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Two distinct classes of QTL determine rust
resistance in sorghum
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Abstract

Background: Agriculture is facing enormous challenges to feed a growing population in the face of rapidly
evolving pests and pathogens. The rusts, in particular, are a major pathogen of cereal crops with the potential to
cause large reductions in yield. Improving stable disease resistance is an on-going major and challenging focus for
many plant breeding programs, due to the rapidly evolving nature of the pathogen. Sorghum is a major summer
cereal crop that is also a host for a rust pathogen Puccinia purpurea, which occurs in almost all sorghum growing
areas of the world, causing direct and indirect yield losses in sorghum worldwide, however knowledge about its
genetic control is still limited. In order to further investigate this issue, QTL and association mapping methods were
implemented to study rust resistance in three bi-parental populations and an association mapping set of elite
breeding lines in different environments.

Results: In total, 64 significant or highly significant QTL and 21 suggestive rust resistance QTL were identified
representing 55 unique genomic regions. Comparisons across populations within the current study and with rust
QTL identified previously in both sorghum and maize revealed a high degree of correspondence in QTL location.
Negative phenotypic correlations were observed between rust, maturity and height, indicating a trend for both
early maturing and shorter genotypes to be more susceptible to rust.

Conclusions: The significant amount of QTL co-location across traits, in addition to the consistency in the direction
of QTL allele effects, has provided evidence to support pleiotropic QTL action across rust, height, maturity and stay-green,
supporting the role of carbon stress in susceptibility to rust. Classical rust resistance QTL regions that did not co-locate with
height, maturity or stay-green QTL were found to be significantly enriched for the defence-related NBS-encoding gene
family, in contrast to the lack of defence-related gene enrichment in multi-trait effect rust resistance QTL. The
distinction of disease resistance QTL hot-spots, enriched with defence-related gene families from QTL which impact
on development and partitioning, provides plant breeders with knowledge which will allow for fast-tracking varieties
with both durable pathogen resistance and appropriate adaptive traits.
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Background
Agriculture is facing enormous challenges to feed a grow-
ing population in the face of rapidly evolving pests and
pathogens. A critical component for addressing these chal-
lenges is to breed for increased disease resistance in crop
species to avoid the need for costly and potentially environ-
mentally damaging pesticides. The major cereal crops feed
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over two thirds of the world’s population and yet the pro-
duction of these crops continues to be challenged by pests
and diseases with at least 30% of global food production
lost to pathogens [1,2]. Sorghum (Sorghum bicolor (L.)
Moench) is a C4 cereal grain crop that provides staple food
for over 500 million people in the semi-arid tropics of
Africa and Asia, in addition to being an important source
of feed for livestock. Amongst the cereals, sorghum is one
of the best adapted to drought and high temperatures, and
will play an increasingly important role in meeting the
challenges of feeding the world’s growing population. In
recent times, sorghum has become an attractive feedstock
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alternative for use in the production of bio-ethanol fuel.
However, its productivity is often jeopardised by foliar
fungal diseases. Among the fungal diseases, leaf rust
causes significant crop damage in sorghum [3], with rust
diseases being among the most widespread and economic-
ally important diseases of cereals world-wide, e.g. [4].
Sorghum rust, caused by Puccinia purpurea Cooke, is

widely distributed and occurs in almost all sorghum grow-
ing areas of the world [5]. Leaf rust frequently predisposes
sorghum to other major diseases and agronomic prob-
lems, such as the Fusarium stalk rots, charcoal rot,
grain mould, anthracnose and lodging [6-8]. In addition to
indirect yield losses through predisposition to other dis-
eases, sorghum leaf rust can cause direct yield losses of up
to 50% depending on favourable environmental conditions
for disease development and cultivar susceptibility [9]. In
Australia, leaf rust has the most significant impact on
grain yield of all fungal leaf diseases, causing up to 13%
yield losses [10]. The disease is seen every year on most
sorghum crops, usually after flowering, when the leaves
may be covered by the uredinia and telia of the fungus [6].
Due to the influence of environmental and climatic condi-
tions on the development of the disease and the cost of
fungicides, genetic resistance offers the best long-term so-
lution for the management of leaf rust in sorghum. As
such, better understanding of the genetic control of leaf
rust resistance would provide sorghum breeders with crit-
ical knowledge to develop new resistant varieties.
The genetic architecture of complex traits is frequently

controlled by multiple genes or alleles that vary with
genetic background [11]. A single mapping population
study can therefore explain only a small part of the glo-
bal genetic architecture of a complex trait and limits the
identification of potential genomic regions due to the
absence or monomorphic presence of alleles contribut-
ing to the genetic control of a complex trait such as leaf
rust resistance [12]. Initial studies into the inheritance of
leaf rust resistance in sorghum identified a single domin-
ant gene, Pu, conferring rust resistance in sweet sorghum
crosses [13]. However, subsequent studies identified rust
resistance to be polygenic in nature, with multiple genes
and genomic regions identified [3,5,7,14,15]. Therefore,
Table 1 Predicted mean (X�) values of rust infection score, hei
and parental lines in the HRS10 trial, plus the standard devia
population

Population Trait X�parentA X�parentB

S2 Rust 3.50 8.00

S4 Rust 7.75 4.00

S2 DTF 84.50 66.00

S4 DTF 60.25 62.25

S2 HGT 192.25 85

S4 HGT 166 94.75
the comparison of QTL detected in multiple populations
and multiple environments is particularly important for
dissecting the genetic control of polygenic disease resist-
ance and permits investigation of the degree to which the
underlying genes contribute to variation in the phenotype
under different genetic backgrounds and environmental
conditions [16]. Furthermore, traits associated with the
physiological development and age of the plant have been
implicated in indirectly impacting disease response, with
previous studies demonstrating that growth stage can im-
pact on the degree of disease susceptibility in a range of
crops e.g. [17-19]. Therefore, a multi-trait analysis ap-
proach enables the investigation of potentially pleiotropic
disease response QTL.
In this study, a combination of conventional QTL ana-

lysis and genome wide association analysis (GWAS) was
used to determine the genetic architecture of leaf rust
resistance in sorghum using three bi-parental mapping
populations and a set of elite breeding lines phenotyped
in hybrid combination with multiple testers. All popula-
tions were phenotyped not only for rust infection re-
sponse, but also for height and maturity. Further, the
availability of the sorghum whole genome sequence [20]
and genetic linkage map-based resources, e.g. [21,22], pro-
vided opportunities to compare QTL for rust resistance
identified in the current study with previously reported
QTL in both sorghum and maize, in addition to previously
reported gene families associated with disease resistance.

Results
Phenotypic data variability
The predicted means, ranges, and standard deviations
for the traits measured for the progeny of the two RIL
populations are detailed in Table 1. Rust infection re-
sponses of the five parents in the three bi-parental popu-
lations are presented in Additional file 1: Figure S1.
Heritability for rust resistance was high in all three bi-
parental populations (79.4% in S2; 77.3% in S4; 58.6% in
S7). In the S2 population, the female parent (ICSV745)
had higher levels of rust resistance than the male parent
(R890562); 3.5 versus 8. In the S4 population, the male
parent (R931945-2-2) exhibited partial resistance to rust
ght and maturity for the two RIL populations (S2 and S4)
tion (σ) and range (minimum and maximum) for each

X�progeny σprogeny Minprogeny Maxprogeny

7.10 0.97 4.48 8.85

6.99 1.01 3.99 8.70

62.16 3.15 54.42 74.08

58.76 2.54 53.23 66.29

98.72 12.73 77.26 143.03

123.62 16.37 87.70 163.04



Wang et al. BMC Plant Biology  (2014) 14:366 Page 3 of 14
(4), in contrast to the high level of susceptibility (7.75)
exhibited by the female parent (IS8525). For S2, the rust re-
sistant parent ICSV745 was much later maturing (84.5 days
to flowering versus 66) and much taller (192 cm versus
85 cm) than R890562. Between trait correlation was low
(Additional file 2: Table S1). For S4, R931945-2-2 was
slightly later maturing and shorter than IS8525. The
RILs showed transgressive segregation for all three traits.
The predicted means, ranges, and standard deviations for
all three traits scored in the S7 population are detailed in
Table 2. The S. bicolor subsp. verticilliflorum parent could
not be grown in field trials because of its weedy nature.
The predicted means, ranges, and standard deviations for
the AYT association mapping set across the 3 male testers
and 2 location combinations are detailed in Additional
file 2: Table S2. Heritability for rust resistance was found
to be higher at the Liverpool Plains site (69.7%), in
comparison to the Dalby site (38.6%). The relative rust
pressure was found to be reduced at the Dalby site, in
comparison to the other trials included in the study,
through the comparison of rust response scores of check
genotypes (Additional file 2: Table S3). The trials were not
highly correlated (Additional file 2: Table S1); genotype ×
environment interaction was observed using a second
order factor analytic (FA) site structure where only 68%
of the variation was accounted for by the first factor
(Additional file 1: Figure S2), and additionally correla-
tions across sites and within each male tester geno-
types were higher than on a per site basis (average R2

of 0.68 across the 3 male testers versus 0.62 across the
2 environments).
QTL analysis
The results of the QTL analysis for each trait in each
population are shown in Tables 3, 4, and 5 (Additional
file 2: Tables S4-S7; Additional file 1: Figures S3-S5).
Table 2 Predicted mean (X�) values of rust infection score,
height and maturity for the BC1F4 population (S7) across
multiple trials, plus the standard deviation (σ) and range
(minimum and maximum)

Trial Trait X�progeny σprogeny Minprogeny Maxprogeny

BIL2003IRR Rust 5.85 0.39 4.80 6.96

BIL2003nonIRR Rust 6.20 0.37 5.16 7.18

BIL2003overall Rust 6.02 0.38 5.01 7.07

BIL2003IRR DTF 56.11 0.89 53.54 59.86

BIL2003nonIRR DTF 57.32 0.70 55.21 60.24

BIL2003overall DTF 60.21 1.28 56.73 66.04

BIL2003IRR HGT 120.34 6.39 95.74 146.04

BIL2003nonIRR HGT 118.33 6.97 93.10 151.14

BIL2003overall HGT 115.63 4.08 98.06 127.41
Rust resistance
In population S2, CIM identified two highly significant
rust resistance QTL, one on SBI-05 and one on SBI-08-
II (Table 3; Additional file 1: Figure S3). In addition,
three suggestive QTL were detected on SBI-02, SBI-06-I
and SBI-08-I. Individual QTL explained between 5.6 to
18.5% of phenotypic variation in response to rust, with a
cumulative total of 53.7%. The majority of QTL (the three
QTL on SBI-02, SBI-06-I and SBI-08-II) had positive al-
lelic effects indicating that the ICSV745 QTL alleles pre-
dominately contributed to an increase in rust resistance.
In population S4, a total of 9 QTL for rust resistance

were identified located on 6 chromosomes. One highly
significant and three significant QTL were identified by
CIM analysis on SBI-01, SBI-03, SBI-04 and SBI-10
(Table 4; Additional file 1: Figure S4). Five suggestive
QTL were identified on SBI-01, SBI-02, SBI-04 and SBI-
09. Individual QTL explained between 2.5 to 10.4% of
phenotypic variation, with a cumulative total of 42.1%.
Six of the 9 rust resistance QTL had negative effects, in-
dicating that parent R931945-2-2 QTL alleles predomin-
ately contributed to an increase in rust resistance.
In population S7, fifteen genomic regions were detected

with significant marker trait associations (p ≤ 0.001) on
eight chromosomes (Table 5; Additional file 1: Figure S5).
A further four genomic regions were detected with highly
significant marker trait associations (p ≤ 0.0001). The
majority (12/19) of the identified QTL had negative allele
effects indicating that the S. bicolor subsp. verticilliflorum
QTL alleles predominantly contributed to an increase in
rust resistance.
In the AYT association mapping set, 52 genomic regions

were identified with suggestive marker trait associations
in at least one of the 6 tester/location combinations
(p ≤ 0.0001), with over half (28) identified as significant
in two or more of the tester/location combinations. To
combine the results of the association mapping analyses
across the six male tester and location combinations, the
number of tester/location combinations with a significant
marker trait association was calculated for each marker
(Additional file 2: Table S4) and plotted against the sor-
ghum consensus map based on a sliding window of 2 cM
with a step size of 0.5 cM (Figure 1). Of the 52 QTL iden-
tified, 13 were identified in a single tester/location com-
bination only and hence can be considered as suggestive
QTL regions. Just over 10% (6/52) of the QTL were
influenced by the genetic background, being identi-
fied only with specific male testers across both loca-
tions (e.g. QRustR_AYT_9.1 and QRustR_AYT_10.5 were
identified only in combination with male tester R995248
across both sites). A further 21 QTL (40%) were location-
specific, being identified only in one location, however
these included the 13 suggestive QTL only identified
in a single tester/location combination. Three QTL were



Table 3 Summary of rust resistance (QRustR), maturity (QDTF) and height (QHGT) QTL identified in the S2 population,
detailing the QTL position, 2-LOD confidence interval (CI), flanking markers, peak LOD value, total trait variance
explained (R2), additive effect, and significance level

QTL ID LG Peak cMa CI (cM) Flanking markers LOD R2b Additivec Sigd

QRustR_S2_2.1 SBI-02 93.81 91.5-106.2 Str66/SG38 2.32 5.97 0.316 *

QRustR_S2_5.1 SBI-05 73.01 45.81-73.01 txs387c/sPb-5892 5.18 15.57 −0.502 ***

QRustR_S2_6.1 SBI-06-I 6.41 4.41-6.41 MT2/cdo456 1.97 5.59 0.336 *

QRustR_S2_8.1 SBI-08-I 0 0-8.91 sPb-9299/RG8167 2.84 8.13 −0.367 *

QRustR_S2_8.2 SBI-08-II 3.71 0-18.4 sPb-7823/sPb-1291 6.11 18.47 0.568 ***

QDTF_S2_3.1 SBI-03 20.8 13-28.4 SSCIR78/sPb-2309 1.87 8.26 0.921 *

QDTF_S2_3.2 SBI-03 211 210.2-217 ST329r/ST1740 2.62 7.41 0.912 *

QDTF_S2_4.1 SBI-04 2.9 0-12.32 ST1163-1/sPb-9468 2.35 7.84 0.936 *

QDTF_S2_5.1 SBI-05 68 64.6-77.73 txs387c/sPb-5892 2.99 10.43 1.031 *

QDTF_S2_10.1 SBI-10 76.5 75.2-88.73 txs558/GE37 1.97 6.17 0.815 *

QHGT_S2_3.1 SBI-03 107.1 97.6-114.4 ST458/sPb-8349 2.92 6.80 3.585 *

QHGT_S2_6.1 SBI-06-I 18.7 0-39 cdo456/ST1807 3.01 17.44 −5.535 *

QHGT_S2_7.1 SBI-07 18.8 14.8-33.6 txp312/FC20 1.68 3.69 −2.504 *

QHGT_S2_9.1 SBI-09 22.5 20.7-25 txs307b/txs1015 4.99 11.44 −4.581 **
aPeak position in cM based on the S2 genetic linkage map; bThe amount of total trait variance explained by a QTL at this locus, as %; cThe allelic effects are
calculated as the effect of substitution of AA (ICSV745) allele by BB (R890562) allele; d*Suggestive (LOD ≥ 2); **Significant (LOD ≥ 3); ***Highly significant (LOD ≥ 5).

Table 4 Summary of rust resistance (QRustR), maturity (QDTF) and height (QHGT) QTL identified in the S4 population,
detailing the QTL position, 2-LOD confidence interval (CI), flanking markers, peak LOD value, total trait variance
explained (R2), additive effect, and significance level

QTL ID LG Peak a CI (cM) Flanking markers LOD R2b Additivec Sigd

QRustR_S4_1.1 SBI-01 88.69 82.1-90 1892398|F|0/1885605|F|0 1.98 2.98 0.221 *

QRustR_S4_1.2 SBI-01 221.1 212.9-231.9 2651978|F|0/1957225|F|0 7.35 10.40 0.379 ***

QRustR_S4_2.1 SBI-02 25.03 25.03-34.02 1945354|F|0/1935207|F|0 2.36 3.04 0.209 *

QRustR_S4_2.2 SBI-02 110.3 107.3-114 1942866|F|0/1944964|F|0 1.96 2.53 −0.190 *

QRustR_S4_3.1 SBI-03 82.74 74.05-86.3 1949016|F|0/1945627|F|0 4.41 6.07 −0.294 **

QRustR_S4_4.1 SBI-04 8.2 5.8-15.3 2207675|F|0/2663674|F|0 4.47 6.21 −0.296 **

QRustR_S4_4.2 SBI-04 76.97 74.7-78.9 1921138|F|0/2655283|F|0 2.03 2.93 −0.207 *

QRustR_S4_9.1 SBI-09 71.01 69-73.6 2657729|F|0/1950055|F|0 2.08 2.69 −0.220 *

QRustR_S4_10.1 SBI-10 160.9 153.4-166.5 1925698|F|0/2644849|F|0 3.81 5.21 −0.277 **

QDTF_S4_1.1 SBI-01 39.5 39.5 1923269|F|0/2645848|F|0 2.08 4.86 −0.567 *

QDTF_S4_2.1 SBI-02 139.4 131.0-142.7 2756003|F|0/1952851|F|0 2.17 5.43 0.578 *

QDTF_S4_3.1 SBI-03 151.6 150.6-152.5 2653022|F|0/2650636|F|0 2.63 6.40 0.638 *

QDTF_S4_6.1 SBI-06 20.6 16.6-29.8 2657488|F|0/1896474|F|0 6.09 23.08 −1.366 ***

QDTF_S4_10.1 SBI-10 101.3 85.1-104.7 1905915|F|0/2656295|F|0 5.11 13.77 0.926 ***

QHGT_S4_1.1 SBI-01 227.1 216.4-228.9 2653465|F|0/1944489|F|0 2.38 4.46 −3.498 *

QHGT_S4_4.1 SBI-04 28.9 28.9-31.9 2653424|F|0/2645563|F|0 2.24 4.75 3.819 *

QHGT_S4_5.1 SBI-05 49 48.5-54.8 2652538|F|0/2675950|F|0 2.68 5.96 −4.142 *

QHGT_S4_6.1 SBI-06 38.3 33.1-49.32 2650292|F|0/1919341|F|0 6.36 13.73 −6.344 ***

QHGT_S4_7.1 SBI-07 75.1 63.4-83.5 1923401|F|0/2647631|F|0 5.53 12.65 −6.444 ***

QHGT_S4_9.1 SBI-09 134.9 123.9-142.7 2648081|F|0/2652606|F|0 7.27 16.38 −6.913 ***
aPeak position in cM based on the S4 genetic linkage map; bThe amount of total trait variance explained by a QTL at this locus, as %; cThe allelic effects are
calculated as the effect of substitution of AA (IS8525) allele by BB (R931945-2-2) allele; d*Suggestive (LOD ≥ 2); **Significant (LOD ≥ 3); ***Highly
significant (LOD ≥ 5).
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Table 5 Summary of rust resistance QTL identified in the
S7 population detailing the QTL location on consensus
map, additive effect and significance level across 2 sites
(BIL03IRR and BIL03nonIRR and the combined analysis,
BIL03overall)

Allele effectsb

QTL ID LG Peak cM a BIL03IRR BIL03nonIRR BIL03overall

QRustR_S7_1.1 1 19.94 -0.170** NS NS

QRustR_S7_1.2 1 61.5 0.245** NS NS

QRustR_S7_1.3 1 151.33 -0.133** NS NS

QRustR_S7_2.1 2 144.02 0.195** NS NS

QRustR_S7_3.1 3 10.58 0.191** NS NS

QRustR_S7_3.2 3 107.3014 -0.225** -0.122** -0.119**

QRustR_S7_3.3 3 137.16 -0.129** NS NS

QRustR_S7_4.1 4 71.44 0.169*** 0.148*** 0.150***

QRustR_S7_4.2 4 82.8 0.303** 0.200*** 0.202***

QRustR_S7_4.3 4 95.7 NS 0.122** 0.125**

QRustR_S7_5.1 5 75.65 -0.223** NS NS

QRustR_S7_7.1 7 131.58 NS 0.133** NS

QRustR_S7_8.1 8 70.7 -0.221*** -0.165*** -0.159***

QRustR_S7_9.1 9 52.72 NS -0.127** -0.169**

QRustR_S7_9.2 9 87.27 NS -0.145** -0.146**

QRustR_S7_9.3 9 108.8 NS -0.118** -0.111**

QRustR_S7_10.1 10 59.84 NS -0.124** -0.121**

QRustR_S7_10.2 10 75.9 NS -0.129** -0.137***

QRustR_S7_10.3 10 103.29 -0.152** NS NS
aPeak position with maximum –log10P;

bThe allelic effects are calculated as the
effect of substitution of AA (R931945-2-2) allele by BB (S. bicolor subsp.
verticilliflorum) allele. NS: not significant; **Significant (−log10P ≥ 3); ***Highly
significant (−log10P ≥ 4).
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identified in all three male tester combinations at a single
site only (QRustR_AYT_1.8, QRustR_AYT_4.4, QRustR_
AYT_6.4 identified in the Dalby site only). A further three
QTL were identified in both sites and across all male
tester combinations (QRustR_AYT_2.1, QRustR_AYT_6.5,
QRustR_AYT_10.2). The total number of QTL identified
with the male tester R986087-2-4-1, across both locations,
was almost 50% higher than with either of the other two
male testers, R993396 and R995248; 64 QTL vs 41 QTL
vs 45 QTL respectively. The male line, R986087-2-4-1 was
produced from a cross between R931945-2-2 and SC170-
6-17; R931945-2-2 being a parental line of S4 and S7 pop-
ulations. Of the 28 rust resistance QTL identified in both
S4 and S7, 13 were derived from R931945-2-2. The graph-
ical genotype of R986087-2-4-1 based on previously
generated GBS data (data not shown) indicated that
R986087-2-4-1 was identical by descent (IBD) to R931945-
2-2 in 7 of these 13 QTL regions. In all 7 of these regions,
a QTL was also identified in the AYT populations with the
R986087-2-4-1 tester.
Maturity
In the S2 population, five suggestive QTL for maturity
were identified located on four chromosomes (SBI-03,
SBI-04, SBI-05 and SBI-10), individually explaining between
6.2 to 10.4% of the phenotypic variation, with a cumulative
total of 40.1% (Table 3; Additional file 1: Figure S3). The ma-
turity QTL on SBI-05 co-located with the highly significant
rust resistance QTL (QRustR_S2_5.1) in the same popula-
tion (Χ2 p-value <0.0001), with the R890562 alleles contrib-
uting towards lateness in maturity and rust resistance. In the
S4 population, two highly significant QTL on SBI-06 and
SBI-10 were identified, with a cumulative total of 36.9% of
the phenotypic variation explained (Table 4; Additional
file 1: Figure S4). Three additional suggestive QTL were
identified on SBI-01, SBI-02 and SBI-03, individually
explaining between 4.9 to 6.4% of the phenotypic vari-
ation. None of the maturity QTL co-located with rust
QTL in the same population. Both positive and nega-
tive additive effects were observed, indicating that the
R931945-2-2 parent had alleles contributing to both
an increase and a decrease in maturity. In S7, 16 highly
significant QTL were located on eight chromosomes
(Additional file 2: Table S5). Fourteen of the 16 QTL
had positive allele effects indicating that the S. bicolor
subsp. verticilliflorum QTL alleles predominantly contrib-
uted to an increase in late maturity. A further two signifi-
cant QTL regions were identified, both of which had
positive allele effects. Overall, approximately a quarter (5/
18) of the maturity QTL, four highly significant and one
significant, in S7 co-located with rust QTL in the same
population (Χ2 p-value <0.0001). The direction of allelic
effects was consistent across co-locating QTL, with the rust
resistance QTL alleles from S. bicolor subsp. verticilliflorum
always occurring with late maturing alleles from S. bicolor
subsp. verticilliflorum. In the AYT association mapping set,
10 QTL for maturity were identified, eight of which co-
located with rust QTL (Additional file 2: Table S6).

Height
In the S2 population, one significant QTL on SBI-09
and three suggestive QTL on SBI-03, SBI-06 and SBI-
07 were identified, with a cumulative total of 39.4% of
phenotypic variation explained (Table 3; Additional
file 1: Figure S3). Three of the four QTL had negative
allele effects, indicating that the QTL alleles from
R890562 predominantly contributed to a decrease in
height. The height QTL on SBI-06 co-located with a
suggestive rust QTL on SBI-06 (QRustR_S2_6.1) in the
same population (Χ2 p-value <0.0001), and the direction
of QTL allele effects were consistent (i.e. the shorter
plants carried the susceptible rust QTL allele). In the S4
population, three highly significant QTL for height were
identified, with a cumulative total of 42.8% of the pheno-
typic variation explained, on chromosomes SBI-06, SBI-07
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Figure 1 Rust resistance QTL from the current study projected onto the sorghum consensus genetic linkage map in comparison with
rust QTL identified in previous studies. The bars to the right of each chromosome indicate rust resistance QTL identified, colour-coded as
follows: red: S2 (current study); dark green: S4 (current study); dark blue: S7 (current study); green: [3]; orange; [5]; pink: [7]. The locations of
the QTL identified in the AYT association mapping set are represented by a separate heat map, for each LG, detailing QTL density (number
of QTL/0.5 cM).
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and SBI-09 (Table 4; Additional file 1: Figure S4).
Three further suggestive QTL were identified on SBI-
01, SBI-04 and SBI-05. The suggestive QTL for height
on SBI-01 (QHGT_S4_1.1) co-located with a rust QTL
(QRustR_S4_1.2) in the same population (Χ2 p-value 0),
while the highly significant height QTL on SBI-06 co-located
with a maturity QTL. In both cases the direction of QTL
allele effects was consistent with the observations from
the S2 population (i.e. the susceptible rust QTL allele
was associated with shorter and earlier alleles). In S7, only
one highly significant QTL for height was identified on
SBI-09, while a further 5 significant QTL were identified
on SBI-03, SBI-04, SBI-06 and SBI-10 (Additional file 2:
Table S7). Five of the height QTL identified had positive
allele effects indicating that the S. bicolor subsp. verticilli-
florum QTL alleles predominantly contributed to an in-
crease in height. The significant QTL for height on SBI-10
(QHGT_S7_10.1) co-located with QTL for both rust and
maturity, while the significant QTL for height on SBI-03
co-located within 10 cM a rust QTL (QRustR_S7_3.2)
(Χ2 p-value <0.0001). As previously, the direction of al-
lele effects of the co-locating QTL was consistent with
observations from the S2 and S4 populations (i.e. the
taller and later maturing plants carried the rust resist-
ant QTL allele). In the AYT association mapping set, 1
QTL for height was identified on SBI-09, which co-located
with rust and maturity QTL also identified in the AYT
population (Additional file 2: Table S6).

Stay-green
Due to its association with carbon stress, the stay-green
trait was also analysed in the AYT association mapping
set. It was visually scored as a leaf senescence rating
from 1–9 [23], across the same three male tester geno-
types and two sites, with one trial site in common with
the previous analyses, and analysed using the same
methodology as described for the other traits, identifying
nine significant QTL (Additional file 2: Table S8).
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QTL projection on consensus map
All the QTL identified in each of the three bi-parental pop-
ulations and the AYT association mapping set were pro-
jected on the consensus map for all three traits (Figure 1;
Additional file 1: Figures S6-7; Additional file 3: Table S9)
and compared to rust, maturity and height QTL identified
previously. Across the four populations in this study,
64 significant or highly significant QTL and 21 suggestive
QTL for rust resistance were identified and projected onto
the consensus map, in addition to the 11 previously re-
ported QTL for rust resistance [3,5,7], representing a total
of 56 unique regions (Additional file 4: Table S10). Rust
QTL were identified on all chromosomes, however the
genome-wide distribution was uneven, with only 2 unique
QTL identified on SBI-07 in contrast to 15 rust QTL lo-
cated on SBI-01. The syntenic locations of 52 rust QTL
identified in maize [24-27] were also projected onto the
consensus map and compared to the locations of the rust
QTL from sorghum (Additional file 1: Figure S8). Ten of
the previously reported sorghum rust QTL co-located with
rust QTL identified in the current study; one genomic
region described by [28] was found to be unique among
the sorghum rust studies investigated, however this QTL
co-located with maize rust QTL [25,27]. In total, of the 52
rust resistance QTL identified in maize, over 80% (42)
co-located with rust QTL identified in sorghum (Additional
file 1: Figure S8) (Χ2 p-value <0.0001).
The 56 unique rust QTL regions identified were further

categorised according to their co-location with height and
maturity QTL, to distinguish between 1) QTL unique to
rust within a population and 2) multi-trait effect QTL,
with rust QTL co-locating with QTL for other traits
within a population (Additional file 4: Table S10). Of the
56 unique genomic regions, 30 were categorised as being
unique to rust, whereas 26 were not unique to rust, and
co-located with either height, maturity or stay-green QTL
identified in the same population. The correspondence of
the two different types of rust resistance QTL locations
and the NBS-LRR gene family members, previously re-
ported to be associated with disease resistance [29], were
investigated. The NBS-encoding genes were significantly
enriched in the regions of the genome containing unique
rust disease resistance QTL (Χ2 p-value <0.0001), in
contrast to the rust QTL that co-located with other
traits (Χ2 p-value 0.6118). In particular, the major NBS-
encoding rust resistance gene Rph1-2, homologous with
the maize Rp1-D gene, previously described in sorghum by
[30] and also believed to be the Pu gene [13], co-located
with QTL from the S2 population (QRustR_S2_8.1) and
the AYT association mapping set (QRustR_AYT_8.1)
(Additional file 1: Figure S9). Additionally, the wheat
rust resistance gene, Lr34, previously described by
[31], co-located with QTL from the S4 population
(QRustR_S4_1.1) and the AYT association mapping set
(QRustR_AYT_1.3) (Additional file 1: Figure S10), in
addition to rust QTL identified in maize [25,26]. Both
parental genotypes of the S4 and S7 populations were
included in the recently described sorghum resequencing
data set [32], enabling sequence analysis of underlying
candidate genes. In silico analysis for missense mutations
revealed a polymorphism leading to an amino-acid change
that departed from the peptide arising from the predicted
gene models [33] in the candidate gene for Lr34
(Sb01g016775) which co-located with a rust resistance
QTL in the S4 population (Additional file 1: Figure S11).
The thirty-eight QTL for maturity identified in S2, S4,

S7 and the AYT association mapping set were projected
onto the consensus map and compared to 157 maturity
QTL reported previously. Of the 38 maturity QTL iden-
tified in the current study, 30 co-located with maturity
QTL described previously (Additional file 1: Figure S6).
Of the remaining 8 QTL, 6 co-located across the popula-
tions included in the current study, with only 2 novel ma-
turity QTL identified (one in S7, QDTF_S7_8.3, and one
in the AYT association mapping set, QDTF_AYT_9.2).
Two major-effect maturity loci previously projected onto
the sorghum consensus map [34] were identified in the
current study; ma1 was identified in S4 (QDTF_S4_6.1),
and ma4 was identified in populations S7 and S2
(QDTF_S7_10.1 and QDTF_S2_10.1). Similarly, the
seventeen QTL for height identified in S2, S4, S7 and
the AYT association mapping set were projected onto
the consensus map and compared to 168 height QTL
reported previously. Sixteen of the 17 height QTL
identified co-located with height QTL previously de-
scribed (Additional file 1: Figure S7), including the 3
major effect height loci previously projected onto the
consensus map; dw2 on SBI-06 (QHGT_S4_6.1), dw3 on
SBI-07 (QHGT_S4_7.1) and dw1 on SBI-09 (QHGT_S2_9.1
and QHGT_S4_9.1).

Discussion
The rusts are a major pathogen of cereal crops with the
potential to cause large reductions in yield and have as a
result been the focus of ongoing plant breeding effort
particularly in the winter cereals. The challenge for
breeders in these species has been to produce stable re-
sistance due to the rapidly evolving nature of the patho-
gen. Sorghum is a major summer cereal crop that is also
a host for a rust pathogen Puccinia purpurea. Leaf rust
occurs in almost all sorghum growing areas of the world
[5] and can cause significant yield losses in the crop. In
Australia, rust infection occurs in most sorghum crops
with the severity of epidemics being greater in humid
environments and in late-sown crops [8]. Despite the
prevalence of the disease in sorghum, it is not subject to
the large damaging rust epidemics which regularly occur
in winter cereals in Australia.



Wang et al. BMC Plant Biology  (2014) 14:366 Page 8 of 14
Understanding the genetic basis of rust in sorghum
will be important for improving the crop itself as well as
providing a comparison and potential insight into the
architecture of the trait in other species. This study used
natural field infection data from multiple populations
grown in multiple environments using a combination of
conventional linkage mapping and association mapping
to investigate the genetic control of rust resistance and
the potential for multi-trait effect QTL.

Rust resistance is a polygenic trait controlled by multiple
QTL of small effect
The complex, polygenic nature of this trait was con-
firmed with 64 significant or highly significant QTL
identified representing over 43 unique genomic regions,
in addition to 21 suggestive QTL representing a further
12 unique genomic regions. Comparisons with previous
rust resistance QTL studies revealed that 10 of the 11
previously reported rust resistance QTL in sorghum
were also identified in the current study. The genetic
architecture of the trait was largely found to involve
multiple QTL of small effects, rather than major genes
of large effect, with the largest allele effect reported in
the S2 population (QRustR_S2_8.2 with an effect size of
0.56 units on a 1–9 scale), representing 18.4% of the
total phenotypic variation, and with an average QTL al-
lele effect across all QTL identified of just 0.23. This
contrasts to the major effect leaf rust QTL commonly
reported in other cereals, e.g. the major effect adult plant
resistance gene Rph20 in barley, where the additive allele
effect sizes accounted for 64-85% of the phenotypic
variation in adult plants across four field environments
[35]; the major effect, “slow-rusting” resistance gene
Lr34 conferring durable adult plant resistance in wheat,
explaining up to 55% of the phenotypic variation [36].
This difference in the genetic control of leaf rust resist-
ance across cereals could be partly due to the fact that sor-
ghum is primarily a perennial species in comparison to
the strongly annual life-history of the other major cereals,
where the need for more stable resistance due to increased
plant longevity could favour selection for multiple resist-
ance genes of small effect.
This study encompassed populations with a degree of

shared ancestry, which enabled the evaluation of resistance
alleles that were identical by descent (IBD) in different
populations and experiments. The elite line R931945-2-2
was not only a common parent in the S4 and S7 popula-
tions but also a parent of the common male tester
R986087-2-4-1 used to produce 150 of the F1 hybrids used
in the association mapping set. QTL alleles from R931945-
2-2 contributed to increased rust resistance in just under
half (13/28) of the QTL identified from the two bi-parental
populations; of these QTL, seven corresponded to gen-
omic regions that were IBD between R986087-2-4-1
and R931945-2-2. In all 7 of these regions, a QTL was
identified in this location in the AYT association map-
ping set, in hybrids with R986087-2-4-1 as the com-
mon tester. This result suggests that the inheritance of
these seven resistance QTL is not completely domin-
ant, but instead either additive or recessive. This con-
clusion is also supported by the detection of the vast
majority (92%) of the significant QTL in the AYT asso-
ciation mapping set identified across multiple male
tester hybrid combinations. In commercial agricultural
settings sorghum cultivars are almost exclusively F1
hybrids and as result knowledge of the degree of dom-
inance in traits is of critical importance for their de-
ployment as cultivars.
The IBD analysis also enabled us to determine that

two of the R931945-2-2 derived rust resistance QTL
were identical to rust resistance QTL contributed by
QL41 in the mapping population used by [5].The stabil-
ity of these QTL suggests that there has been limited
variation in the rust pathotypes over the last 15 years. In
addition the fact that the majority of the rust QTL (80%)
was detected at both AYT trial locations suggests that
there is relatively low spatial and temporal variation in
rust populations.

Rust resistance is strongly influenced by the physiological
state of the plant
In sorghum, rust infection generally develops later in the
crop’s cycle as the plant begins filling grain [10]. This is
consistent with the observation of [17] who demon-
strated that the growth stage, or physiological age, of
groundnut (Arachis hypogaea L.) can impact on the de-
gree of susceptibility to rust infection. Typically plants in
vegetative stages are less susceptible to many diseases
than those infected at reproductive phases, when the
plant is remobilizing carbohydrates during grain-filling
[37]. This phenomenon has important implications for
assessing rust resistance in plants that vary in maturity
or other characters such as height or stay-green which
influence the developmental status of the plant and
hence the nature and degree of carbohydrate remobiliza-
tion. This is particularly important in field grown plants
subject to natural infection. Although the association be-
tween height and rust response could be related to a
variation in microclimate, the association is consistent
with the change in source/sink dynamics where earlier
maturing plants become vulnerable to infection before
later plants and taller plants have greater reserves for re-
mobilization. Carbon stress also plays an important role
in drought responsiveness. Plants with the stay-green
characteristics have increased functional carbohydrate
resources for remobilisation during grain filling [38].
We observed low but consistent, negative phenotypic

correlations between the severity of rust infection and
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both maturity and height. In all populations and trials
early maturity and short stature was associated with rust
susceptibility. This result is consistent with the hypoth-
esis that variation in plant carbohydrate status influences
susceptibility to rust. At the QTL level we found a highly
significant coincidence of rust QTL with QTL for height
and maturity in the four populations used. A statistically
significant proportion (~37%; Χ2 p-value <0.0001) of the
rust QTL co-located with one of these traits in the same
population. A recent synthesis of disease resistance QTL
studies in maize found comparable significant associa-
tions between disease resistance QTL and maturity QTL
in the maize genome [39].
Co-locating QTL regions could contain multiple tightly

linked genes for resistance and other traits or single genes
with a pleiotropic effect across multiple traits. However
the evidence for pleiotropic QTL action in the current
study is very strong given the consistency in the direction
of QTL allele effects, i.e. taller and later maturing plants
carried the rust resistant QTL allele in the majority of
cases (>80%). This is consistent with a recent study analys-
ing the genetic control of rust in sorghum [3] who found
rust severity in field grown sorghum was negatively corre-
lated with plant height and maturity. Interestingly, when
the same genotypes were artificially infected at a single
time point in the glasshouse these correlations were not
apparent [3]. This provides further evidence that the
physiological state influences either the timing of in-
fection or the rate at which infection develops.
The co-location of 100% of the leaf senescence, stay-

green characteristic, QTL identified in the AYT association
mapping set with rust QTL, in addition to the consistency
of the direct of the effects (i.e. lines with alleles for in-
creased senescence were more susceptible to rust), pro-
vides further evidence to support the role of carbon stress
in disease resistance. Additionally, when all 96 rust QTL
were compared to the location of 83 QTL for stay-green
reported in seven previous studies [23,40-45], there was
significant co-location across traits (Χ2 p-value <0.0001)
with over half of the 96 rust QTL co-locating with stay-
green QTL. The highly significant QTL coincidence be-
tween rust and stay-green suggests many QTL impacting
on both traits through a pleiotropic effect on carbon
mobilisation.

Rust QTL that are not associated with maturity and
height are enriched for defence-related gene families
Gene families associated with defence and disease resist-
ance have previously been reported; the NBS-LRR gene
family being the most prevalent and ancient and one of
the largest gene families known in plants to be involved
in the detection and response to diverse pathogens, in-
cluding bacteria, viruses, fungi, nematodes, insects and
oomycetes [46]. The current study found that rust
resistance QTL that were unique, and did not co-locate
with either height, maturity or stay-green QTL (to be
termed classical rust resistance QTL), were signifi-
cantly enriched for defence-related gene families (Χ2

p-value <0.0001), in contrast to the rust resistance
QTL with potential pleiotropic effect that co-located with
either height, maturity or stay-green QTL (Χ2 p-value
0.6118) (to be termed multi-trait effect QTL).

Some sorghum rust QTL fall within hotspots for multiple
disease resistance
High correlations between resistances to rust and other
biotic stresses have been reported previously in sorghum
such as the positive correlation between resistance to
rust, target leaf spot, zonate leaf spot and anthraconose
observed by [7]. Additionally, hot-spots in the genome
for multiple disease resistances are present in sorghum,
particularly the short arm of SBI-10 and the long arm of
SBI-06, containing 51 QTL for 12 traits from 10 add-
itional studies, as well as the current study [3,7,47-54].
These hotspots could be the result of genes which pro-
vide resistance to multiple diseases, clusters of resistance
genes or physiological pleiotrophy driven by regulation
of carbon mobilisation.
Of the 85 significant and suggestive rust QTL reported

in the current study, over three quarters (65/85) co-located
with 178 sorghum pest and disease resistance QTL from
23 studies previously projected onto the consensus map
[22] (Additional file 5: Table S11). Particular types of pest
and disease resistance QTL were more likely to co-locate
with the rust QTL associated with physiological pleio-
trophic effects (e.g. ergot resistance, green bug and shoot
fly resistance QTL) while the reverse was true of fungal
pathogens of the leaf (anthracnose and zonate leaf spot)
which predominantly co-locating with the classical rust re-
sistance QTL, which did not co-locate with QTL associ-
ated with carbon stress.
The two stand-out hotspot regions identified for mul-

tiple disease resistances on SBI-10 and SBI-06 contained
NBS-LRR gene clusters. Our result is consistent with
three previous studies in sorghum that reported NBS-
LRR genes conferring resistance to fungal pathogens;
St-R gene cluster conferring resistance to Setosphaeria
turcica causing northern leaf blight in maize [55], Cs1
and Cs2 genes conferring resistance to Colletotrichum
sublineolum causing anthracnose [56] and Rph1-2 con-
ferring resistance to leaf rust [3,57].

Conclusions
This study has dissected the genetic architecture of rust
resistance in sorghum, through conventional QTL map-
ping and association mapping, with multiple rust resist-
ance QTL of small effect identified. Using multiple lines
of evidence, including colocation of QTL, direction of
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QTL effects and disease resistance gene family enrich-
ment, we were able to classify 54 rust QTL identified in
the current study as classical rust resistance QTL, and
31 rust QTL as multi-trait effect QTL where susceptibil-
ity is likely to have resulted from genes that influence
changes in the plant carbon mobilisation during the re-
productive phase. The results of this study have significant
implications for breeding programs attempting to increase
disease resistance, particularly using molecular breeding
approaches, because of the danger of inadvertently impos-
ing selection pressure on associated traits, such as height
and maturity, rather than disease resistance per se.
The genetic architecture of rust resistance in sorghum

contrasts to rust resistance genes of large effect identified
in other cereals, such as wheat, barley and oats, where rust
epidemics frequently have more severe yield costs. The
depletion of plant carbon in the determinate annual win-
ter cereal species, in contrast to the increased tendency to-
wards perenniality in sorghum, could impose more severe
carbon stress in wheat, barley and oats. Understanding of
how senescence or other drivers of carbon remobilisation
increase susceptibility to leaf diseases may provide a useful
avenue for future work on developing novel approaches to
controlling these diseases in other cereals.

Methods
Mapping populations
Three sorghum bi-parental populations, developed by
the Department of Agriculture, Forestry and Fisheries
(DAFF) were investigated in this study and consisted
of either F2-based recombinant inbred lines (RILs) or
BC1F1 derived RILs. The first population consisted of
119 F5 RILs developed from the cross between ICSV745
and R890562-1-2, coded S2. The second population (S4)
consisted of 246 F5 RILs derived from the IS8525/
R931945-2-2 cross as described by [58]. ICSV745 and
R931945-2-2 showed partial resistance to rust infection
(Jordan, pers. comm.), whereas IS8525 and R890562-1-2
were susceptible to rust infection. The third population
(S7) consisted of 214 backcross derived (BC1F4) RILs, de-
rived from crossing S. bicolor subsp. verticilliflorum (a wild
sorghum, accession number in AusPGRIS: AusTRCF
317961) and the recurrent parent R931945-2-2. In the
current study, the S7 population was evaluated in hybrid
combination with a single female tester (B923171). An add-
itional set of 150 genotypes (Additional file 6: Table S12),
consisting of elite female parent lines in the advanced yield
testing (AYT) stage of the sorghum pre-breeding program,
were evaluated in hybrid combination with three male tes-
ters (R986087-2-4-1, R993396, R995248).

Field trials and phenotypic screens
The S2 and S4 populations were planted in fully repli-
cated, single-row plots (5.5 m × 0.7 m) at the Hermitage
Research Facility (HRF, latitude −28.167, long. 152.033,
altitude 480 m asl), Warwick, Queensland, Australia
during the 2009–2010 growing season (HRS10). The S7
population was grown under two environments: irriga-
tion (BIL2003IRR) and dry (BIL2003nonIRR) at Biloela
(latitude −24.400, long. 150.513, altitude 193 m asl)
in 2003, both with fully replicated designs. The AYT
female parents were grown at two different locations
(Dalby, latitude −27.181, long. 151.266, altitude 341 m
asl; Dalby2011) and Liverpool Plains (latitude −31.267,
long. 150.047, altitude 308 m asl; Liverpool Plains2011)
during the 2011–2012 growing season and in hybrid
combination with three different male tester genotypes.
The AYT trials were partially replicated, with 30%
replication.
The trials reported in these studies made use of nat-

ural field infection rather than artificial inoculation with
known strains. Rust infection was visually scored using a
1–9 scale with 1 indicating immune and 9 highly suscep-
tible [5]. Plots were deemed to have flowered when 50%
of the plants in the plot had started flowering [59]. The
number of days to flowering (DTF) was surveyed as the
days needed from sowing to flowering, and height
(HGT) was determined at maturity from the soil surface
at the base of the culm to the top of the panicle.

Statistical analysis of the trait data
For all experiments a linear mixed model was fitted to
the raw data with genotype as a fixed effect and replicate
as a random effect. Each experiment S2, S4, S7 and AYT
were analysed separately and spatial terms were added
where necessary to accommodate for all possible errors
due to trial design and field layout. ASReml-R [60] used
the residual maximum likelihood (REML) algorithm to
provide best linear unbiased estimates (BLUEs) as the
predicted values for the breeding lines. The predicted
BLUEs were used for association mapping.

Linkage map construction
For the S2 population, existing genotypic data was used,
as described previously [21], consisting of 488 markers
(DArTs, RFLPs and SSRs). For the S4 and S7 popula-
tions, total genomic DNA of the progeny was extracted
from two week old seedlings as described by [61]. The
samples were genotyped with DArTseq™ technology,
which represents a combination of DArT complexity
reduction methods based on methyl filtration and
next-generation sequencing platforms [62]. In total, 4091
polymorphic SNP markers were identified in the S4 popu-
lation and 9545 polymorphic SNP markers in the S7
population. Genetic linkage maps were constructed for
the S2 and S4 populations using MultiPoint, as described
previously [21], resulting in framework maps consisting of
261 markers mapped to 12 linkage groups (1317 cM total
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length) for the S2 population and 964 markers mapped to
10 linkage groups (1476 cM total length) for the S4 popu-
lation. Due to the backcross nature of the S7 population,
in addition to selection applied for maturity during popu-
lation development, the standard genetic linkage mapping
approaches typically applied to bi-parental crosses were
not appropriate. Instead the physical base pairs locations
of the SNP markers were used to predict the location of
each marker on the consensus genetic linkage map of sor-
ghum [21] using a framework map of sequenced markers
on the consensus map as detailed in [22].

QTL analysis
QTL analyses of rust, height and maturity were con-
ducted for the two RIL mapping populations using com-
posite interval mapping (CIM) in QTL Cartographer for
Windows v2.5 [63]. Background markers for inclusion in
the CIM model were selected by forward stepwise re-
gression for each trait. The five most significant back-
ground markers were then used for analysis (default).
The ‘walking speed’ was set at 2 cM and the ‘window
size’ at 10 cM for CIM. A conservative permutation
threshold at the 0.01 significance threshold was obtained
for each trait using 1,000 permutations. 1-LOD and 2-LOD
support intervals were determined as described by [64].
The additive effects and percentage of variation explained
(R2) for all significant QTL were determined at their peak
LOD values. The significance level of each trait in the two
RIL mapping populations was obtained by permutation
analyses using Map Manager QTX software [65]. For the
S7 population, standard QTL mapping approaches were
not appropriate due to its back-cross derived nature.
Hence, a mixed model marker-trait association analysis was
performed using the association mapping function in
GenStat [66]. The same analysis methodology was used
to analyse the AYT association mapping set. Popula-
tion structure was accounted for using the eigenanaly-
sis relationship model. The Wald statistical test was
used for each marker to test the null hypothesis that
the marker’s effect was zero. Linkage Disequilibrium
(LD) decay was determined in the two germplasm sets to
determine significance thresholds to apply (Additional
file 1: Figure S12). The following QTL nomenclature
was adopted for this study: the prefix “Q”, followed by
Table 6 Details of three previously published rust resistance
and size, generation, number of QTL identified, and analysis
mapping, CIM: composite interval mapping, MLM: mixed line

Publication Pedigree Pop size

[3] Mini-core 242

[5] QL39/QL41 160

[7] 296B/IS18551 168

*RILs: recombinant inbred lines.
the abbreviated trait name, population code, chromosome
and a final number suffix indicating the QTL number per
chromosome.
QTL projection onto a consensus map
To date, 11 rust resistance QTL in sorghum have been
reported in three previous studies [3,5,7] (Table 6). The
four rust QTL identified by [5] were included in the pre-
vious study by [22], which reported on the projected lo-
cations of 771 sorghum QTL from 44 studies onto the
sorghum consensus genetic linkage map. The remaining
7 rust QTL previously reported were also projected onto
the consensus genetic linkage map, following the strat-
egy detailed by [22]. Additionally 168 QTL for height
were also projected onto the consensus genetic linkage
map, and included 101 QTL from 15 studies previously
detailed in [22] and an additional 67 QTL from 7 more
recent studies [28,67-72] (Additional file 3: Table S9).
Similarly, 157 QTL for maturity were projected onto the
consensus genetic linkage map, and included 62 QTL
from 12 studies previously detailed in [20] and an additional
95 QTL from 8 more recent studies [28,59,67,68,70-73]
(Additional file 3: Table S9). The QTL for all three traits
identified in the three separate mapping populations in the
current study were also projected onto the sorghum consen-
sus map, based on the physical locations of the flanking
markers, to facilitate comparisons across populations, stud-
ies and traits. Finally, the syntenic locations of rust resistance
QTL from maize, as detailed in [27], were identified in
sorghum using comparative genomics resources devel-
oped by [74].
The significance of the degree of co-location of QTL

(defined as two QTL either having overlapping CI or the
mean of the QTL being less than 10 cM apart) 1) across
traits within populations, 2) of rust QTL in sorghum
and maize, 3) with previously identified NBS-LRR genes
in sorghum [75] and 4) of rust and stay-green QTL in
sorghum were determined using chi-square statistics, as-
suming random distribution of QTL genome-wide.
Availability of supporting data
The data supporting the results of this article are in-
cluded as Additional files 1, 2, 3, 4, 5, 6.
QTL studies in sorghum including population pedigree
method used (IM: interval mapping, NPM: non-parametric
ar model)

Generation No. QTL Analysis method

- 5 MLM

RILs* 4 IM, NPM

RILs* 2 IM, CIM
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Additional file 1: Contains 12 supplementary figures, all referenced
in the main text.

Additional file 2: Contains 8 supplementary tables, all referenced in
the main text.

Additional file 3: Table S9. Details of all rust, height and maturity QTL
projected onto consensus map.

Additional file 4: Table S10. List of the 56 meta rust resistance QTL, with
details of co-location with height, maturity and stay-green (leaf senescence)
QTL, maize rust resistance QTL and NBS-encoding genes.

Additional file 5: Table S11. Details of the disease resistance QTL
identified in 23 previous studies.

Additional file 6: Table S12. Details of the 150 elite female parent
lines and the rust disease scores in hybrid combination with the three
male testers (R986087-2-4-1, R993396, R995248).
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