects a significant 
proportion of several commercially significant species. Industry reports up to 30% of 
catches for tropical snappers are affected. Species such as Saddletail snapper, Crimson 
snapper, Red emperor and Golden snapper are implicated (NT Seafood Council and NT 
Fish, pers. comm.). Reports also indicate that occurrence is not consistent, with only a 
proportion of fish from any one catch affected. There are no obvious common factors 
denoting which fish will be ‘tough’ although there are indications that larger fish (>3KG) 
are more likely to exhibit this syndrome. 
 
Innovative Food Technologies (QPI&F) has undertaken an extensive literature search on 
the issue of tough flesh in fish, however very little literature exists on textural issues in 
tropical fish species. Similar work has been completed on temperate species, but the 
issues with these species are generally a decrease in fillet firmness rather than increase. 
Relevant references have been included in the application. Many factors have an 
influence on the eating quality of flesh texture in fish. These factors include: 
 
1. Physiological factors such as size, condition, age, gender and sexual maturity , season, 
muscle structure, muscle fibre number and density, collagen content and types, diet, and 
geographical location. 
 
2. Capture methods including immediate post-capture handling, onboard chilling method 
and storage time. 
 
3. Cooking practices including cooking method, cooking time and rigor mortis phase of the 
fish at cooking.  
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Under ideal handling conditions, tropical fish go into and through rigor mortis more gently 
and slower than temperate species (Curran et al. 1986; Poole 1991). It is also known that 
tropical fish can suffer cold-shock syndrome similar to that occurring in beef carcasses 
when chilled too rapidly (Curran et al. 1986). 
 
Textural irregularities have been demonstrated to be seasonal in some species (Hagen et 
al. 2007). Specifically, the role of collagen types and cross-linking of collagens in textural 
variability observed in raw fillets. Hagen demonstrated that aquaculture Halibut harvested 
in spring would result in firmer texture than other seasons. Significant differences do exist 
between the post-mortem behaviour of tropical and temperate fish species. However, an 
investigation of the influence of collagen content and types in Saddletail snapper would 
provide a greater understanding of the textural qualities of commercially significant 
Australian tropical fish species.  
 
A preliminary study was initiated by the trawl sector of the NT reef fishery (Bill Passey, 
Australia Bay Seafoods) who contributed $25,000 in cash plus in kind towards an 
investigation into the syndrome. This study was undertaken by Innovative Food 
Technologies (QDPI&F). Results obtained were not conclusive due to a lack of fish 
displaying TFS.  
 
The focus of this study was to identify the factors that cause development of TFS. Of all 
the possible influencing factors that may contribute to the syndrome, we will focus on 
those whose direct influence is quantifiable by the methods outlined in this proposal. 
These include pre-capture factors related to the fish biology and specific muscle 
physiology, and post-harvest factors influencing rigor mortis resolution. 
 
Successful identification of these factors and their influence upon TFS will empower 
stakeholders to make an informed decision as to how to best utilise the resource and 
ensure improved profitability of the fishery into the future. 
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2 Need 
The biomass of tropical red snapper in northern Australian waters has been estimated at 
24,000t. A conservative management trigger point has set annual harvest levels at 2,400t. 
Current catches are well below this level. The majority of red snapper is caught by trawl, 
but there is also a potential to target them in trap and dropline fisheries. 
 
Tough fish from these fisheries are identified on occasion at the point of cooking. 
Currently it is not possible to identify this syndrome at the point of capture or wholesale. 
There is an urgent need to identify the cause of TFS to minimise impact of the syndrome 
on the value of the resource and enable appropriate handling methods to be implemented 
where applicable. 
 
TFS is causing a huge loss of revenue from the reef fish fishery due to strong negative 
reaction from the end-supply chain sectors with this phenomenon reducing the overall 
value of this, and other species in the fishery. The magnitude of such losses was made 
apparent recently when one of Australia’s largest retailers cancelled a very large supply 
contract from a major fishery operator. Another major stakeholder in the fishery has had 
export orders rescinded. 
 
Industry believes that if TFS in red snapper could be managed the current price of around 
$4.50/KG could be increased up to $8.00/KG, in line with other tropical snappers. This 
would lead to estimated additional $3.0M/year revenue from this species under current 
catch levels. If the value of this species increased, there is potential to significantly 
increase sustainable catch levels and subsequent return to the community. 
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3 Objectives 
 

1. To determine whether incomplete rigor mortis resolution and 'cold shock' play a 
role in development of tough fish syndrome (TFS) in tropical Saddletail snapper. 

 
2. To identify links between TFS and specific physiological factors in tropical 

Saddletail snapper. 
 

3. Communicate findings and recommendations to stakeholders and assist with 
implementation of any changes to fishing or handling practices required. 
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4 Methods 
4.1 Planned field trips 
Two major field trips (including a small preliminary trip) were planned for during the 
course of this project. However, five field sets of fish were collected during the project. 
This schedule of trips is outlined in Table 1. 
 
Table 1. Field trip and sample collection summary 

Trial Name Season Fishing Method/Transport Total (402) 

FT1 Oct/Nov 2008 Trap/Fresh 50 

FT2 Dec 2008 Trawl/Frozen 111 

FT3 Apr/May 2009 Trawl/Frozen 101 

FT4 June 2009 Trap/Frozen 31 

FT5 Oct 2009 Trawl/Frozen 109 

 

4.2 Transport and logistics 
Fish landed fresh were packed into approved air freight Styrofoam boxes and sent to 
Brisbane by Australian Air Express the same day. Fish landed frozen were sent to 
Brisbane by frozen truck transport.  

4.3 Sample processing (IFT Hamilton QLD) 
Fish were kept frozen at -29°C prior to processing. Fish were allowed to relax at 4°C for 
24 hours and then immersed in ambient tap water for 2 hours prior to filleting and sample 
collection. Fork length, weight, sex, and ultimate pH of muscle were recorded at this time. 
Muscle pH was recorded using a TPS pH unit (Model number WP 80, Springwood, QLD). 
 

4.4 Rigor assessment 
Rigor assessment was achieved by use of a five point category scale to describe the state 
of rigor. The five categories correspond approximately to the angle of flexibility observed 
in the fish. Fish were scored as follows: 
 
Table 2. Observed rigor stage and scoring system 
Presence of rigor Observed bend in fish Rigor score

no rigor ~90° 1 

some rigor ~60-70° 2 

moderate rigor ~45° 3 

significant rigor ~20-30° 4 

full rigor ~0° 5 

 
The fish was placed on a nylon cutting board lying on its right side so that the tail would 
hang over the edge of the board. Each fish was positioned so that the end of the pelvic 
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fins would align with the edge of the board to allow for tail hang. Also, the fish was 
positioned so that a line from the end of the pelvic fins to the bottom jaw line was 
perpendicular to the edge of the board. This method is presented in Figure 1 along with 
the penetrometer used in this experiment. 
 

 
Figure 1. Rigor assessment by observed fish flexibility  
 
Muscle tension was also assessed by use of a penetrometer to provide a quantitative 
measure of the rigor development observed. The penetrometer is a modified fruit 
pressure tester (EFFEGI: model FT 011) fitted with a 19mm plunger disc. Muscle tension 
is measured as the pressure required over an area of 2.84cm2 to cause a maximum 
possible deflection of 6mm in the fish surface. Readings were taken only from the left side 
as the removal of tissue samples from the right side may have influenced the result from 
that side.  
 
Three readings were taken from defined points along the fish. These were; 
 

1. On the lateral line between the pectoral fin and the first dorsal fin. 
2. On the lateral line between the rear of the pelvic fin and the dorsal fin. 
3. On the lateral line between the front of the anal fin and the second dorsal fin. 

4.5 Temperature logging 
All fish that were sampled had a Thermocron temperature logger (OnSolution, Baulkham 
Hills, NSW) inserted into the cavity from which the tissue sample was taken (see Figure 2) 
Temperature values were taken every 15 minutes and loggers were removed from the 
fish when filleted in Brisbane.  
 

Forrest and Poole (2010)   6  



TFS in Saddletail snapper 

 
Figure 2. Saddletail snapper showing temperature logger inside cavity from pre-rigor tissue 
and second tissue sample being taken upon full rigor 

4.6 Texture Analysis 
Texture analysis was performed on cooked portions of Saddletail fillet. The left side of the 
fish was always used as the right side had tissue sample taken from it and results would 
have been compromised.  
 
Fillets were vacuum-packed into plastic bags and steamed at approximately 95°C for 20 
minutes. The fillets were then allowed to return to room temperature (24°C) prior to 
texture analysis. This would take approximately 2 hours.  
 
Analysis was conducted on an Instron 5543 texture analyser (Instron Corporation, 825 
University Avenue, Norwood MA, USA.) using a 500N load cell and a modified Kramer-
Shear cell. The modification was to remove two of the five blades. This was decided after 
a fish identified as being tough in preliminary assessments gave values that were in 
excess of the load limit of the cell. Figure 3 shows the Instron in use with a sample of 
Saddletail in the modified Kramer-Shear cell. 
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Figure 3. Instron texture analyser with sample loaded into the Kramer-Shear cell 
 
Two samples per fillet were taken for assessment. These samples were taken 
longitudinally from the shoulder end of epaxial myotome. The samples were placed within 
the cell so that the blades were cutting across the direction of the muscle fibres. A 
photograph of a fillet being sampled is presented in Figure 4.  
 

 
Figure 4. Photograph of sample preparation for texture assessment by Instron 
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Two forms of data were collected during this analysis. The first is peak force of shearing 
and is expressed in newtons (N). This is the maximum force required to shear the cooked 
muscle. The second is total energy required to shear the cooked muscle and is expressed 
in joules (J). The results presented here are also divided by the weight of the sample (g). 

4.7 Sarcomere Length Determination 
Sarcomere lengths were measured using a helium-neon gas laser diffraction technique on 
unfixed portions taken from frozen (-20˚C and -80°C) samples.  The laser has a 
wavelength of 635nm, and was used as the light source to obtain diffraction patterns from 
muscle fibre samples held between glass microscope slides. Sarcomere length was 
determined from the diffraction pattern displayed on a frosted screen (Bouton 
1973).Sarcomere length (µm) was calculated from the average distance (mm) of the inner 
and outer diffraction bands from the centre of the screen. The mean of 4 readings was 
taken per sample (not every sample had 4 readings). 

4.8 Chemical Analyses 

4.8.1 Nucleotide determination 
Tissue samples were assessed by HPLC for nucleotide content to allow k-value 
calculations as determined by Saito (1959)  

4.8.2 Total collagen determination 
Total collagen content was determined by measuring the hydroxyproline content of 
lyophilised muscle tissue (in duplicate) according to the International Standard (ISO) 
method (1994), and is expressed as mg hydroxyproline (Hyp)/g dry weight muscle. 

4.8.3 Heat soluble collagen determination 
The heat solubility of the collagen in the muscle samples was determined using a 
modification of the method described by Hill (1966).  Approximately 250mg of freeze-
dried, ground muscle tissue was heated in ¼ strength Ringer’s solution for 30 minutes at 
65°C, reflecting the lower thermal stability of fish collagen compared to mammalian 
collagen.  The hydroxyproline content of the soluble fraction was measured using the ISO 
method (1994)as described above for total collagen content.  The heat-soluble collagen 
was expressed as a percentage of the total collagen. 

4.8.4 Collagen cross-linking determination (Hydroxylysyl pyridinoline) 
Amounts of hydroxylysyl pyridinoline cross-linking in collagen was determined using the 
method described by Li et al (2005). 

4.9 Microscopy 
Tissue samples of selected fish from field trips 2 and 3 were supplied to Dr Deborah 
Stenzel at the Centre for Microscopy and Microanalysis at Queensland University of 
Technology Gardens Point. A small number of samples will be imaged using 
Transmission Electron Microscopy (TEM) and light microscopy to attempt to identify any 
artefacts of ‘cold shock’ and accurately determine sarcomere length. 

4.10 Estimation of fish age by otolith increment 
Selected fish were examined for age estimation with the assistance of Queensland 
Fisheries staff from Southern Fisheries Centre, Deception Bay using the standard method 
of increment determination of otolith cross-sections (Fisheries-Queensland 2009). 
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5 Results/Discussion 
5.1 Field trip 1 (October/November 2008) 
 
A total of 50 fish were collected during this trip. 31 of these were sampled during the first 
9 days of fishing and were assessed according to the methods outlined previously. 
Another 19 fish were collected on the last day of fishing. No tissue samples were taken, or 
rigor assessments completed on these 19 fish. The vessel was unloaded at Darwin 
Harbour on Thursday 2nd October. 
 
All 50 fish were packed into certified seafood air freight Styrofoam boxes at Darwin Fish 
Market and transport to Brisbane later that day by Australian Air Express. Fish were 
collected from Brisbane Airport Friday morning and repacked into ice storage. Fish were 
processed on Monday 6th and Tuesday 7th October. Texture assessments were 
conducted on both days.  
 
A complete set of the raw data can be found in accompanying data CD.  

5.1.1 Temperature logging 
Brine temperatures were also logged during fishing. The logger was attached to the steel 
grill that surrounded the water return inlet to the refrigeration plant. The brine tank is 
displayed in Figure 5 and the temperature logger is visible in the right hand photo with a 
blue tag. 
 

 
Figure 5. Photographs of brine tank being filled and placement of temperature logger on 
return cage 
 
The daily temperatures profiles of the brine tank are presented in Figure 6. 
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Figure 6. Daily temperature profiles for brine tank on FV Starlight and the total mass of fish 
placed in the tank during the haul (in brackets) 
 
Daily fluctuations in temperature of the brine water are most likely due to load on the 
refrigeration system. However, total load in the tank per day does not accurately translate 
to fluctuations in water temperature. For example, the largest day’s catch was 1550kg 
caught during 26th September and the brine water temperature never exceeded 2°C. 
Every other day (with the exception of 22nd September) brine water exceeded this 
temperature.  
 
These observed fluctuations are more likely to be due to individual lines or even traps 
containing large numbers of fish being placed in the tank during a short amount of time. At 
the cessation of fishing, temperatures quickly return to at or below 0°C which would 
suggest that cooling capacity is adequate. Temperature profiles were obtained for the 31 
Saddletail sampled (Figure 7).  
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Figure 7. Temperature profiles during chilling of 31 Saddletail snapper sampled on FV 
Starlight 
 
All fish logged achieve a core temperature below 10°C within 3 hours of chilling. However, 
from this point, core temperatures can fluctuate greatly. For example, fish 21 (landed 27th 

September 2008) has a core temperature of 31.5°C at landing and chills to 9.0°C within 2 
hours and 30 minutes. From that point the core temperature increases to 13°C during the 
next hour, before core temperature falls to 1.5°C at the 8 hour mark. At this point, the core 
temperature rises to 6°C by the 9 hour mark, before falling below 5°C after 10 hours. This 
trend continues until a subzero core temperature is achieved at the 12 hour mark. 
 
From Figure 6 the temperature of the water in the brine tank can be seen to be increasing 
from approximately 8:15am. Fish 21 was landed at approximately 9:00am when the brine 
water was approximately 2.5°C. Figure 6 also shows the brine tank water temperature 
increasing to 6.5°C during the next 3 hours.  
 
However, the increase in core temperature observed in fish 21 is much higher than 
possible from the water alone, suggesting that freshly landed fish are in physical contact 
within the tank and transferring the heat within them to fish 21. This suggests that both the 
brine water volume and the current circulation within the brine tank are inadequate to 
maintain best practice chilling times. Inefficient chilling will result in fish of poorer quality at 
market and a decrease in effective shelf life.  

5.1.2 Texture assessment 
Texture analysis was conducted on all 50 fish collected during this field trip. Results 
presented in Figure 8 and Figure 9 present mean total energy and mean peak force 
versus fork length of Saddletail collected on this field trip.  
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Figure 8. Mean total energy and fork length 
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Figure 9. mean peak force versus fork length 
 
Figure 10 presents both data for mean peak force and mean total energy for each fish 
sampled. 
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Figure 10. Comparison of Mean peak force and mean total energy for individual fish 
 
The results obtained from the texture analysis provide no clear trends in the relationship 
between fish size and storage time to cooked fillet texture.  

5.1.3 Rigor assessments 
Saddletail required between 2 and 7 hours in the brine to establish full rigor.  
Penetrometer readings were taken on 15 of the 31 fish sampled. No further readings were 
taken due to instrument failure. These results are presented in Figure 11 and results will 
be discussed in conjunction with the nucleotide determination in the next section. 
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Figure 11. Mean penetrometer readings of first 15 Saddletail sampled on FV Starlight 
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5.1.4 Nucleotide determination 
Nucleotide analysis was conducted on samples collected pre rigor and samples collected 
after the development of full-rigor as per the method described previously. Results of 
these analyses are presented in Figure 12 and Figure 13. 
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Figure 12. Nucleotide analyses of samples at landing 
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Figure 13. Nucleotide analyses of samples at full rigor 
 
Quantities of ATP present in muscle tissue at landing vary greatly as can be seen in 
Figure 12. This may be explained by variation in the time individual fish have been in a 
trap. Any stress experienced during time in the trap will affect levels of muscle ATP. 
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There was a significant correlation between the ATP at landing and the time taken for full 
rigor to develop (p<0.001) explaining 41.2% of the total variation. This result is consistent 
with previous published work of Love (1980) and others who have demonstrated that rigor 
mortis in fish commences when available ATP decreases to less than 5mmol 
concentration. 
 
This exhaustion of ATP is confirmed by the analysis of a second tissue sample taken at 
the development of full rigor (Figure 13). Some exceptions exist, but they are not 
significantly different in texture.  
 
The significance of this result is that the rigor or ‘stiffness’ observed in the fish sampled is 
most likely to be caused by normal ATP depletion and not a ‘cold-shock’ reaction to the 
sub-zero temperature of the chilling media as has been reported previously (Curran et al. 
1986). 
 
A weak but significant correlation (p=0.017) exists between time to full rigor and ultimate 
pH. And although time to rigor is dependant on available ATP, no significant relationship 
exists between the ATP at landing and ultimate muscle pH. Further work involving larger 
numbers of fish sampled may provide a more conclusive link between ATP at landing and 
cooked fillet texture. 
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5.1.5 Muscle pH  
Muscle pH data was collected when fish were landed, the onset of full rigor, and at filleting 
prior to texture assessment. Analysis of pH data revealed no significant trends with the 
exception of pH (at filleting) and texture which displayed a weak but significant inverse 
correlation (p=0.02). The changes in muscle pH are consistent with the work of others 
(Curran et al. 1986). These results are presented in Figure 14.  
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Figure 14. Final muscle pH and peak force versus total days stored on ice 

5.1.6 Analysis of last days catch 
From the results presented in Figure 14, observations of muscle pH and peak force taken 
from fish landed on the last day of fishing appear to be different from the rest of the catch. 
When one way analysis of variance (ANOVA) statistical analysis is conducted to compare 
the data from the last days catch, several significant differences emerge (Table 3). 
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Table 3. Comparison (ANOVA) of parameters for last day to remaining catch 

Parameter 
Last day  

(5 days on ice) 
(n=19) 

All other days  
(6-16 days on ice) 

(n=31) 
Significance 

final muscle 

pH 

6.53a 

(±0.0217) 

6.19 b

(±0.0170) 
p<0.001 

Peak Force 

(N/g) 

3.93 b

(±0.19) 

4.76 a

(±0.15) 
p<0.001 

Total Energy 

(mJ/g) 

46.7 b

(±2.7) 

55.8 a

(±2.1) 
p=0.011 

Means followed by a different letter are significantly different at the stated level. 
Standard errors are shown in brackets. 
 
Final pH of muscle tissue decreases after 5 days of storage on ice. This is consistent with 
the previously mentioned work of Curran et al (1986). However peak force, and to a 
lesser extent total energy, are significantly lower at 5 days on ice than fish stored up to 16 
days.  
 
The exact nature of the relationship between muscle texture and pH is not entirely clear. 
However the trend appears to be a reduction in final pH corresponds to an increase in 
muscle texture (see Figure 14). This relationship has been described previously (Bremner 
2002) however the mechanism is not fully understood. 
 

5.1.7 Analysis of catch by sex 
No significant differences were found between the quality parameters assessed for male 
and female fish. However, the male fish sampled were significantly longer in fork length 
than females (p=0.002). These results are presented in Table 4.  
 
Table 4. Mean size of male and female fish sampled 

Parameter 
Male 

(n=28) 
Female 
(n=11) 

Significance 

Fork Length (cm) 
56.214a 

(±0.664) 

51.727b

(±1.060) 
p=0.002 

Means followed by a different letter are significantly different at the stated level. 
Standard errors are shown in brackets. 
 

5.1.8 Preliminary collagen determination 
Total collagen analysis of 10 samples was conducted by Food Science Australia (CSIRO) 
Cannon Hill to assess the viability of conducting further analyses with comparison to 
texture data obtained from the Instron technique (Figure 15 and Figure 16). 
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Figure 15. Scatter plot of peak force and collagen content 
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Figure 16. Scatter plot of total energy and collagen content 
 
Good correlations were obtained for peak force (r2=0.61) and total energy (r2=.62). 
However, neither was significant due to the low number of data points. This result does 
suggest that further analyses may yield useful results. 
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5.1.9 Sarcomere analysis 
Portions of thirty-one (31) Saddletail snapper fillets, collected at point of capture and after 
full rigor had developed during chilling in refrigerated sea water.  Samples were frozen 
and stored onboard in liquid nitrogen. Upon return to Brisbane, samples were transferred 
to FSA Cannon Hill and were stored at -20°C until required for analysis. 
 
The size of some of the samples received were below the minimum size required to 
obtain a reasonable sample for measurement for sarcomeres (50mm x 20mm x 5mm), 
and therefore the samples were difficult to section due to rapid thawing that occurred.  To 
negate this effect, these samples were frozen at -80°C (not -20°C) prior to sectioning. The 
sarcomere lengths of the samples taken at capture and after full rigor had developed are 
presented in Table 5. 
 
Table 5. Sarcomere measurements (µm) for 31 Saddletail snapper samples, taken 
immediately on capture and after full rigor had developed during chilling in refrigerated sea 
water 

Sample ID On capture After full rigor 
development 

1 1.47 1.08 

2 1.82 1.97 

3 1.08 1.80 

4 - 1.32 

5 - 1.10 

6 1.08 1.83 

7 1.08 1.92 

8 1.08 1.82 

9 1.21 1.79 

10 1.08 1.90 

11 1.08 1.86 

12 1.74 1.89 

13 - 1.09 

14 1.66 1.81 

15 1.08 1.90 

16 - 1.65 

17 1.15 1.90 

18 1.82 1.83 

19 - 1.08 

20 1.08 1.22 

21 1.09 1.80 

22 - 1.08 

23 1.69 1.75 

24 1.54 1.87 

25 1.08 1.12 

26 1.10 1.08 
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Sample ID On capture After full rigor 
development 

27 1.18 1.86 

28 1.08 1.80 

29 - 1.79 

30 - 1.13 

31 - 1.08 
Blank cells (-) indicate no reading was possible for these samples. 

Low values (e.g. 1.08) indicate limits of detection for instrument (i.e. very short sarcomeres). 
 
No significant relationship was found between sarcomere length and either of the cooked 
muscle texture parameters measured by the Instron. Muscle pH and fish size also 
displayed no significant relationship to sarcomere length.  
 

5.1.10 The effect of barotrauma on fish quality 
Almost all Saddletail landed during this field trip were exhibiting severe symptoms of 
barotrauma. These included eye bulging (exothalmia), swollen abdomen, inverted 
stomach, and rippling of the skin ventral to the lateral line. Figure 17 below is of a 
Saddletail with a bulging eye and swollen belly cavity. 
 

 
Figure 17. Saddletail showing signs of barotrauma (eye and belly cavity) 
 
Barotrauma presents another symptom in this species at the lateral areas of muscle. 
Some rippling of the skin occurs caused by what appears to be gas bubbles forming 
between the skin and muscle in the area of skin below the lateral line to the area adjacent 
to the pectoral fin joint (Figure 18).  
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Figure 18. Saddletail showing signs of barotrauma (lateral tissue) 
 
This effect is most likely to be the result of Saddletail physiology being incapable of 
adapting to the rapid change in pressure experienced during hauling of the fish traps. This 
is an effect not observed within Goldband snapper (Pristipomoides multidens) caught in 
the same traps. Goldband exhibit very little in the way of barotrauma symptoms. 
Barometric acclimatisation rates have been shown to vary greatly between near related 
species (Parker et al. 2006). 
 
The source of the gas is most likely to be the air bladder within the dorsal region of the 
belly cavity. The signs of belly bloating suggest this air bag has no physiological 
mechanism for dispersing excess air quickly. The rapid increase in pressure within the air 
bladder will eventually cause a breach and air will find its way into surrounding tissue.  
 
Our observations suggest this barotrauma is also causing a direct effect on fillet quality. 
Many of the fish processed during this and other field trips, exhibit signs of internal 
bleeding. Figure 19 is an example of some extensive bleeding observed. 
 
 

Forrest and Poole (2010)   22  



TFS in Saddletail snapper 

 
Figure 19. Internal bleeding staining Saddletail fillet 
 
At first observation these blood spots were considered to be a result of bruising from 
physical contact between fish and the trap during hauling. However, bruising is superficial 
and these marks do not extend to the skin. These areas of bleeding are observed in the 
tissue surrounding the backbone. Figure 20 shows both fillets and the other side of the 
previous fish (Figure 19).  
 

 
Figure 20. Internal bleeding in both fillets 
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Bleeding to a lesser extent is observed in the left fillet. However, from this image the 
blood appears to have been forced from the belly cavity and from the blood vessels 
adjacent to the backbone. This suggests the swim bladder may be forcing blood back 
through the vessels and into the surrounding muscle. Figure 21 is close up image of the 
same fish. 
 

 
Figure 21. Close of bleeding in belly cavity and backbone 
 
From this image a large amount of blood is visible at the posterior end of the belly cavity. 
Blood can also be seen emerging from vessels adjacent to the backbone. Embolism has 
been reported as a result of barotrauma in other Australian species (Longbottom 2000). 
This blood pooling may be the result of pressure exerted by the swim bladder as it 
expands without any mechanism to depressurise. 
 
These issues were discussed with Kjell Midling (Senior Scientist with Nofima Marine 
based in Tromso, Norway) on a recent visit to IFT Hamilton. Kjell has had extensive 
experience with the Atlantic halibut (Hippoglossus hippoglossus) and cod (Gadus 
morhua) fisheries of the North Sea. Kjell suggested that the symptoms of barotrauma 
exhibited by Saddletail were extreme, and consistent with a species that has no 
mechanism of alleviating this issue quickly during fish trap hauling.  
 
A current industry solution suggested by Kjell was to slow the hauling of the trap during 
the last ten metres to the fishing vessel, taking at least 30 seconds to travel the last ten 
metres. This allows the fish to attempt to partially equilibrate their swim bladders at the 
shallower depth.  
 
Such a method may greatly reduce the incidence of this internal bleeding which devalues 
the fish and the reputation of the species. However, these changes have the potential to 
slow fishing operations and any change in practice must take into account commercial 
considerations. 
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5.1.11 Trip summary 
This field trip was designed more as a ‘shakedown trip’ than a complete sample collection 
trip. However, some valuable data has been collected and some significant findings have 
been made. 
 

• Brine tank water temperature increased to almost 10°C under heavy load. 
However, this may be more likely to be an artefact of this fishing technique being 
employed than being due to inadequate capacity in the heat exchanger. 

 
• Fish chilling rates varied greatly. This may also be in part due to the nature of the 

fishing. However the extent of the variation in chilling rates is large. This suggests 
the volume of chilling media (brine) is insufficient, and circulation of the media 
inadequate to provide industry best practice for fresh chilled products.  

 
• Size or sex of fish was not a significant influence on texture of cooked samples.  

 
• Storage time on ice is a significant influence on cooked fillet texture. Ultimate 

muscle pH is also intrinsically linked into this relationship. However, the 
mechanism for this relationship is not clear. 

 
• Rigor development within this sample set of Saddletail snapper occurred primarily 

at the point of exhaustion of available ATP within the white muscle tissue. 
Therefore it is difficult to suggest that any ‘cold shock’ or cold shortening’ was 
being experienced by the fish during the first hours of chilling.  

 
•  Time taken for rigor to commence correlates to ultimate pH, but muscle ATP was 

not a significant influence in this study. This would appear to be a contradictory 
statement. However, a larger number of sampled fish may provide a more 
conclusive result and will be the aim of further field trips on fresh chilled vessels.  

 
• Saddletail experience severe symptoms of barotrauma including extensive internal 

haemorrhaging, which can greatly reduce fillet quality and market price. Methods 
to reduce this incidence should be trialled to allow any improvement in quality to 
be quantified and permit stakeholders to make sound commercial decisions on 
trap hauling practices.  

 
• The current method of bleeding these fish onboard this vessel have limited 

efficacy with preventing blood spotting in Saddletail muscle. 
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5.2 Field trip 2 (December 2008) 
The Second set of samples collected for this project was from the trawling vessel FV 
Territory Leader. 111 whole fish were frozen onboard and sent to IFT Hamilton for 
analysis. Samples arrived in Brisbane on 16th December 2008, but were unable to be 
processed due to staff and equipment availability until 6th January 2009.  
 
Upon return from the Christmas break the Instron texture analyser broke down and 
required repair before processing could progress. This was achieved after much anxiety 
on 23rd February 2009. Sample processing commenced the next day. 

5.2.1 Biological data and Instron results 
Analysis of the raw data provided no significant correlations within the complete set of fish 
samples. Analysis of the differences (ANOVA) between the results by sex provided 
significant differences (Table 6).  
 
Table 6. Significant difference of means of measured parameter by sex 

Parameter Male (n=54) Female (n=57) Significance 

Weight (g) 
1971.54a

(±39.75) 

1806.33b

(±38.69) 
p=0.004 

Fork Length (cm) 
51.22a

(±0.37) 

49.39b

(±0.36) 
p<0.001 

pH (ultimate) 
6.41a

(±0.0187) 

6.34b

(±0.0182) 
p=0.012 

Peak Force (N/g) 
4.75b

(±0.19) 

5.79a

(±0.19) 
p<0.001 

Total Energy (mJ/g) 
48.66b

(±1.8) 

57.37a

(±1.8) 
p<0.001 

Means followed by a different letter are significantly different at the stated level. 
Standard errors are shown in brackets. 
 
The male fish sampled were larger than female fish and achieved a higher ultimate 
muscle pH. Cooked muscle of female fish was significantly firmer than males by peak 
force and total energy measurements. The relationship between peak force and fork 
length for both sexes is presented in Figure 22. 
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Figure 22. Scatter plot of peak force versus fork length for both sexes  
 
The relationship between muscle texture and ultimate pH has been described previously 
(Curran et al. 1986) where muscle texture increased with a decrease in ultimate muscle 
pH. Such a trend would appear to exist in this data; however, statistical analysis provides 
no significant correlation (Figure 23).  
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Figure 23. Scatter plot of peak force versus ultimate muscle pH for both sexes 
 
Comparison of ultimate pH and fork length provide significant differences between the 
sexes. However no significant correlation exists between fork length and ultimate pH. This 
result is consistent for both sexes (Figure 24). 
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Figure 24. Scatter plot of ultimate pH and fork length for both sexes 

5.2.2 Nucleotide Analysis 
Analysis of nucleotide content was conducted on muscle tissue samples to investigate the 
possibility of a ‘thaw rigor’ event in the fish sampled. Thaw rigor results from thawing of 
fish frozen pre-rigor, or prior to the depletion of ATP significantly below the 5mM 
concentration (Bremner 2002). Upon thawing, a rapid degradation of ATP can cause an 
uncontrolled contraction of the muscle (Hiltz et al. 1974). This can result in excessive 
liquid loss, gaping, and shortening of fillets cut pre-rigor. 
 
The fish collected during this field trip were all frozen onboard after 2-3 hours of chilling. 
To ensure that no thaw rigor influence is taking place, nucleotide analysis was employed 
to determine if any residual ATP could have influenced the texture of the fish. 
 
Twenty fish were assessed for nucleotide content. These included fish belonging to the 
ten highest and the ten lowest peak force values obtained by the Instron texture analysis. 
No significant differences were found between individual nucleotides, total nucleotides or 
K-Values between the fish belonging to high or low peak force values. A full table of the 
results can be found in accompanying data CD. 

5.2.3 Collagen Analysis 
Determinations of total collagen were performed on fish possessing the 10 highest texture 
reading (peak force) and another 40 fish spread evenly across the range of texture 
values. These results are shown in Figure 25. Collagen results are expressed as 
milligrams of hydroxyproline (Hyp) per gram of muscle dry weight. 
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Figure 25. Comparison of peak force and total collagen results 
 
These results illustrate no obvious relationship between peak force and the total collagen 
present in the samples. However, these results do not differentiate by sex; which has 
previously been demonstrated to be an influence affecting the outcome of the texture 
assessment (Figure 26). 
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Figure 26. Peak force (N/g) versus Total collagen (mg Hyp/g) by sex. 
 
No significant differences exist between the levels of total collagen between male and 
female fish (ANOVA). However, when the relationship between peak force and total 
collagen is analysed by linear regression using groups (sex) a weak but significant 
relationship was obtained (p=0.031). This result suggests that within the female 
population, the amount of total collagen present in the muscle may be an influence in the 
development of tough cooked fillet texture. 
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5.2.4 Summary 
Several significant results have emerged from this group of fish sampled.  
 

• Female fish were significantly tougher than male fish and significantly lower in 
ultimate pH.  

 
• Female fish were significantly smaller (both fork length and mass) than male fish. 

 
• Some females were found to contain higher levels of collagen than the males. 

However, this does not necessarily translate directly to a higher peak force value 
obtained from the cooked fish sample.  

 
The difference in size is consistent with the work of Newman (2002) who conducted 
growth rate, age determination, natural mortality and production potential of the species 
from the Pilbara region of Western Australia between 1997 and 1999 .  
 
However, the differences between the sexes in both texture and pH suggest an influence 
of maturity and seasonality. Female fish were easy to identify when filleting as almost all 
females had well developed ovaries. This would suggest the species was in the process 
of spawning. Food availability may also influence muscle pH as higher glycogen levels 
within muscle at harvest can result in high levels lactic acid. 
 
Salini et al (2006) examined fish between Australia and Indonesia in 1999 and 2000 
suggest the species is highly fecund, and are serial spawners in open water between 
October and February. The fish from this field trip were collected in early December 2008, 
and are highly likely to have been spawning at this time. The influence of spawning on 
fish muscle quality has been widely reported in many species in both wild harvest and 
aquaculture environments.  
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5.3 Field Trip 3 (April/May 2009) 

5.3.1 Biological data and Instron results  
Significant differences in weight and fork length were observed between male and female 
fish, consistent with previous results and published data (McPherson and Squire 1992; 
Newman 2002).  However, significant differences in peak force and total energy were not 
observed between the sexes (Table 7).  
 
Table 7. Means of measured parameter by sex on field trip 3 

Parameter Male (n=51) Female (n=50) Significance 
Weight (g) 1976.7a

(±76.6) 
1564.6b

(±77.3) 
p<0.001 

Fork Length (cm) 50.46a

(±0.87) 
47.43b

(±0.88) 
p=0.016 

pH (ultimate) 6.47a

(±0.016) 
6.42b

(±0.016) 
p=0.026 

Peak Force (N/g) 6.00 
(±0.28) 

6.54 
(±0.29) 

N.S. 

Total Energy (mJ/g) 55.72 
(±3.05) 

54.08 
(±3.07) 

N.S. 

Means followed by a different letter are significantly different at the stated level. 
Standard errors are shown in brackets. 
 
Linear regression analysis revealed a small but significant correlation between fork length 
and total energy (p<0.001) explaining 40.1% of the total variation (Figure 27).  
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Figure 27. Scatter plot of total energy versus fork length for males (R2=0.46) and females 
(R2=0.39) 
 
Figure 27 illustrates a trend of increasing firmness of cooked muscle in males and 
females with increasing fork length. This may suggest an effect of increasing firmness 
with increasing age. However this trend was not observed in the fish from December 2008 
(FT2).  
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Figure 27 also reveals a subpopulation of significantly smaller fish exists within the 
sample set, and these fish displayed less firmness than most of the larger samples. The 
net effect will result in a skewing of the correlation trend in favour of a higher coefficient, 
suggesting the trend is stronger than would necessarily be the case. However, the texture 
values will also be affected and the mean texture values for both males and females will 
be reduced. 
 
Analysis of variance was repeated on these results, excluding the smaller group and 
including fish obtained in early December 2008 (Table 8). 
 
Table 8. Significant difference between sexes and seasons excluding fish < 1kg (FT3) 

Parameter Males Females Significance 
 Dec 08 

(n=54) 
Apr 09 
(n=39) 

Dec 08 
(n=57) 

Apr 09 
(n=42) 

 

Weight (g) 1971.54b

(±58.85) 
2324.26 a

(±43.78) 
1806.33 c

(±57.28) 
1699.64 c

(±42.19) 
p<0.001 

Fork Length (cm) 51.23 b

(±0.64) 
54.37 a

(±0.41) 
49.39 c

(±0.62) 
49.23 c

(±0.39) 
p<0.001 

pH (ultimate) 6.41 a

(±0.017) 
6.46 a

(±0.020) 
6.34 b

(±0.017) 
6.41 a

(±0.020) 
p<0.001 

Peak Force (N/g) 4.75c 

(±0.24) 
6.18ab 

(±0.28) 
5.79b 

(±0.23) 
6.67a 

(±0.27) 
p<0.001 

Total Energy 
(mJ/g) 

48.66b 

(±2.25) 
63.14 a

(±2.65) 
57.37 a

(±2.19) 
58.29 a

(±2.55) 
p<0.001 

Total collagen 
(mg HYP/g) 

4.98a

(±0.24) 
n=19 

3.94b

(±0.23) 
n=21 

5.00a

(±0.19) 
n=29 

4.27 b

(±0.19) 
n=29 

p<0.001 

Means followed by a different letter are significantly different at the stated level. 
Standard errors are shown in brackets. HYP = hydroxyproline equivalents 
 
Total collagen levels for both males and females were significantly higher in December 
than April. However, this trend is inconsistent with the trends observed in peak force or 
total energy.  
 
No significant differences in size were evident in female fish across the seasons. The only 
significant differences were in muscle pH and peak force. Female fish displayed 
significantly higher peak force values in April than in December. However, total energy 
values were not significantly different.  
 
Almost all parameters in male fish exhibited significant differences, with muscle pH being 
the only exception. Differences in values for peak force and total energy were highly 
significant (Figure 28 and Figure 29).  
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Figure 28. Mean peak force values for male and female fish >1kg across season 
(Standard errors bars are shown) 
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Figure 29. Total energy values for male and female fish >1kg across seasons 
(Standard errors bars are shown) 
 
Large differences in results for male fish are difficult to explain easily. Although male fish 
from April 2009 were significantly larger than those of December 2008, female fish were 
not significantly different in size across the two field trips.  
 
The influence upon texture from the differences in size is also difficult to quantify. A small 
difference in total energy values between the male fish of each field trip might be 
expected from that data presented in Figure 27. However, such a large difference in the 
two texture measures of male Saddletail suggests a seasonal effect.  
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5.3.2 Collagen results 
Of the 101 fish sampled a subset of 51 samples from the range of texture values was sent 
to Food Science Australia, Cannon Hill for total and heat soluble collagen content 
determination (hydroxyproline equivalents).  
 
Determination of the heat soluble fraction of the total collagen present allows for a 
calculation of the heat insoluble fraction which is that fraction of the total collagen 
exercising influence over the cooked portion of fish muscle.  
 
Previous attempts with this method had provided little in the way of significant data, hence 
a modification to the method was considered for these analyses. This involved reducing 
the temperature of solubilisation from 90°C to 65°C, and the exposure time from 60 to 30 
minutes.  
 
Analysis of the results yielded a weak but significant correlation between total energy and 
percentage of heat insoluble collagen (p<0.001) explaining 43.3% of the total variation 
(Figure 30). 
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Figure 30. Scatter plot of total energy and percentage insoluble collagen for male (R2=0.50) 
and female (R2=0.47) Saddletail snapper 
 
Further linear regression analysis identified another significant correlation (p<0.001) 
between insoluble collagen and fork length for both male and female Saddletail; 
accounting for 54.0% of the variance observed (Figure 31). 
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Figure 31. Scatter plot of percentage insoluble collagen and fork length for male (R2=0.52) 
and female (R2=0.53) Saddletail snapper 
 
This finding is consistent with the results correlating fork length and total energy required 
to shear cooked muscle (Figure 27). Both these results support the trend of firmness with 
increasing fork length within males and females. The relationship between heat insoluble 
collagen, total energy and fork length was not observed in the collagen analysis from 
December 2008.  
 
The modification to the collagen method appears to have provided greater fidelity in the 
data set. However, this does not explain why the clear relationship between total energy 
and fork length (Figure 27) has not been previously identified in the data collected from 
Saddletail in December 2008.  
 

5.3.3 Summary 
Field trip 3 (April 2009) has provided results enabling the identification of two significant 
trends within the full data set of the project to date.  
 

• Significant difference in texture measurements exist between Saddletail from early 
summer (early December 2008) and late autumn (late April 2009). This trend was 
more distinct in male fish than females. Although fish size may play a role in this 
difference, seasonal variation due to sexual maturity, spawning season or food 
availability cannot be ruled out. 

 
• A significant correlation between fork length, textural firmness (total energy) and 

heat insoluble collagen has been identified. This result suggests fish age may be 
an important contributing factor in the firmness of cooked Saddletail fillets.  
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5.4 Field trip 4 (June 2009) 

5.4.1 Biological and Instron data 
Data from this set of fish yielded little in the way of significant results. No differences were 
found between the male and female fish for any observed parameter and no correlations 
were found between any set of parameters (Table 9).  
 
Table 9. Means of measured parameter by sex on field trip 4 

Parameter Male (n=20) Female (n=10) Significance 
Weight (g) 2255.4 

(±68.2) 
2095.5 
(±96.5) 

N.S. 

Fork Length (cm) 53.65 
(±0.75) 

51.60 
(±1.05) 

N.S. 

pH (ultimate) 6.52 
(±0.020) 

6.48 
(±0.028) 

N.S. 

Peak Force (N/g) 4.14 
(±0.19) 

4.27 
(±0.27) 

N.S. 

Total Energy (mJ/g) 39.20 
(±1.81) 

41.56 
(±2.55) 

N.S. 

Means followed by a different letter are significantly different at the stated level. 
Standard errors are shown in brackets. 
 
The fish obtained from this field trip were obtained from a trap boat producing whole 
chilled fish. The fish samples were frozen onboard the vessel in the freezer hold used for 
bait storage. This method was designed to negate the impact of post-mortem enzymatic 
activity that would normally be associated with fresh chilled storage of fish; the usual 
practice of trap boats in the fishery (the trawl vessel used for previous field trips has a 
designated blast freezer specifically designed for quickly freezing fish at sea).  
 
Unfortunately, the freezer used in this field trip appears to have struggled to freeze the 
fish quickly. Slow freezing results in the formation of large ice crystals within the muscle 
blocks causing damage to muscle blocks as they form. This would appear to be what has 
happened to these fish. Upon arrival at IFT, Brisbane for processing these fish looked in 
poor condition, being covered in large amounts of sheet ice and discolouration. The 
texture results obtained are significantly softer than those obtained from April 2009 and no 
trends exist within the data set.  
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5.5 Field trip 5 (October 2009)  

5.5.1 Biological and Instron data 
Significant size differences were identified between males and females. However, 
differences in texture and muscle pH were not present or only slightly significant (Table 
10). 
 
Table 10. Means of measured parameters by sex on field trip 5 

Parameter Male (n=53) Female (n=56) Significance 
Weight (g) 1667.7a

(±32.75) 
1401.0b

(±31.86) 
p<0.001 

Fork Length (cm) 48.77a

(±0.37) 
45.43b

(±0.37) 
p<0.001 

pH (ultimate) 6.58a

(±0.013) 
6.53b

(±0.013) 
p=0.041 

Peak Force (N/g) 5.24b

(±0.201) 
5.87a

(±0.196) 
p=0.028 

Total Energy (mJ/g) 45.53 
(±1.73) 

47.46 
(±1.68) 

N.S. 

Means followed by a different letter are significantly different at the stated level. 
Standard errors are shown in brackets. 
 
Unlike previous trips (FT2 and FT3), significant differences were not found between the 
mean total energy values of male and female Saddletail. 
 
Significant differences were also found when comparing males and females from previous 
field trips from the trawl vessel FV Territory Leader. These results are summarised in 
Table 11. As with the analysis of results from field trip 3, fish less than 1KG were omitted.  
 
Table 11. Means of parameters by sex across field trips 2, 3 and 5 (fish > 1KG) 

 Males Females 

Par. 
Dec 08 
(n=54) 

Apr 09 
(n=39) 

Dec 09 
(n=53) 

sig. 
Dec 08 
(n=57) 

Apr 09 
(n=42) 

Dec 09 
(n=56) 

sig. 

Weight 
(g) 

1971.54a

(±51.42) 

2324.26a

(±43.65) 

1667.68b

(±51.90) 
p<0.001 

1806.33a

(±50.05) 

1699.64b

(±38.59) 

1401.05c

(±50.49) 
p<0.001 

Fork 
(cm) 

51.23b

(±0.56) 

54.37a

(±0.42) 

48.77c

(±0.57) 
p<0.001 

49.39a

 (±0.55) 

49.23a

(±0.40) 

45.43b

 (±0.55) 
p<0.001 

pH 
6.41c

(±0.02) 

6.46b

(±0.02) 

6.58a

(±0.02) 
p<0.001 

6.34c

(±0.02) 

6.41b

(±0.02) 

6.54a

(±0.02) 
p<0.001 

Peak 
force 
(N/g) 

4.75b

(±0.23) 

6.18a

(±0.23) 

5.24b

(±0.23) 
p<0.001 

5.79b

(±0.22) 

6.67a

(±0.28) 

5.87ab

(±0.22) 
p=0.041 

Total 
energy 
(mJ/g) 

48.66ab

(±2.19) 

63.14a

(±2.35) 

45.53b

(±2.21) 
p<0.001 

57.37a

(±2.13) 

58.29a

(±2.42) 

47.46b

(±2.15) 
p<0.001 

Means followed by a different letter are significantly different at the stated level. 
Standard errors are shown in brackets. 
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Significant differences were found in both texture parameters, but particularly in total 
energy. These differences appear to mirror those obtained from correlations with fork 
length data.  
 
Linear regression reveals a small but significant correlation between total energy and fork 
length in both males and females (Figure 32 and Figure 33). This relationship is 
consistent with those seen previously in this project.  
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Figure 32. Linear regression (with groups) of total energy and fork length for all males from 
FT2, FT3 and FT5 explaining 38.4% of variation 
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Figure 33. Linear regression (with groups) of total energy and fork length for all females 
from FT2, FT3 and FT5 explaining 30.5% of variation 
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5.5.2 Summary 
 

• Significant seasonal differences in texture previously identified were less 
significant with the inclusion of this data set (FT5). The influence of fish size on the 
previously identified seasonal differences cannot be ruled out. 

 
• A small but significant correlation between fork length and texture (total energy) 

has been consistently observed across 3 field trips and 2 seasons.  
 

• This trend suggests that fish age may be a contributing factor in cooked muscle 
texture of Saddletail.  
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5.6 All field trip summaries 

5.6.1 Field trip 1 
• Brine tank water temperature increased to almost 10°C under heavy load. 

However, this may be more likely to be an artefact of this fishing technique being 
employed than being due to inadequate capacity in the heat exchanger. 

 
• Fish chilling rates varied greatly. This may also be in part due to the nature of the 

fishing. However the extent of the variation in chilling rates is large. This suggests 
the volume of chilling media (brine) is insufficient, and circulation of the media 
inadequate to provide industry best practice for fresh chilled products.  

 
• Size or sex of fish was not a significant influence on texture of cooked samples.  

 
• Storage time on ice is a significant influence on cooked fillet texture. Ultimate 

muscle pH is also intrinsically linked into this relationship. However, the 
mechanism for this relationship is not clear. 

 
• Rigor development within this sample set of Saddletail snapper occurred primarily 

at the point of exhaustion of available ATP within the white muscle tissue. 
Therefore it is difficult to suggest that any ‘cold shock’ or cold shortening’ was 
being experienced by the fish during the first hours of chilling.  

 
•  Time taken for rigor to commence correlates to ultimate pH, but muscle ATP was 

not a significant influence in this study. This would appear to be a contradictory 
statement. However, a larger number of sampled fish may provide a more 
conclusive result and will be the aim of further field trips on fresh chilled vessels.  

 
• Saddletail experience severe symptoms of barotrauma including extensive internal 

haemorrhaging, which can greatly reduce fillet quality and market price. Methods 
to reduce this incidence should be trialled to allow any improvement in quality to 
be quantified and permit stakeholders to make sound commercial decisions on 
trap hauling practices.  

 
• The current method of bleeding these fish onboard this vessel have limited 

efficacy with preventing blood spotting in Saddletail muscle. 
 

5.6.2 Field trip 2 
Several significant results have emerged from this group of fish sampled.  
 

• Female fish were significantly tougher than male fish and significantly lower in 
ultimate pH.  

 
• Female fish were significantly smaller (both fork length and mass) than male fish. 

 
• Some females were found to contain higher levels of collagen than the males. 

However, this does not necessarily translate directly to a higher peak force value 
obtained from the cooked fish sample.  
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5.6.3 Field trip 3 
Field trip 3 (April 2009) has provided results enabling the identification of two significant 
trends within the full data set of the project to date.  
 

• Significant difference in texture measurements exist between Saddletail from early 
summer (early December 2008) and late autumn (late April 2009). This trend was 
more distinct in male fish than females. Although fish size may play a role in this 
difference, seasonal variation due to sexual maturity, spawning season or food 
availability cannot be ruled out. 

 
• A significant correlation between fork length, textural firmness (total energy) and 

heat insoluble collagen has been identified. This result suggests fish age may be 
an important contributing factor in the firmness of cooked Saddletail fillets.  

 

5.6.4 Field trip 4 
• Data from this set of fish yielded little in the way of significant results. No 

differences were found between the male and female fish for any observed 
parameter and no correlations were found between any set of parameters 

5.6.5 Field trip 5 
• Significant seasonal differences in texture previously identified were less 

significant with the inclusion of this data set (FT5). The influence of fish size on the 
previously identified seasonal differences cannot be ruled out. 

 
• A small but significant correlation between fork length and texture (total energy) 

has been consistently observed across 3 field trips and 2 seasons.  
 

• This trend suggests that fish age may be a contributing factor in cooked muscle 
texture of Saddletail.  
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5.7 Otolith examination for Saddletail age approximation 

5.7.1 Age approximation of Saddletail from Field Trip 3 (April 2009) 
All 101 fish from this field trip had both otoliths removed for determination of age by otolith 
banding increment. A summary of the age and fork length data is presented in Figure 34.  
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Figure 34. Fork length and age (otolith increment) for males and females from FT3 
 
There was no significant difference between the ages of males and females from this field 
trip. The mean age by otolith increment of all male Saddletail was 8.39 (±5.75SD) and 
females were 9.52 (±5.79SD). Ages for male Saddletail range from 1 to 21 and females 
range from 2 to 20.  
 
Linear regression (with groups) revealed a significant correlation (p<0.001) between total 
energy and age accounting for 72.8% of observed variation (Figure 35).  
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Figure 35. Total energy and age (otolith increment) for males (R2=0.75) and females 
(R2=0.71) from FT3 
 
This result demonstrates that fish age has a significant effect on the cooked texture of 
Saddletail. The other important finding (Figure 35) is that this correlation is consistent for 
both males and females of a similar age, even though males are significantly larger than 
females of the same age. Figure 36 demonstrates the relationship between heat insoluble 
collagen and fish age from samples collected from FT3.  
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Figure 36. Heat insoluble collagen and age (otolith increment) for males (R2=0.72) and 
females (R2=0.62) from FT3 (log scale trendlines) 
 
Previous analysis has identified a weak but significant relationship between cooked 
muscle texture (total energy) and heat insoluble collagen content of the muscle. The 
relationship presented in Figure 36 shows that insoluble collagen increases with age. This 
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suggests a possible mechanism to explain the increase of cooked muscle texture with 
age observed in Saddletail snapper. 
 

5.7.2 Age approximation of Saddletail from Field Trip 5 (October 2009) 
 
Otoliths were removed from all 109 Saddletail obtained from FT5. Otoliths were sectioned 
and imaged as outlined in the methods at Fisheries South, Deception Bay (DEEDI). Age 
and fork length data are presented in Figure 37.  
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Figure 37. Age and fork length data for male and female Saddletail from FT5 
 
Mean ages obtained from otoliths were 6.96 (±4.31SD) years for males and 8.71 
(±5.33SD) years for females. Male Saddletail ranged in age from 1 to 19 years and 
females from 2 to 24 years.  
 
Linear regression (with groups) revealed a significant correlation (p<0.001) between total 
energy and age accounting for 49.8% of observed variation (Figure 38).  
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Figure 38. Total energy and age (otolith increment) for males (R2=0.44) and females 
(R2=0.55) from FT5 
 
As previously identified from FT3, fish age is a significant driver in the firmness of cooked 
muscle texture of Saddletail. These results are consistent for males and females of the 
same age, as was also observed from FT3.  
 
However, fish age accounts for less than half of the variation observed in total energy 
from FT5, whereas age accounted for almost 73% of observed variation in total energy in 
Saddletail from FT3 (see Figure 35). Another seasonal influence appears to be exercising 
an effect upon texture quality. This effect may be the result of sexual maturity or seasonal 
food availability.  
 
Sexual activity at this time of year has been previously reported in Saddletail (Salini et al. 
2006) and sexual activity has also been associated with textural issues in other species 
(Ito et al. 1992). However food availability and feeding habits have also been associated 
with seasonal variation in fish quality (Love 1979). 
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5.7.3 Age and fork length data for FT3 and FT5 
Figure 39 Presents age and fork length data for both FT3 and FT5. 
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Figure 39. Age and fork length data for males and females from FT3 and FT5. 
 
The most significant trend from this data is that both males and females grow very little in 
fork length from approximately 7 years of age. This trend demonstrates that fork length is 
a poor indicator of age for this species.  
 

5.7.4 Summary of ageing results 
• Fish age has emerged as the single most significant single factor influencing the 

firmness of cooked Saddletail snapper. Males and females are significantly 
different sizes at similar ages, but their cooked texture is not significantly different.  

 
• The trend of increasing toughness with age corresponds with an increase in heat 

insoluble collagen content, without any significant increase in total collagen. This 
suggests that as fish age some of the heat soluble collagen in the muscle is 
becoming insoluble to heat, resulting in tougher cooked muscle texture. 

 
• This trend is not consistent across the seasons. Saddletail from December 

presented a far greater inconsistency in texture, with respect to age, than those 
obtained during April/May. A seasonal influence relating to sexual activity or 
feeding activity appears to be at work. 

 
• Fork length is a poor indicator of age for this species.  
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5.8 Collagen cross-linking determination (pyridinoline) 

5.8.1 Background 
Hydroxylysyl pyridinoline (PYD) is used in clinical biochemistry as a biomarker for bone 
tissue turnover and human collagen density determination (Tan et al. 2003). PYD has 
also been identified as influencing the texture of fresh and smoked Atlantic salmon (Li et 
al. 2005). PYD can form strong covalent bonds between the telopeptide and helical 
portion of the collagen molecule (Kuboki et al. 1993). Ando (2006) has also demonstrated 
that PYD is found in acid insoluble collagen at levels up to 200 times those found in acid 
soluble collagen. The helical structure of collagen can be seen in the electron 
micrographs (TEM) of Saddletail inter-muscular connective tissue below in Figure 40. 
 

 
Figure 40. Longitudinal and transverse sections of connective tissue from Saddletail 
snapper showing helical collagen fibres at 15K, 30K and 60K times magnification 
respectively (size bars = 500/200/100nm respectively) 

5.8.2 Results 
51 Saddletail previously assessed for collagen determination from FT3 had a additional 
tissue sample assessed for PYD using the modified method outlined by Li (2005). Linear 
regression identified a significant correlation (p<0.001) between PYD and total energy 
explaining 48.2% of observed variation (Figure 41). 
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Figure 41. Total energy and PYD for male (r2=0.56) and female (r2=0.49) Saddletail from FT3  
 
This result demonstrates the direct relationship of PYD cross-links to the cooked muscle 
firmness of Saddletail. However, PYD does not account for all variation observed and 
other influences are occurring. 
 
A similarly significant correlation (p<0.001) was found between the percentage of total 
collagen being heat insoluble with PYD content; explaining 53.1% of observed variation 
(Figure 42). 
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Figure 42. Heat insoluble collagen and PYD for male (r2=0.63) and female (r2=0.36) Saddletail 
from FT3 
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This demonstrates a role for PYD in the formation of heat insoluble collagen in Saddletail 
muscle. However, the relationship only describes a little over half the variation observed, 
suggesting other mechanisms at work beyond the scope of this analysis.  
 
Linear regression also revealed a significant correlation (p<0.001) between fish age and 
PYD content describing 49.5% of observed variation. Use of log curves on the graphed 
data produces more accurate trendlines consistent with biological ageing trendlines 
(Figure 43). 
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Figure 43. PYD content and age data for male (r2=0.73) and female (r2=0.59) Saddletail from 
FT3 

5.8.3 Summary 
• These results demonstrate a clear relationship between age and cooked muscle 

firmness in Saddletail snapper. These results also suggest a mechanism for this to 
occur.  

 
• As Saddletail age more of the collagen in the muscle tissue becomes cross-linked. 

This cross-linking renders the collagen insoluble to heat and prevents melting of 
collagen under normal cooking conditions. As the collagen remains intact after 
cooking, the integrity of the intra-muscle connective tissue remains intact and the 
cooked tissue is difficult to break apart during mastication. The net result is the 
sensation of toughness when eating. 
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5.9 Electron Microscopy  

5.9.1 Background 
Electron microscopy was employed in an attempt to obtain more conclusive 
understanding of the role of sarcomere length and investigate the possibility of ‘cold 
shortening’ of Saddletail muscle. Light and scanning electron microscopy (SEM) have 
previously been employed to investigate the role of sarcomere length in fresh and smoked 
Atlantic salmon (Sigurgisladottir et al. 2001).  
 
Tissue samples 6 Saddletail from FT2 and 8 from FT3 were sent Dr Deborah Stenzel at 
Queensland University of Technology (QUT) for analysis by transmission electron 
microscopy (TEM). Tissue samples were taken from the dorsal epaxial myotome and 
frozen at 29°C and transferred to QUT. Sarcomere length was measured the distance 
between z-bands TEM micrograph prints (see Figure 44). 
 

 
Figure 44. TEM Micrograph of Saddletail muscle fibre at 30K times magnification (Size bar 
denotes 200nm) 
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5.9.2 Results 
A summary of biological data and sarcomere length is presented in Table 12. 
 
Table 12. Biological data and sarcomere length as determined by TEM (FT2 and FT3) 

ID Wt (g) fork length 
(cm) 

pH 
(final) 

sex 
(M1 F2) 

Peak Force 
(N/g) 

Total energy 
(mJ/g) 

Sarc 

(µm) 

2026 2432 56.20 6.61 1 2.84 35.07 1.36 

2041 1684 48.50 6.53 1 3.24 40.44 1.66 

2049 1689 49.00 6.32 2 9.45 67.81 1.50 

2062 1905 52.50 6.33 2 8.75 91.02 1.13 

2084 1472 46.00 6.26 2 12.09 86.37 1.20 

2106 2351 52.50 6.24 1 3.61 34.11 2.05 

3016 821 37.00 6.43 1 5.59 29.04 1.60 

3024 912 38.50 6.62 1 3.11 17.71 1.47 

3041 913 39.00 6.39 1 8.42 40.80 1.37 

3054 1547 47.00 6.41 2 3.32 25.41 1.57 

3055 1709 49.50 6.43 2 3.12 33.23 1.50 

3071 2152 54.00 6.35 2 12.67 109.37 1.23 

3073 2173 52.50 6.34 1 11.28 103.56 1.27 

3096 1746 48.50 6.58 2 3.66 35.26 1.23 

 
The mean sarcomere length for all fish was 1.44µm (±0.24 SD). This is shorter than most 
commercial species. Atlantic salmon (Salmo salar) has been shown to have an average 
sarcomere length of 2.2µm (Sigurgisladottir et al. 2001), Mackerel (Scomber japonicus) 
has been reported at 1.9 µm (Shindo et al. 1986). And Atlantic halibut (Hippoglossus 
hippoglossus) has been reported at 1.6µm (Olsson et al. 2003).  
 
Linear regression analysis reveals a weak but significant relationship (p=0.028) between 
sarcomere length and total energy explaining 28.6% of observed variation. This 
relationship is graphically represented in Figure 45. 
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Figure 45. Sarcomere length and total energy for Saddletail from FT2 and FT3 (r2=0.34)  
 
Only a small number of samples were possible for this analysis as the process is cost 
inhibitive for large scale sarcomere determinations. Hence, little weight can be placed on 
the significance of the statistical analysis presented here.  
 
However enough of a trend exists to warrant further investigation, particularly in view of 
the inefficiencies already identified in chilling systems onboard FV Starlight used for FT2. 
Repeating temperature profiling of fish chilling rates with best industry practice and further 
sarcomere determinations would be worthwhile in building a more complete 
understanding of the potential for this species to experience ‘cold shock’. 
 
An observation made by Dr Stenzel was that the tissue itself was highly resilient to the 
trauma of freezing. This fish tissue used for microscopy was frozen once onboard as a 
whole fish, thawed prior to processing, and refrozen for storage and transport to QUT. An 
image of the tissue on lower magnification is presented in Figure 46, and shows integrity 
of muscle structure with minimal degradation.  
 

Forrest and Poole (2010)   52  



TFS in Saddletail snapper 

 
Figure 46. TEM micrograph of Saddletail muscle tissue at 5K times magnification (size bar 
denotes 1µm)  
 
Dr Stenzel suggested the level of integrity of the muscle after multiple freezing events was 
very unusual and most unlike mammalian tissue. Most mammalian tissue is highly 
disrupted by freezing. However, as can be seen in Figure 46 individual muscle cells are 
intact and very little separation between cells has occurred.  
 
This observation suggests intercellular connective tissue is difficult to disrupt with 
freezing. The muscle cells themselves contain significant microstructure capable of 
withstanding multiple freezing events and little evidence of autolytic degradation, as has 
been observed in other species (Bremner and Hallett 1985).  
 
The role of this microstructure in the eating quality or perceived toughness of cooked 
muscle is difficult to extrapolate without undertaking trained taste panel assessments. 
However, the muscle tissue observed here displays a high level of structural integrity that 
may flow on to exercise an influence upon cooked muscle texture of this species. 
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6 Benefits and adoption 
Depressed market confidence due to perceived issues of toughness has been the primary 
issue driving the undervaluation of this species throughout Australia. The findings from 
this research have provided previously unknown information on the likely cause of TFS. 
This will benefit all stakeholders throughout the value chain. Key changes in onboard 
handling protocols cannot yet be developed as further seasonal data needs to be 
obtained to confirm the current understanding.  
 
Key Industry stakeholders were co-investigators on this project and were actively involved 
with the planning and undertaking of the research. Stakeholder meetings held in May and 
November of 2009 kept participants updated on results and provided opportunity to 
discuss future research direction. Further communications to summarise all findings will 
be conducted in person to the co-investigators at finalisation of this project. 
 
The new information that fish age is a significant contributing factor to the textural 
qualities of cooked Saddletail provides a basis for sound commercial business decisions. 
However, significant seasonal influences have also been identified and variation between 
fish toughness cannot be wholly attributed to fish age. 
 
Fishing vessel deck practices, particularly fish chilling practices have been identified as 
varying greatly in efficacy, but were found to not contribute to increased cooked muscle 
firmness. Through industry meetings, the issues with onboard chilling have been 
conveyed to fishing vessel operators and methods of overcoming these difficulties have 
been discussed. Improvements in chilling rates of fish onboard will improve product shelf-
life throughout the value chain of the species.  
 
The results obtained so far enable stakeholders to reconsider how best to market their 
product with respect to age. Larger fish that may be more likely to exhibit toughness 
should not be marketed to high value food service suppliers where a premium is received 
for high eating quality. These customers should only be supplied with fish of a smaller 
size where quality is paramount to protect market confidence. 
 
Removal of larger and older fish that are more likely to be tougher upon cooking will 
improve the reputation of the species as a premium table fish. The direct result of this 
research will be an increase in product confidence.  
 
During the time of conducting this project one industry stakeholder advised that a 
significant shift in market demand has already taken place for this species. Major 
supermarket chains are once again placing orders for the species, resulting in the species 
becoming a significant product (by volume) throughout the two dominant supermarket 
chains in Queensland, New South Wales and Victoria. This increase in demand has 
resulted in an increase in value by 15%. Increased product confidence will allow fishery 
operators and wholesalers to demand a higher premium for this quality Australian table 
fish. 
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7 Further Development 
Further developments of the findings from this research are centred on five key areas: 

7.1 Segregation of fish with high risk of ‘toughness’ 
Tools and strategies are required for identifying a size or age of Saddletail where the risk 
of supplying potentially ‘tough’ product to any given market is reduced to an acceptable 
level. 

7.2 What is ‘acceptable’ firmness? 
The development of a quantified acceptable firmness is beyond the scope of this current 
project. However such a concept could be obtained by use of an appropriately designed 
consumer acceptability test involving a minimum of 96 consumers. The result of which 
would provide significant information as to the consumer preferences for cooked fish 
texture and a point at which cooked fish becomes unacceptable to be reasonably defined. 

7.3 Simplified identification of sex 
 We have so far identified a potential firmness level (80mJ/g total energy) past which risks 
of tough texture are high. Consumer preference determination would also provide greater 
weight to this concept. 
 
 However, the application of size limits is complicated by the fact that males are much 
larger fish than females. As a result, the size limit for male would be 55cm and females 
would be 50cm. 
 
The successful application of these or any other consumer defined limits would require 
the development of a simple, non-invasive, and easy to use method of identifying the sex 
of a whole Saddletail. At the writing of this the authors are unaware of such a method.  
 
Consultation with the three fisheries departments involved with the management of this 
species (WA, NT and QLD) will be required for the successful development of such a 
method. Whatever technology is employed will need to be robust, affordable and simple 
enough for use onboard all types of fishing vessel involved in this fishery. 
 

7.4 Influence of season on texture 
Seasonality appeared to exert a significant influence on cooked muscle texture. Male 
Saddletail landed in December (2008 and 2009) were significantly softer than those 
landed in April (2009). These differences were not significant for females and variation in 
fish size is also a complicating factor. Total collagen levels for males and females were 
also significant across the seasons (December 2008/April 2009).  
 
Further sampling across the seasons is required to establish the presence or otherwise of 
seasonal influences. Understanding the mechanism of this variability will enable 
increased accuracy when applying size limits to certain markets as these may become 
more or less important during periods of peak seasonal variation. 

7.5 Synergistic effects of age and inappropriate chilling 
Chilling practices observed during this research were found to vary greatly in efficacy. 
This has made identification of the incidence of a genuine and repeatable ‘cold shock’ 
event very difficult.  
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Investigation of this phenomenon using industry best practice chilling equipment and 
empirical methods is still required. This is particularly important to the possible 
compounding of ‘cold shortening’ in older fish (greater than 10 years) that are already at 
high risk of exhibiting cooked muscle toughness. 
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8 Planned Outcomes 
The planned outcome from this research work was the identification of factors, both on-
board handling and biological which influenced the development of Tough Fish 
Syndrome.  
 
Handling practices onboard the fishing vessels observed during the course of this work 
proved not to significantly contribute to the development of TFS in Saddletail snapper. 
These findings have been presented and discussed with co-investigators and other 
industry stakeholders at meetings in May and November of 2009. 
 
Examinations of biological factors have identified 2 significant causes of firmness in 
cooked Saddletail snapper. Fish age has been identified as being the primary driver of 
cooked muscle firmness in Saddletail snapper. This fact is complicated by the significant 
size difference between male and female Saddletail. For this species age does not 
correlate with fork length after the first 5 years for females, and 7 years for males. 
 
Preventing the older fish most at risk of developing excessive toughness from entering the 
premium supply chain is intrinsic to the restoration of confidence in this species. This may 
also provide opportunities to develop value-added products with older fish that may be 
redirected to more suitable markets in Australia or overseas. Industry partners are 
currently being consulted in how best to implement these measures.  
 
Successful implementation of these measures will restore consumer confidence in the 
species as a quality table fish. This will result in improved returns to stakeholders, an 
increase in the value of the fishery, and improving sustainability of the fishery and its 
operators.  
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9 Conclusions 
9.1 On-board deck practices 
Handling practices onboard fishing vessels, particularly chilling methods have been 
identified as being inconsistent and varying greatly in efficacy. Chilling rates of Saddletail 
snapper varied greatly and refrigeration systems struggled to maintain brine water 
temperatures below 5°C under heavy load. Greater efficiency in chilling would result in 
longer shelf-life of whole fish within the entire catch. 
 
However, these practices did not lead to observation of any direct influence over to 
cooked muscle texture of the species. The development of ‘cold shock’ or ‘cold 
shortening’ to a level that may influence cooked muscle texture has not been identified 
within the course of this work.  
 
Observed stiffening of Saddletail during chilling coincided with the exhaustion of available 
ATP with the fast twitch muscle. However, the primary driver of increasing firmness 
identified in this research was not a product of excessively cold chilling practices. 
 

9.2 Biological factors influencing Saddletail texture. 

9.2.1 The effect of age on cooked muscle texture 
This work has identified fish age as being the primary driver of increased firmness of 
cooked muscle texture in Saddletail snapper. As part of the aging process, hydroxylysyl-
pyridinoline cross-links are formed between collagen fibres. The formation of these cross-
links provides collagen fibres in the muscle fibre bundles with a greatly increased 
resistance to melting under heat conditions.  
 
The rate of collagen cross-link formation during the lifespan of Saddletail appears to be 
consistent for both males and females. So at first glance, the simplest commercial 
solution would be to establish a size limit to minimise the risk of older fish entering the 
supply chain, and implementing this limit throughout the fishery.  
 
Male Saddletail grow significantly larger than females. From the data we have collected, a 
reasonable size limit for female Saddletail that would reduce the risk of tough muscle 
texture would be 50cm fork length. Female Saddletail of 50cm fork length could be 
anything from 5 to 20 years of age. The same limit for male fish would exclude up to 70% 
of the male catch; as the majority of male fish have attained 50cm in fork length within 5 
years.  
 
Any size limits would be required to be sex specific. The identification of fish sexes either 
onboard, or during unload and processing will present a new set of challenges and 
complexities to fishing operations.  
 
Implementing any size limits on fish to particular markets or wholesalers is also a 
commercial decision beyond the realms of this study. However consultation with industry 
stakeholders has commenced with the aim of achieving consensus with the industry to 
approach this issues. 
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9.2.2 Seasonal variation in texture 
Significant seasonal variation in cooked muscle texture was identified in Saddletail 
snapper. Male fish were more significantly different than female fish between the 
seasons. However, male fish were more consistent within a season, and female fish were 
highly variable regardless of season.  
 
Collagen content was also significantly different across the seasons. And as with texture, 
the male fish displayed greater differences across the season, but less variability within 
the season, than did females.  
 
Further work is required in this field to establish exactly the drivers for this variation. 
Changes in cooked muscle firmness could be the result of issues of food availability or 
gonadotrophic development. Such variation has significant consequences for any self-
imposed size limits of fish to specific premium markets. This is especially important for 
male fish due to their large size, and large observed variation in cooked muscle texture 
across the seasons. 
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