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Abstract. To study the genetic basis of tick burden and milk production and their interrelationship, we collected a sample
of 1961 cattle with multiple tick counts from northern Australia of which 973 had dairy production data in the Australian
Dairy Herd Information Service database. We calculated heritabilities, genetic and phenotypic correlations for these traits
and showed a negative relationship between tick counts and milk and milk component yield. Tests of polymorphisms of
four genes associated with milk yield, ABCG2, DGAT1, GHR and PRLR, showed no statistically significant effect on tick
burden but highly significant associations to milk component yield in these data and we confirmed separate effects forGHR
and PRLR on bovine chromosome 20. To begin to identify some of the molecular genetic bases for these traits, we
genotyped a sample of 189 of these cattle for 7397 single nucleotide polymorphisms in a genome-wide association study.
Although the allele effects for adjusted milk fat and protein yield were highly correlated (r = 0.66), the correlations of allele
effects of these milk component yields and tick burden were small (|r| � 0.10). These results agree in general with the
phenotypic correlations between tick counts and milk component yield and suggest that selection on markers for tick
burden or milk component yield may have no undesirable effect on the other trait.

Introduction

There are many studies that show that there is a physiological
trade-off between production and disease or parasite resistance
and this has recently been reviewed (Morris 2007). In cattle, zebu
have greater growth rates and performance in the presence of
parasites, in hotter climates and fed lower quality feed than
taurine animals, but poorer growth rates and performance in
the absence of parasites, in cooler climates and fed better
quality feed (Frisch and Vercoe 1977, 1984). However, these
might represent breed genetic differences because genetic
correlations for growth traits and parasite resistance traits are
often close to zero when analysed within a breed (Prayaga and
Henshall 2005; Prayaga et al. 2009).

The interrelationship between genes for parasite resistance
and animal productivity is not well understood at the
molecular level. So far, there are no systematic studies of the
interrelationships between these traits at the molecular genetic
level, to determine whether some of the genes that affect host
resistance to a parasite also affect animal production. In such
studies we are particularly interested in the effects due to genes
of moderate to large effect, partly because they simplify
selection decisions and partly because selection on all the
polygenic variation will reconstruct the genetic correlations
seen between the traits (Meuwissen et al. 2001). It is possible
to identify some of the genetic effects on a trait using the genome-
wide association study (GWAS) methodology (Risch and
Merikangas 1996; Ozaki et al. 2002). GWAS of traits in

humans have shown that most of the associations are to
quantitative trait loci (QTL) or risk alleles for complex traits
(RACT) that are small to very small in size (Burton et al. 2007;
Weedon et al. 2008). However, GWAS have also identified
Mendelian factors causing discrete phenotypes in several
species (Klein et al. 2005; Karlsson et al. 2007; Charlier et al.
2008), as well as either discovering, or rediscovering, QTL or
RACT of moderate to large effect in humans (Todd et al. 1987;
Ellis et al. 2001; Burton et al. 2007; Gieger et al. 2008; Hillmer
et al. 2008; Pollin et al. 2008; Benyamin et al. 2009; Daly et al.
2009). Some of these studies found genetic effects of moderate
to large size even though the sample sizes used in those studies
were quite small (i.e. 100 < n <300), because genes of large effect
can be discovered in samples that have low intrinsic power.
However, small sample sizes generate estimates with large
standard errors, which will cause significant results to be
overestimated in size.

In this study we examined the genetic relationship between
tick burden and milk production traits of dairy cattle from the
tick zone in northern Australia using a bivariate analysis and
performed a GWAS to identify regions of the bovine genome
that influenced milk composition or tick resistance. Given
previous ideas of the relationship between parasite resistance
and productivity we were interested in determining whether
there were any strong phenotypic or genotypic relationships
between genes of large effect for milk traits and host
resistance to parasites. We included four putative functional
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nucleotide polymorphisms (FNP) for dairy traits, the
diacylglycerol O-acyltransferase homologue 1 (DGAT1) gene,
the growth hormone receptor (GHR), the prolactin receptor
(PRLR) and the ATP-binding cassette subfamily G, member 2
(ABCG2) that affect milk yield and milk component yield (Fries
and Winter 2002; Grisart et al. 2002; Blott et al. 2003; Cohen-
Zinder et al. 2005; Viitala et al. 2006). The inclusion of these four
QTL allowed us to test whether any of them had direct effects
on tick counts, as well as providing a way of empirically
assessing the power of the GWAS for both traits.

Materials and methods

Cattle samples
We collected blood samples from2494 dairy cattle (Bos taurusL.)
from 16 properties across the tick zone in tropical and subtropical
north-eastern Australia (Table 1), of which 1961 had duplicate
tick counts. Ethics approval for the use of these animals was
obtained as noted previously (Barendse et al. 2009b). The
animals were selected to represent the northern Australian dairy
industry, which has a broad range of breeds and farmer initiated
taurine composites to deal with the hot, dry, tick-infested
conditions. This allowed us to take a broad sample of breeds,
breed composites and sire lines to reduce linkage disequilibrium
in the combined sample.

Previous research had shown that cattle of the Jersey and
Illawarra Shorthorn breeds show lower tick burdens than other
taurine cattle but not enough to be called tick resistant (Utech
et al. 1978). In the Jersey, the mechanism appears to be a form of
hypersensitivity. Partly to recognise this, and partly to ensure
that allele frequencies between breeds did not act to confound
the analysis, the animals were divided into six breed types based
on ancestry: (1) the Australian Red breed (AUR), a modern
composite that includes the Illawarra Shorthorn, Red Holstein,
the Scandinavian Red and the Ayrshire. An animal had to
have at least two purebred grandparents of these breeds to be

included in this group; (2) the Brown Swiss and its crosses
(BSWX), and the same level of stringency applied here as
applied for the Australian Red; (3) the Channel Isle breeds of
Jersey and Guernsey and their crosses (CHA) – here the animal
had to have at least three purebred grandparents of these
breeds to be considered in this group, except if it was a half
Holstein · Jersey or Guernsey cross-bred or composite; (4) the
Holstein–Friesian and its crosses (HOLX) – here the animal had
to have at least three purebred grandparents of this breed to
be considered in this group; (5) mixed taurine cattle (MIXT) with
no more than one known grandparent of pure breed origin; and
(6) cattle with at least one grandparent of known zebu ancestry
(ZEBX), usually from the Sahiwal breed through the Australian
Friesian Sahiwal. Pedigree information was obtained from
the farmer and from the Australian Dairy Herd Improvement
Scheme (ADHIS).

Tick counts
Tick counts of the one-host ixodid cattle tick (Boophilus
microplus Canestrini) and DNA samples were obtained from
each animal over 2–3 tick seasons. Tick numbers due to field
infestations were counted in the size range 4.5–8.0 mm (Wharton
et al. 1970) on one side of the animal by more than one counter
over more than one season. A count was considered usable if
the average number of counts for that day was 20 ticks per
side (Table 1). Tick counts are usually log-transformed for
parametric analyses (Fig. 1). The animals had to be treated for
tick burden by dipping in acaricides, so tick countswere collected
before dipping, at a point at which the farmer decided the cattle
would be treated for the tick burden they carried.

Milk yield data
The dairy production trait values were obtained from the ADHIS
database for animals in the study. We were able to obtain dairy
production records for around half of the animals for which
we had duplicate tick counts. Data included the national herd

Table 1. Number of tick counts per property with collection date, average number of ticks per side and the total number of cows sampled
per property

Property Collection
1

Average
tick count

Collection
2

Average
tick count

Collection
3

Average
tick count

Collection
4

Average
tick count

Collection
5

Average
tick count

Total
animals

301 10.x.03 13.5 25.v.04 14.6 22.x.04 37.1 26.iv.05 16.5 21.xi.05 37.7 129
302 21.xi.03 19.9 8.iv.04 45.8 210
303 2.xii.03 6.9 163
304 3.xii.03 43.5 10.ii.04 165.6 11.i.05 27.7 246
305 16.xii.03 13.3 123
406 14.i.04 9 15.iii.04 18.9 1.ii.05 12.1 27.v.05 4.8 149
407 15.i.04 8.4 9.iii.04 22.75 126
408 19.i.04 49.4 126
409 28.i.04 15.7 8.iii.05 42.1 11.v.05 46.3 17.iii.06 37.3 337
410 3.ii.04 22.2 97
411 4.iii.04 8.1 130
413 16.xii.04 190.8 21.ii.05 182.2 12.v.05 169 20.xii.05 150 232
414 17.xii.04 8.4 112
415 19.xii.04 56.8 22.ii.05 101.7 16.v.05 253 16.xii.05 71 148
516 24.i.05 15.7 19.iv.05 39.9 103
517 23.ii.05 15 63

Total 2494
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identifier, property number, ancestry, birth date, calving date,
yields of total milk, total milk protein and total milk fat, number
of parities and last herd recording. We excluded data records
for incomplete lactations, but could only determine that a record
was incomplete in those cases were duplicate records existed.
After removing duplicate or incomplete data, there were 973
of the 1961 animals that had multiple tick counts that also had
milk component yield data and a DNA sample suitable for
genotyping.

Analysis of phenotypes
Initial fixed effect models were evaluated using the R software
package (R Statistical Project http://cran.r-project.org/, verified
22 March 2010). Thereafter, trait values were fitted in a mixed
model using the ASReml software (Gilmour et al. 2002) as
follows: trait ~ mean + fixed effects + animal + error, with
animal and error fitted as random effects. The proportion of
the residual variance (R2) explained by a fixed effect in the
model was calculated by comparing the residual sums of
squares (RSS) of the model with the fixed effect (RSSf) to the
RSS of the model without the fixed effect (RSSw), R

2 = (RSSw –

RSSf)/RSSf. Heritability estimates for the traits were obtained
from the mixed model and genetic and phenotypic correlations
were obtained from a bivariate analysis of these traits. In the
bivariate analysis of tick counts and milk yield data, there are
several tick counts per individual but only a single estimate of
milk production so the mean of the ln-transformed tick counts
was compared with milk production. This method of averaging
tick counts was not used in the univariate analysis of tick
counts due to the large variance in tick counts found between
seasons, years and counters (cf. Results). In the univariate
analysis, the tick counts were ln-transformed and modelled as
ln(ticks + 1) ~ mean + property + season + breed type + animal +
error, where the animal needed to have two tick counts out of
the nine possible seasons to be included in the analysis. The
model contained all available pedigree information of sire, dam
and maternal grandsire identities, and season included the

identity of tick counter. This model did not include effects of
DNA polymorphisms. The residual tick count for each animal
was extracted from the model and used as the phenotype in
association analyses. The milk data were modelled as follows:
milk fat or protein yield ~mean + total milk yield + birth year +
property + breed type + animal + error. Total milk yield was
used as a covariate for two reasons. First, as noted above, a low
milk fat yield could be due purely to a low milk yield from an
incomplete record. Second, we found a very strong relationship
between milk yield and milk fat or protein yield (cf. Results,
Fig. 2). Therefore, we fitted total milk yield to remove the
possible effect of incomplete lactation records in the data and
to emphasise the differences in protein or fat components, rather
than analysing a proportional trait like milk fat or protein
percentage. The residual protein and fat yields were extracted
from the model and used as the phenotypes in association
analyses. These protein and fat yields adjusted for total milk
yield are called adjusted protein and fat yields below.

We evaluated associations between the trait and individual
single nucleotide polymorphism (SNP) using regressions of
residuals on number of copies of an allele rather than fit SNP
as a covariate within the ASReml model. Both approaches
have been used in the literature (Gieger et al. 2008; Weedon
et al. 2008; Barendse et al. 2009a). We found that the regression
of residuals on alleles gave slightly less significant results for
milk trait associations than fitting the SNP as a covariate
within the model (data not shown) and it is a speedier method
of analysis of large datasets.

Genotyping
Animals selected for genotyping using the SNP chip were
chosen in approximately equal numbers from five properties to
a total of 189 plus three repeated animals, to generate two plates
of 96 samples (Barendse et al. 2009b). The animals of this
subset were chosen so that they were not closely related and
were the offspring of 138 of the sires and 174 of the dams.
They consisted of the breed types AUR (n = 61), BSWX (n = 35),
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Fig. 1. (a) Histogram of raw tick counts. (b) Histogram of residual ln(ticks + 1) values for individuals.

Tick burden and milk composition in cattle Animal Production Science 237

http://cran.r-project.org/


CHA (n = 28), HOLX (n = 56), MIXT (n = 4), and ZEBX (n = 5).
The aim was to reduce the linkage disequilibrium (LD) between
SNP and to reduce any bias due to large differences in numbers of
animals from different sires. The animals were selected without
knowing their tick burdens or milk yield data. The genotyping of
the sample of 189 cattle was performed using the MegAllele
Genotyping Bovine 10 K SNP Panel (Hardenbol et al. 2005),
a fully described set of SNP, by ParAllele Inc. on an Affymetrix
GeneChip Scanner 3000, yielding an average spacing of 325 kb
between SNP. Further details of the SNP can be found at the link
ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/snp/Btau20050310/
(verified 22 March 2010). All samples with more than 10%
missing data were excluded and then all loci with more than
10% of missing data were excluded, as previously described
(Barendse et al. 2009b).

To provide positive controls for the GWAS and to examine
the effects of important milk yield QTL on tick burdens, a set of
FNPwithmoderate to large effects onmilk traits were genotyped,
first on the samples used for the GWAS and then on all animals
with milk component yield data. Taqman assays were designed
for the following DNA variants (Table 2). These were: (1) for the
K232AMNP (multiple nucleotide polymorphism) in theDGAT1
gene on bovine chromosome 14 (BTA14) (Grisart et al. 2002;
Winter et al. 2002); (2) for the F289Y SNP in the GHR (Blott
et al. 2003) on BTA20; (3) for the S18N MNP in the PRLR
(Viitala et al. 2006) on BTA20; and (4) for the Y581S SNP in the
ABCG2 gene on BTA6 (Cohen-Zinder et al. 2005; Olsen et al.
2007). All of these genes affect milk yield and milk component
yield, and the DGAT1 K232A MNP has an especially large
effect on milk fat percentage.
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Fig. 2. Bivariate scatter plots of milk fat (grey) and protein (black) yields against total milk yield.

Table 2. Primers and minor groove binding probes for the Taqman assays for the functional nucleotide
polymorphisms associated with milk protein and fat yield

Locus Information DNA sequence 50 to 30

ABCG2-Y581S Forward primer GGCGTCTGGCTTCAATACTTG
ABCG2-Y581S Reverse primer CACGGTGACAGATAAGGAGAACAT
ABCG2-Y581S VIC probe v1 A TCGATACGGCTATGCGGT
ABCG2-Y581S FAM probe m1 C TCGATACGGCTCTGCGGT
DGAT1-K232A Forward primer CGCTTGCTCGTAGCTTTGG
DGAT1-K232A Reverse primer CGCGGTAGGTCAGGTTGTC
DGAT1-K232A VIC probe v2 K CGTTGGCCTTCTTACC
DGAT1-K232A FAM probe m2 A TTGGCCGCCTTACC
GHR-F279Y Forward primer TCAGATTTCCAGTTTCCATGGTTCTTAATTATT
GHR-F279Y Reverse primer GGTTATATCACACTTACCTTTGCTGTTTAGA
GHR-F279Y VIC probe v1 A AGCAGTGACATTATATTTACT
GHR-F279Y FAM probe m1 T TAGCAGTGACATTATTTTTACT
PRLR-S18N Forward primer TGCAGCATCTAGAGTGGTTTTCATT
PRLR-S18N Reverse primer GGGAGTGAAAAAGAACAAGACAGTCT
PRLR-S18N VIC probe v1 N ACTTTTTCTCAACGTCAGCC
PRLR-S18N FAM probe m1 S CTTTTTCTCAGTGTCAGCC
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Analyses of genotypes
Genotypes were tested for Hardy–Weinberg equilibrium within
breeds and genotype frequencies were compared between
breeds (Weir 1996). Allelic associations were evaluated by
regression of the residual phenotype on the number of copies
of an allele. For association tests, the P-values were reported as
–logP values to allow for uniform and consistent reporting of
very small P-values. The R2 was calculated from the correlation
between residual phenotypes and numbers of copies of the
reference allele. In the analysis of single-point associations in
the GWAS, due to the small sample size, we set a threshold of a
minor allele frequency (MAF) >0.05 for the analysis because a
MAF <0.05 resulted in genotypic classes with one or two
individuals of the rare homozygote.

The false positive rate FPR = Ep/Op where Ep is the expected
number of SNP with P-values below a particular significance
threshold, given the number of SNP in the panel and assuming
that all tests are independent, and Op is the observed number of
SNP with P-values below that same threshold. Standard
sample size and power calculations using the critical points of
the normal distribution were calculated as previously described
(Snedecor and Cochran 1967).

Results

Phenotypic measures

Tick counts in the sample of cattle (n = 1961) with duplicate
counts ranged from 0 to 853 (Fig. 1). The tick counts for
different breeds are shown in Table 3. The heritability and
standard error of ln-transformed tick counts, when analysed as
multiple counts of an animal,wash2 =0.37�0.02 in these taurine
dairy cattle, larger than the h2 = 0.23 � 0.15 obtained from
analysing the mean ln-transformed tick counts. The most
important factor affecting ln-transformed tick counts was the
combined effect of season and counter, which was highly
significant (P < 0.0001) and accounted for R2 = 35.7% of the
residual variance in tick counts. Property, which includes the
effect of management, although highly significant (P < 0.0001),
explained a much smaller R2 = 2.4% of the variance. Breed type
was highly significant (P < 0.001) in these taurine cattle but

explained an inconsequential amount of the variance (R2 <0.1%)
compared with the other two main effects. The amount of the
variance explained by breed was consistent with the expectation
that taurine dairy cattle breeds were in general similar to each
other in tick burden. After accounting for property and season
the MIXT, AUR and HOLX breed types all carried more ticks
than the CHA breed, although the differences between these
three breeds were not significant. The BSWX did not carry
significantly more ticks than the CHA and the ZEBX did not
carry significantly fewer ticks than the CHA.

The unadjustedmilk protein, fat and total milk yields for cattle
in the sample are shown in Table 4. The heritabilities for these
traits are: for adjustedmilk protein, h2 = 0.56� 0.19, for adjusted
milk fat, h2 = 0.46 � 0.19, and for total milk yield, h2 = 0.50 �
0.19. Total milk yield was highly correlated with both milk fat
yield and milk protein yield (Fig. 2), with correlations r = 0.94
and r = 0.98, n = 973, P < 0.0001. The correlation between
total milk yield and milk fat yield showed visibly greater
dispersion than the correlation between total milk yield and
milk protein yield. Milk component yield was always adjusted
for total milk yield, because nearly all of the variability in milk
fat and protein yield was due to variation in total milk yield in
these data. Property of origin explained R2 = 26 and 24% of the
residual variance respectively for adjusted milk fat and protein
yield (P < 0.0001). Breed type explained R2 = 4% and 5% of the
residual variance respectively (P < 0.0001) for adjusted milk
fat and protein yield. Cow birth year explained R2 = 3% of the
residual variance (P < 0.05) for adjusted milk fat yield but
did not have a significant effect on adjusted protein yield. To
determine the effect of multiple breeds on a property compared
with breeds occurring on several properties, we performed an
analysis of breed nested within property and of property nested
within breed for adjusted milk component yield. Breed type
nested within property explained R2 = 9% and 8% of the
residual variance respectively (P < 0.0001) for adjusted milk
fat and protein yield. Property nested within breed type
explained R2 = 32% and 27% of the residual variance
respectively (P < 0.0001) for adjusted milk fat and protein
yield. Due to the known differences in yield between breeds of
cattle, and due to the same considerations of data stratification,

Table 3. Number of records, mean, and standard deviation (s.d.) of tick counts and ln-transformed tick counts in different breed types
AUR,AustralianRed breed; BSWX,BrownSwiss and its crosses; CHA,Channel Isle breeds of Jersey andGuernsey and their crosses; HOLX,Holstein–Friesian

and its crosses; MIXT, mixed taurine cattle; ZEBX, cattle with at least one grandparent of known zebu ancestry. *P < 0.05, **P < 0.01

Type AUR BSWX CHA HOLX MIXT ZEBX Total

No. of animals with multiple
tick count records

332 193 266 509 650 11 1961

No. of tick count records 1004 639 733 1355 1844 36 5611

Tick count
Mean 39.6 88.4 30.0 41.0 46.6 124.8 47.1
s.d. 76.9 114.7 46.5 71.8 75.4 134.0 79.7

ln(ticks + 1)
Mean 2.79 3.66 2.82 2.99 3.03 3.88 3.03
s.d. 1.30 1.40 1.12 1.17 1.31 1.73 1.29
l.s.e.A 0.21* –0.03 –0.29 0.22** 0.19* –0.31 –

s.e. 0.10 0.09 – 0.07 0.07 0.23 –

ALeast-square estimates of fixed effects with CHA as the reference breed. Note ASReml estimates n-1 levels and the last level is the negative sum of the others.
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breed type, property and birth year of the cow were fitted as
effects in the association analyses.

The correlations between mean ln-transformed tick counts
and milk and milk component yield varied substantially. The
phenotypic correlation and standard error between adjusted
milk fat and milk protein yields was rP = 0.53 � 0.02 and the
genetic correlation and standard error was rg = 0.73 � 0.15.
Correlations between adjusted milk component yield and
mean ln-transformed tick counts could not be performed due
to a lack of residual variance when total milk yield was fitted as
a covariate. When total milk yield was removed from the
model, the correlations between milk fat yield and mean
ln-transformed tick counts were rP = –0.01 � 0.03 and rg =
–0.80� 0.40, and formilk protein yield andmean ln-transformed
tick counts were rP = –0.01 � 0.03 and rg = –0.73 � 0.41. The
correlations between total milk yield and ln-transformed tick
counts were rP = –0.01� 0.03 and rg = –0.63� 0.44. These large
negative genetic correlations between tick burden and milk
production have large standard errors and so should not be

over-interpreted, but they are in the direction of lower tick
burdens with higher milk component yields.

Effect of the milk FNP on traits

The allele substitution effect of the DGAT1 K232A MNP was
significantly (P = 0.0008, i.e. –logP = 3.05) associated with
adjusted fat yield, it was one of the most significant associations
for milk composition in the GWAS subsample and explained
6.4% of the residual variance in the GWAS sample (Table 5).
The allele substitution effect of the GHR F289Y SNP was
significantly (P < 0.05) associated with both adjusted fat and
protein yield, explaining 2.7 and 3.0% of the R2, respectively,
with the same favourable homozygote for both traits. The
ABCG2 Y581S SNP and the PRLR S18N MNP were not
significantly associated with either adjusted protein or fat
yield. The sample of 189 animals had a power of detecting an
effect of 6.9% of the variance at a 5% significance threshold
with 90% power.

The genotyping of the four FNP on all available animals
(n = 973) with adjusted fat and protein yields showed a
significant effect of all these FNP (Table 6). The effect of the
FNP at DGAT1was very highly significant (–logP >15) and was
five times larger than those of the other three FNP, having an
effect of 10.3% of the R2 of adjusted fat yield. It had also a
moderate effect on adjusted protein yield, with the same
favourable homozygote for both traits. The other three FNP
had effect sizes of between 1.1 and 2.1% of the R2 of adjusted
milk protein yield. The GHR FNP had an effect on adjusted
milk fat yield with the same favourable homozygote, but
neither the ABCG2 nor the PRLR FNP had significant effects
at the 5% threshold on adjusted fat yield in these data.

GHR and PRLR were on the same chromosome so the
significant association of PRLR with adjusted protein yield
may be due to LD between GHR and PRLR, although these
genes are 7 Mb apart. We found that when GHR and PRLR were
fitted as main effects in a mixed model, with PRLR fitted after
GHR, the effect of PRLR on adjusted milk protein yield was still
statistically significant (–logP = 2.4). Moreover, PRLR was
also statistically significant (–logP = 1.63) when nested within

Table 4. Number of records, mean, and standard deviation (s.d.) for
milk yield, milk fat yield and milk protein yield in different breed types
AUR, Australian Red breed; BSWX, Brown Swiss and its crosses; CHA,
Channel Isle breeds of Jersey and Guernsey and their crosses; HOLX,
Holstein–Friesian and its crosses; MIXT, mixed taurine cattle; ZEBX,

cattle with at least one grandparent of known zebu ancestry

Type AUR BSWX CHA HOLX MIXT ZEBX

n 204 84 136 388 153 8

Yield (kg)
Mean 3890 4553 3421 4917 4146 3439
s.d. 1536 2149 1782 2594 1973 1505

Fat (kg)
Mean 144.7 182.1 141.8 187.7 169.2 142.9
s.d. 63.5 85.4 74.1 103.0 89.8 58.9

Protein (kg)
Mean 126.2 145.0 115.6 151.7 135.6 109.1
s.d. 52.6 69.0 61.5 82.5 65.2 50.5

Table 5. Association between four causative genes and adjusted milk fat and protein yield in the genome-wide
association study sample

p, allele frequency; R2, proportion of the residual variance; a, allele substitution effect; s.e., standard error of the allele
substitution effect

Single nucleotide
polymorphism

Chromosome Position
(Mb)

p R2 a s.e. –logP

Adjusted fat yield
ABCG2Y581S 6 37.4 0.97 0.0006 –2.802 9.055 0.12
DGAT1K232A 14 0.4 0.77 0.0639 11.330 3.345 3.05
GHRF279Y 20 33.9 0.18 0.0268 8.180 3.761 1.51
PRLRS18N 20 41.4 0.51 0.0050 2.883 3.085 0.45

Adjusted protein yield
ABCG2Y581S 6 37.4 0.97 0.0065 –4.095 3.848 0.54
DGAT1K232A 14 0.4 0.77 0.0070 1.567 1.445 0.55
GHRF279Y 20 33.9 0.18 0.0303 3.708 1.599 1.67
PRLRS18N 20 41.4 0.51 0.0107 1.791 1.311 0.76
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GHR genotypes. There was no statistically significant
interaction between GHR and PRLR, although such an
analysis is not a formal test of epistasis.

None of these four FNP for milk fat and protein had
significant associations to tick burden either when analysed on
the GWAS sample or when tested on the full sample of animals
with milk component yield data (data not tabulated). A sample
of 973 animals should detect an effect of R2 = 1.1% with 90%
power at the 5% significance threshold.

GWAS results for milk composition

Of the SNP in the 10 K Affymetrix panel, there were 7397 that
passed quality control and were used for association mapping
and of these, there were 6532 that had MAF >0.05 in the
combined GWAS sample (n = 189). There are 6.5 SNP
expected to be significant at the 0.1% threshold by chance if
one assumed that the SNP tests were independent.

At the same threshold as that for DGAT1 in the GWAS
sample (i.e. –logP = 3), there were six SNP with MAF >0.05
associated with adjusted milk fat yield (Table 7). The FPR was
therefore 100% for milk component traits at the 0.1%
significance threshold. Of these SNP, the one located
immediately 30 to the GPR126 gene on BTA9 was interesting
because the same favourable homozygote had an effect on milk
protein yield (–logP = 2.76, a = –4.158, s.e. = 1.307) on a
chromosome with known QTL effects for milk fat and protein
yield (Georges et al. 1995). A second SNP was in the NCOA2

gene, which is a co-activator of steroid hormone receptors
including steroid, thyroid, retinoic acid and vitamin D
receptors, including the oestrogen receptor (Hong et al. 1997).
DGAT1 is some 30 Mb away from NCOA2 so this association
is unlikely to be due to LD to DGAT1, and the variation in milk
fat and protein yields on BTA14 was not fully explained by
DGAT1 variation (Kaupe et al. 2007). At the same threshold
there was one SNP with MAF >0.05 associated with adjusted
protein yield (Table 6), which is much fewer than expected by
chance. None of the other genes was a potential candidate gene.

GWAS results for tick burden

For tick burden, at a threshold of –logP = 3.0, there were 27 SNP
with MAF >0.05 of which 25 could be located to the bovine
genome (Table 8). The FPR = 24% for tick burden associations at
the 0.1% significance threshold. The –logP values were plotted
against genome location in Fig. 3. Several of these SNP were
either in an exon or intron of a gene that had a known role in the
adaptive immune system of mammals, or was within 50 kb of
such a coding sequence. TNFSF8 (CD30) is a cytokine belonging
to the tumour necrosis factor ligand family and has been shown
to be upregulated in cutaneous inflammation and mediates
degranulation-independent chemokine secretion (Fischer et al.
2006). SIRPA is a member of the immunoglobulin superfamily
involved in the differentiation of monocytes to dendritic cells
(Brooke et al. 1998), the most potent antigen presenting cell, and
has a known role in binding to CD47 (Oldenborg et al. 2000). Of
the others with a potential link to the immune system, SATB2
binds to the matrix attachment region of the immunoglobulin
micro locus and enhances expression in pre-B-cells (Dobreva
et al. 2003). MAN2A1 mutations are involved in systemic
autoimmune disease (Chui et al. 2001), and the expression of
ABCA9 was affected by cholesterol levels in blood and it
belongs to a family of genes that are induced during monocyte
differentiation into macrophages (Piehler et al. 2002). None of
the genes listed in Table 8 was identified by gene expression
profiling in cattle followingartificial challengeusingB.microplus
larvae (Wang et al. 2007).

Global association between tick burden and milk
composition

In a genomic selection framework, all of the SNP in the 10-KSNP
panel may be used to predict the breeding values for a trait, so to

Table 6. Significant associations between four causative genes and
adjusted milk fat and protein yield in the full sample

p, allele frequency; R2, proportion of the residual variance; a, allele
substitution effect; s.e., standard error of the allele substitution effect

Single nucleotide
polymorphism

n p R2 a s.e. –logP

Adjusted fat yield
DGAT1K232A 951 0.70 0.1026 13.86 1.34 15.35
GHRF279Y 938 0.20 0.0172 5.52 1.36 4.27

Adjusted protein yield
ABCG2Y581S 952 0.97 0.0143 –5.42 1.47 3.62
DGAT1K232A 951 0.70 0.0212 2.61 0.58 5.16
GHRF279Y 938 0.20 0.0210 2.52 0.56 5.10
PRLRS18N 951 0.55 0.0111 1.72 0.53 2.95

Table 7. Locations of significant associations to adjusted milk and protein yield in the genome-wide association study
p, allele frequency; R2, proportion of the residual variance; a, allele substitution effect; s.e., standard error of the allele substitution effect

Chromosome Position (Mb) p R2 a s.e. –logP Gene symbol

Adjusted fat yield
3 65 0.19 0.06 12.61 3.73 3.05 Near LOC781323
9 83 0.62 0.06 –10.47 3.05 3.12 30 to GPR126
14 34 0.16 0.06 14.27 4.23 3.03 NCOA2
24 30 0.89 0.06 16.98 4.98 3.09 Not near gene
24 30 0.89 0.06 16.98 4.98 3.09 Not near gene
26 40 0.63 0.06 10.90 3.21 3.06 PRDX3

Adjusted protein yield
25 30 0.35 0.07 –4.66 1.33 3.25 GBAS
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estimate the relative effects of these SNP on several traits,
correlations were calculated between the allele substitution
effects of all three traits. The allele substitution effects for
adjusted milk fat and adjusted milk protein yield were
correlated with r = 0.66, those for adjusted milk fat yield and
tick burden were slightly positively correlated with r = 0.10, and
those for adjusted milk protein yield and tick burden were
effectively uncorrelated with r = –0.03. These correlations are
in general agreement with the phenotypic correlations for these
traits (cf. above).

Discussion
In this study we calculated heritabilities and correlations
between tick counts and milk production traits, examined the
effects on parasite resistance of genes with known effects onmilk
yield and milk component yield, performed a low resolution
GWAS to identify genomic regions associated with tick counts
or milk component yield and compared the allele substitution
effects of these traits across the genome to determine whether
the effects for tick counts were correlated with those for milk
component yield.

Table 8. Locations of significant associations to tick burden in the genome-wide association study sample
p, allele frequency; R2, proportion of the residual variance; a, allele substitution effect; s.e., standard error of the allele substitution effect

Chromosome Position (Mb) p R2 a s.e. –logP Gene

1 95 0.35 0.09 0.43 0.10 4.48 Near NAALADL2
2 92 0.69 0.06 –0.38 0.11 3.00 30 to SATB2
2 92 0.44 0.11 –0.45 0.09 5.55 30 to SATB2
4 16 0.43 0.07 0.36 0.09 3.70 GLCCI1
6 23 0.53 0.06 0.33 0.10 3.13 LOC518821
6 23 0.47 0.06 –0.33 0.10 3.13 LOC518821
6 23 0.53 0.06 0.32 0.10 3.06 LOC518821
7 111 0.37 0.06 –0.37 0.10 3.35 Near MAN2A1
8 109 0.80 0.07 –0.43 0.12 3.34 Near TNFSF8
10 69 0.86 0.08 0.56 0.14 3.92 SAMD4A
11 45 0.10 0.06 –0.54 0.16 3.01 Not near gene
13 10 0.87 0.07 –0.60 0.16 3.73 Near FLRT3
13 10 0.17 0.06 0.49 0.14 3.26 Near FLRT3
13 10 0.13 0.07 0.59 0.16 3.52 Near FLRT3
13 54 0.30 0.06 –0.38 0.11 3.18 Near SIRPA
13 59 0.19 0.06 –0.45 0.13 3.22 Near VAPB
14 77 0.37 0.06 0.35 0.10 3.08 RALYL
19 28 0.88 0.08 –0.68 0.17 4.17 LOC512248
19 43 0.92 0.06 –0.56 0.17 3.10 CNP
19 63 0.38 0.06 –0.36 0.10 3.37 Near ABCA9
19 63 0.37 0.06 –0.35 0.10 3.27 Near ABCA9
20 32 0.94 0.07 –0.75 0.19 3.78 Near MRSP30
20 32 0.94 0.07 –0.80 0.21 3.76 Near MRSP30
20 45 0.30 0.07 –0.40 0.11 3.63 Not near gene
26 30 0.35 0.06 –0.36 0.10 3.30 30 to PARP8
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Fig. 3. Manhattan plot of –logP of allele effects for tick burden against chromosome location: odd numbered
chromosomes grey, even numbered chromosomes black.
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The genetic correlation between tick and milk traits was
negative with large standard errors, while the heritabilities of
these traits were similar to previous estimates. Compared with
previous estimates the heritability for tick burden in this studywas
larger than the value of h2 = 0.15 found in zebu and zebu
composite Brahman and Tropical Composite cattle for tick
scores (Prayaga et al. 2009), but similar to the value of h2 =
0.41�0.08 calculated for taurine cattle usingmultiple tick counts
(Henshall 2004) and within the range of h2 = 0.34–0.49
previously calculated for cattle in Queensland (Wharton et al.
1970; Mackinnon et al. 1991). Heritabilities for the milk yields
were similar to previously estimated values for these traits
(Pander et al. 1992) but higher than previous estimates
restricted to Australian Holstein and Jersey (Visscher and
Goddard 1995). Phenotypic and genetic correlations for the
milk traits are similar to values found in larger datasets
(Visscher and Goddard 1995). We were not able to find
estimates of tick burden and milk or milk component yield in
the literature. The phenotypic correlations between milk and
milk component yield and tick counts were close to zero but
the genetic correlations were strongly negative. These latter
estimates have large standard errors and so should not be over-
interpreted, because the effects could be much weaker and are
not >2 s.e. below zero, but they are in the direction of lower
tick burdens correlated with higher milk and milk component
yields. Selection for milk and milk component yield should
therefore not increase tick burdens and may improve tick
burdens if the genetic correlations are to be believed. The
similarity of the correlations and heritabilities of other traits in
this study with estimates from the literature suggests that
the sample and analyses were not unusual, giving some
credence to the correlations between tick counts and milk
production traits.

The four previously identified FNP of moderate to large
effect for milk and milk component yield, in the genes
ABCG2, DGAT1, GHR and PRLR, all showed associations to
milk compositional traits, including that the effect of DGAT1
on a phenotype was much greater than the effect of the other
genes. Furthermore, we found that although GHR and PRLR
were on the same chromosome, we were able to identify separate
effects of these genes on milk component traits. This analysis
agreed with Viitala et al. (2006) who had found separate effects
for both GHR and PRLR with milk production traits in Finnish
Ayrshire cattle whereas Blott et al. (2003) had not observed
separate effects for PRLR in an earlier study primarily of
Holstein cattle. These four FNP did not show a statistically
significant association to tick counts in this sample – this
sample cannot rule out very small effects, but if those small
effects exist they are substantially smaller than the effects of
these genes on milk traits. Their use to improve cattle production
should have no negative effect on the host resistance of these
cattle to ticks. Although the milk yield traits used in this study
are for adjusted milk fat and protein yield, these four gene tests
also have known direct effects on milk yield.

The results from the GWAS showed several promising
results but these need to be kept in perspective. The sample of
189 animals had a power of detecting an effect of 6.9% of
the variance at a 5% significance threshold with 90% power,
which will result in many false negatives and false positives.

False negatives would be examples of associations such as
ABCG2 and PRLR to milk protein yield that are not significant
at the 5% threshold in the GWAS sample – we know that they
have an effect in these data because they showed statistically
significant results in the full dataset. To identify false positives,
additional research will be needed to confirm the associations of
SNP to traits identified by the GWAS. Although many of these
are highly significant (P < 0.001), they need to be confirmed
in independent samples of cattle before they could be used for
genetic testing. Many of these are likely to be false positives, and
diagnostic tests need to be based on results from thousands
of cattle (Barendse 2005). Nevertheless, we found little
relationship between the allele effects for adjusted milk protein
or fat yield and tick burden, consistent with the phenotypic
correlations between these traits in this dataset. These results
are in agreement that selection for milk component yield
should have no or little effect on parasite loads in these cattle,
whether this is based on phenotype or based on gene tests.

The FPR in the GWAS showed 100% for milk composition
associations but only 24% for tick burden associations. There are
at least three possible explanations for this difference. First, this
could be a chance event, partly due to the small sample size used
in the GWAS, although it is not clear how one would evaluate
the likelihood of such a chance event – the sampling distribution
of number of successful hits in a GWAS is not well understood
when analysed over a range of traits in the same experiment.
Second, the SNP in this panel are not uniformly distributed
across the genome and show large gaps of more than 1 Mb
between adjacent SNP in some areas (Barendse et al. 2009b). If
the QTL for milk composition were located where SNP are less
dense then fewer milk composition QTL would be found. There
is some evidence to support this – there are no SNP within 3 Mb
of DGAT1 and the other FNP were also flanked by a sparse
number of SNP.Moreover, it is likely that other SNPnearDGAT1
would also show LD to milk fat concentration, potentially
increasing the number of SNP with very small P-values.
However, arguing against this evidence, the P-value for
DGAT1 was only slightly less than the 0.1% threshold in the
GWAS sample, so it is not certain that other SNP in strong LD to
DGAT1 would have been equally significant at that threshold.
The third explanation is that there are more SNP of large effect
associated with tick burden than for milk component yield
segregating in the population. This would be consistent with
strong selection for milk production traits and weak selection
for host resistance to ticks, because persistent selection on a trait
will cause genes of larger effect to become fixed sooner in a
population (Kimura 1982). Selection for milk production is
strong because it occurs on bulls in a national system of
evaluation where many bulls are progeny tested, most outside
the tick zone. Selection for host resistance to ticks is likely to be
relatively weak because it occurs largely through culling of
cows that carry extremely large tick burdens. Large numbers
of ticks are not seen every year (Sutherst et al. 1979), and regular
treatment with acaricides would also reduce the opportunity of
seeing cows with large tick burdens, blunting opportunities for
genetic selection.

To help identify genes that might have large effects on host
resistance to parasites, we analysed the gene content near the
most significant SNP and then determined whether the region
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had previously been identified to contain a signature of selection.
It is unlikely that a QTL that makes a small contribution to the
phenotypic variance will have a population genetic signature of
selection (Kim and Stephan 2002). Locations on chromosome
BTA2 showed an intersection of all three criteria: (1) significant
allele effects associated with tick burden in a GWAS;
(2) appropriate positional candidate genes; and (3) a signature
of selection (Gibbs et al. 2009). Further research thatmay identify
FNP for theseQTL in the future will be able to determinewhether
the FNP were responsible for the selection signatures or whether
some other trait, or combination of traits, is responsible for the
selection signature.
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