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Mitochondrial DNA supports the identification
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Abstract. The river sharks (genus Glyphis) are a small group of poorly known sharks occurring in tropical rivers and
estuarine waters across northern Australia, south-east Asia and the subcontinent. The taxonomy of the genus has long
been unclear due to very few individuals having been caught and examined, resulting in a paucity of data regarding their
distribution, biology and ecology. Only recently has attention focussed on the two Australian species, G. glyphis and
G. garricki. This study is a result of a rare opportunity to collate the few samples that have been collected from these
species and the bull shark Carcharhinus leucas, which shares an overlapping range. These samples were analysed using the
DNA barcoding approach (cox1 mitochondrial gene), compared with six other species of carcharhinids and evaluated in
light of the current taxonomic classification. Nine species-specific nucleotide differences were found between G. glyphis
and G. garricki and no intra-specific variation provides strong support for the separation into distinct species. Significant
differences were also observed at the inter-generic level, with Glyphis forming a distinct clade from Carcharhinus. This
study provides the basis for future molecular studies required to better address conservation issues confronting G. glyphis
and G. garricki in Australia.

Additional keywords: cytochrome oxidase, northern river shark, speartooth shark.

Introduction

Global concerns regarding the status of shark species and pop-
ulations have been raised in response to reports of declining
numbers, increased fishing pressure and habitat degradation
(Fowler et al. 2005; Aires-da-Silva and Gallucci 2007). These
reports are in light of the typical life histories of sharks that are
long-lived, have a late age-at-first-breeding, and have long gesta-
tion periods and low fecundities (Fowler et al. 2005; Powter and
Gladstone 2008). Conservation efforts are often hampered by
a lack of base-line information, especially for a group whose
marine and/or estuarine distributions make them difficult to
study. Molecular genetic markers such as mitochondrial DNA
(mtDNA) have been widely used to study marine organisms and
are useful for stock/population identification crucial for conser-
vation management programs (Ovenden 1990). The Barcode of
Life Database (BOLD; www.boldsystems.org, verified 2 May

2009) is a repository of short standardised DNA sequences that
aid in species identification for a wide range of taxa. The DNA
barcoding technique is adopted in this study to confirm the
presence of two endangered species of river shark in northern
Australia and investigate the relationship between them.

The river sharks from the genus Glyphis are a small group of
poorly known sharks with an apparent fragmented distribution
across northern Australia, south-east Asia and the Asian subcon-
tinent. The river sharks are distinctive in that they can occur in
coastal waters, in the estuarine waters of tropical river mouths
and in river systems well inland from the coast (Thorburn et al.
2003; Peverell et al. 2006). However, beyond the few individuals
captured from the numerous sites sampled throughout the region,
limited information is available pertaining to the distribution,
abundance, morphology, reproduction and ecology of all species
within the group. Indeed, until 2008, formal descriptions were
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only available for half the species recorded, with uncertainty as
to the exact number of species in the genus, and what species
name should be assigned to each population. This lack of infor-
mation is in part due to the limited number of sites where
these sharks have been found and the difficulty in catching indi-
viduals in remote areas. As a consequence, there has been a
paucity of specimens, with some being lost, which had made fur-
ther taxonomic evaluation and research difficult (Fowler 1997;
Compagno and Niem 1998; Compagno et al. 2005; Fowler et al.
2005; Martin 2005).

Six possible species had been identified: Glyphis glyphis
(speartooth shark from Papua New Guinea and possibly the
Bay of Bengal), G. gangeticus (Ganges River shark from India
and possibly Pakistan), G. siamensis (from Myanmar), G. sp. A
(Bizant River shark from northern Australia), G. sp. B (Borneo
River shark from Borneo) and G. sp. C (the northern river shark
from northern Australia and New Guinea). Compagno et al.
(2005) noted that the level of similarity between G. glyphis and
G. sp. A were such that they were possibly conspecific. Recently,
this proposition was confirmed when specimens of G. sp. A from
New Guinea and northern Australia were compared with the
holotype for G. glyphis (Compagno et al. 2008). Compagno et al.
(2008) provided the first formal description of G. sp. C, describ-
ing the species as G. garricki. The present study focuses on the
two species reported from Australia (G. glyphis and G. garricki)
and uses the species names given by Compagno et al. (2008).

The distribution of G. glyphis in Australia has been reported
to extend from the Bizant and Wenlock Rivers (east and west
coasts of Cape York, Queensland) and the East Alligator, South
Alligator and Adelaide Rivers in the Northern Territory (Peverell
et al. 2006; Ward and Larson 2006a; Compagno et al. 2008).
Recent photographs of G. glyphis in the Ord River, West-
ern Australia, suggest that its distribution may extend further
west (Thorburn 2006). Glyphis garricki has been reported from
waters of the Northern Territory (East Alligator, South Alliga-
tor and Adelaide Rivers and tentatively from the Daly River)
and Western Australia (Doctors Creek near Derby, King Sound
and Cambridge Gulf) (Thorburn and Morgan 2004; Ward and
Larson 2006b; Compagno et al. 2008). The accurate distribu-
tional limits of each species within Australia are not known, but
the ‘Top End’ of the Northern Territory appears to be where the
two species overlap. Furthermore, the Wenlock River popula-
tion of G. glyphis (from the west coast of Cape York) differs
in pectoral fin colour from the Northern Territory specimens
(H. Larson and S. Peverell, unpubl. data), but the significance
of this is unknown. Both species have also been reported from
rivers in New Guinea (Compagno et al. 2008).

Although both species appear to be relatively uncommon,
juveniles can be locally abundant in estuarine creeks (Thorburn
and Morgan 2004; Peverell et al. 2006; Field et al. 2008; Museum
and Art Gallery of the Northern Territory records). There are
reports of adult Glyphis (2–3 m total length (TL)) being found
along the coast away from rivers, from Finke Bay (Van Diemen
Gulf) and off the Wessel Islands (J. D. Stevens and D. Lindner,
pers. comm.). Adult Glyphis (2 m TL or greater) are known from
the Northern Shark Fishery in the Northern Territory, but their
numbers and species are unknown due to confusion with the
more abundant bull shark Carcharhinus leucas (R. Buckworth
and C. Tarca, pers. comm.).

The concern regarding the conservation status of Glyphis in
Australia is due to their apparently restricted habitats as indi-
cated by the limited number of sites from where they have been
reported, low population sizes, whether these are increasing or
decreasing, and pressure from line and net fishing (Pogonoski
et al. 2002; Ward and Larson 2006a, 2006b; Field et al. 2008).
The 2007 IUCN Red List recognised four species, with G.
glyphis listed as Endangered, and G. gangeticus, G. sp. A and
G. sp. C (G. garricki) listed as Critically Endangered (IUCN
2007). Glyphis sp. B is not listed, probably because it is cur-
rently known from only one specimen collected from Borneo
more than 100 years ago (Compagno and Niem 1998; Pogonoski
et al. 2002; Fowler et al. 2005). These listings are likely to be
revised upon recognition of G. glyphis and G. sp. A as conspe-
cific. InAustralia, the Environmental Protection and Biodiversity
Conservation (EPBC) Act 1999 lists G. sp. A (G. glyphis) as
Critically Endangered and G. sp. C (G. garricki) as Endangered.

While the listing of Glyphis under the EPBC Act 1999 means
that these species cannot be targeted for commercial exploitation
in Commonwealth waters, capture and retention by commer-
cial fishers working in state waters (nearshore and rivers), such
as those associated with the C. leucas fishery or for the pur-
pose of crab-pot bait, is covered by an exemption (S. Matthews,
pers. comm.). A review of their level of protection in State
waters (where they come under more than one Act), subsequent
increase in awareness of the morphological differences between
Glyphis and C. leucas, along with clarification of species iden-
tity and geographical distribution would be highly beneficial for
the conservation of these species.

The aim of this study was to identify genetic differences that
may occur between Australian populations of G. glyphis and
G. garricki, and to determine whether such differences support
the current separation of these species based on morphological
characters alone. ‘DNA barcoding’ is a technique based on mito-
chondrial cytochrome oxidase I gene (cox1) sequences and was
employed in this study because it is highly discriminating in the
identification of marine fauna (Ward and Holmes 2007; Moura
et al. 2008; Ward et al. 2008). We also aimed to explore the level
of intra-specific mtDNA diversity to gain a preliminary insight
into possible population substructure across the wide geographic
range of each species. Such information may assist in providing
a basis upon which species-specific management plans can be
drafted and implemented.

Materials and methods

Tissue samples from 29 specimens of G. glyphis, 13 G. garricki,
7 C. leucas and 3 ‘unknown’ specimens (tentatively identified
as Glyphis), all held in separate collections throughout northern
Australia (Northern Territory Department of Primary Industries
and Fisheries Management, the Museum and Art Gallery of
the Northern Territory, the Queensland Department of Primary
Industries and Fisheries, the Queensland Museum, the Western
Australian Museum or Centre for Fish & Fisheries Research
and Murdoch University), were utilised for the current study.
Samples were either preserved in 95% or 100% ethanol, 20%
salt-saturated DMSO or were frozen. They included 30 voucher
specimens (Table 1, Fig. 1) and were collected from individ-
uals identified in the field using morphological characters to
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Table 1. Details of carcharhinid samples used in this study
Specimens retained as vouchers in museum collections are indicated by the catalogue number (NTM, Museum and Art Gallery of the Northern Territory;

WAM, Western Australian Museum; QM, Queensland Museum)

Species State River system No. samples Sample label Catalogue no.

Glyphis glyphis NT Murganella Creek 1 GL1 NTMS.15122–001
NT West Alligator 3 GL2, GL46, GL47 NTMS.15299–001
NT East Alligator 2 GL3, GL6 NTMS.15301–001, NTMS.15303–001
NT Adelaide 6 GL5, GL7, GL8, GL10, NTMS.15305–001, NTMS.15304–001,

GL11, GL12 NTMS.15351–001, NTMS.16255–001,
NTMS.16262–001, NTMS.16258–001

Qld Wenlock 16 GL9, GL23–36, GL38 NTMS.16217–001, QMI.36880-QMI.36885
Qld Ducie 1 GL37

Glyphis garricki NT East Alligator 1 GL4 NTMS.15302–001
NT West Alligator 2 GL42–43
WA King Sound 10 GL13–18, GL22, GL39–41 WAM03001–03006, WAM02001
WA Unknown 2 GL794-GL795A BW-A3734, BW-A3733 (Ward et al. 2008)

‘Unknown’ Glyphis NT West Alligator 1 GL44
NT South Alligator 1 GL45
NT Unknown – frozen specimen 1 GL48

Carcharhinus leucas NT East Alligator 1 CL1 NTMS.16284–001
NT South Alligator 1 CL2 NTMS.15161–006
NT Daly 2 CL3–4 NTMS.16165–002
WA Unknown 3 CL19–21

ASequences obtained from GenBank (EU398794 and EU398795).

distinguish each species (Table 2; Thorburn and Morgan 2004;
Compagno et al. 2008).

Total genomic DNA was extracted from a small section of
macerated tissue from these samples using a DNeasy Blood
and Tissue kit (Qiagen, Hilden, Germany) following the man-
ufacturer’s instructions for ‘Animal Tissue’. DNA quality was
assessed following electrophoresis through 1% agarose stained
with ethidium bromide and visualised under UV light.

The cytochrome oxidase subunit I gene (cox1) was amplified
using a combination of the primers FishF1, FishF2, FishR1 and
FishR2 as described in Ward et al. (2005). The PCR reaction mix
was 50 µL, containing 1× PCR buffer, 1.5 mM MgCl2, 0.2 U
Taq polymerase (Genesearch, Arundel, Qld, Australia), 0.1 mM
of each dNTP (Astral Scientific, Sydney, NSW, Australia) and
0.4 µM each of the forward and reverse primers. PCR conditions
were 95◦C for 2 min, 35 cycles of (94◦C for 30 s, 54◦C for 30 s,
72◦C for 1 min), 72◦C for 10 min, 4◦C hold. PCR products were
separated by electrophoresis through 1% agarose at 100V for
30 min. The major band at ∼650 base pairs was excised with
a scalpel blade and purified using a QIAquick Gel Extraction
kit (Qiagen). The quantity of purified PCR product was esti-
mated by gel electrophoresis (80V for 60 min) and comparison
with a Low DNA Mass Ladder (Invitrogen, Carlsbad, CA, USA).
Sequencing reactions were conducted with the BigDye Termina-
tor Cycle Sequencing system (Applied Biosystems, Foster City,
CA, USA) using the FishF1 and FishR1 primers. Sequencing
conditions were 94◦C for 5 min, 30 cycles of (96◦C for 10 s,
50◦C for 5 s, 60◦C for 4 min), and the reactions were separated
on a 3130 Genetic Analyser (Applied Biosystems) following
manufacturer’s instructions.

Raw data were analysed using ABI Prism GeneScan Analy-
sis Software Version 3.1 (Applied Biosystems), and evaluated
and aligned using Clustal W (Thompson et al. 1994) within
MacVector with Assembler (2007). Sequence and phylogenetic
analyses were conducted using MEGA version 3.1 (Kumar et al.
2004). Two G. garricki sequences from Ward et al. (2008)
were included for analysis (GenBank accession, label used in
analysis: EU398794, GL794 and EU398795, GL795), as were
sequences from additional taxa including: Carcharhinus dus-
sumieri (DQ108301, 305 – CD1&2), C. leucas (EF609311 –
CL5), Carcharhinus obscurus (DQ108291, 306 – CO1&2),
Carcharhinus sorrah (DQ108292, 295 – CS1&2), Carcharhi-
nus tilstoni (DQ108283, 298 – CT1&2), Negaprion acutidens
(DQ108284 – NA1) and Prionace glauca (DQ108285, 288 –
PG1&2) (Ward et al. 2005; Ward and Holmes 2007).

The control region (CR) was amplified from a subset of the
G. glyphis and G. garricki. The PCR reaction and sequenc-
ing conditions were as described above, but the primers used
were a combination of GWF, GWR and 470R2 (Pardini et al.
2001).

Results
Cytochrome oxidase 1 (cox1)
DNA was successfully extracted and sequence data obtained
from 29 G. glyphis, 13 G. garricki, 3 Glyphis sp. ‘unknown’
and 7 C. leucas samples. Raw sequences of slightly different
lengths were aligned, and the ends cropped resulting in 602 base
pairs available for analysis. These sequences were aligned with
additional GenBank sequences from G. garricki, four additional
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Table 2. The distinguishing features of the three carcharhinid species used to differentiate individuals in the field for this study

Character Carcharhinus leucas Glyphis glyphis Glyphis garricki
(bull shark) (speartooth shark) (northern river shark)

Position of anteriormost edge Anteriormost edge of upper lip Anteriormost edge of upper lip over or Anteriormost edge of upper lip well
of upper lip below centre of eye just forward of anterior margin of eye (about an eye diameter) forward

of anterior margin of eye

Snout shape in lateral view Snout short, robust and rounded Snout somewhat long, slightly flattened Snout short, somewhat fleshy

Pectoral fin markings Fin with blackish tip in juveniles, Pectoral fin not distinctly darker at ventral Pectoral-fin tip black ventrally; other
adults with dusky grey to faintly tip; other fins without dark tips fins usually without dark tips
dusky tip on underside of fin;
other fins may have dark tips

Lower jaw tooth shape Teeth stout, triangular, serrated Teeth slender, smooth, upright Teeth slender, smooth, upright

Closest distance from mouth ∼2 times width between nostrils 1.8–2.1 times width between nostrils ∼1.5 times width between nostrils
to nostril

Dorsal/ventral markings Grey dorsal colour running Grey dorsal colour bordering Grey dorsal colour extending more
bordering eye through bottom of eye bottom of eye than eye diameter below eye

Table 3. Pairwise differences between taxa, with the number of differences below divide and the p-distance above
(expressed as a percentage)

GLA, Glyphis glyphis; GLC, Glyphis garricki; CL, Carcharhinus leucas; CO, Carcharhinus obscurus; CS, Carcharhinus
sorrah; CT, Carcharhinus tilstoni; CD, Carcharhinus dussumieri; PG, Prionace glauca; NA, Negaprion acutidens

GLA GLC CL CO CS CTA CD PG NAA

GLA – 1.5 6.8 7.1 8.1 7.6 8.6 8.1 8.7
GLC 9 – 7.6 7.5 8.8 7.9 8.8 8.5 9.2
CL 41 46 – 4.0 5.8 4.7 4.8 6.1 7.4
CO 43 45 24 – 4.8 5.2 3.8 3.8 7.4
CS 49 53 35 29 – 5.6 6.0 6.5 8.4
CT 45.5 47.5 28.5 31.5 33.5 – 6.6 5.7 8.0
CD 52 53 29 23 36 39.5 – 5.8 7.9
PG 49 51 37 23 39 34.5 35 – 7.9
NA 52.5 55.5 44.5 44.5 50.5 48 47.5 47.5 –

AA single mutation was observed between the two sequences in these groups, while no intra-specific variation was detected
in all other species.

Carcharhinus species, N. acutidens and P. glauca, bringing
the total number of sequences analysed to 66. Overall, there
were 499 conserved sites, 103 variable sites and 79 parsimony
informative sites.

Nine species-specific nucleotide differences were observed
between G. glyphis and G. garricki, and a significant number was
found between C. leucas and these species (41 and 46, respec-
tively) (Table 3). No sequence variation was observed within
each of these three species. The sequences included from Gen-
Bank for G. garricki and C. leucas were found to be the same as
those obtained from these species in this study (Fig. 2). Repre-
sentative sequences from each of the species obtained from this
study have been submitted to GenBank (accession EU818708–
710). Due to the invariant nature of this gene at the intra-specific
level, it was found to be unsuitable for the investigation of
potential genetic differentiation between populations of Glyphis.

The utility of the DNA barcoding approach was high-
lighted with the inclusion of the three ‘unknown’ specimens
from the Northern Territory that were tentatively identified

as Glyphis but had not been identified further (Table 1). The
individual from the West Alligator River was identified as
G. glyphis (GL44), while the individual from the South Alli-
gator River was identified as G. garricki (GL45) (Fig. 2). The
sequence from the third sample of unknown origin (GL48)
showed 52 and 55 nucleotide differences between those of
G. glyphis and G. garricki, respectively. A search using BLAST
(www.ncbi.nlm.nih.gov/blast, verified 2 May 2009) showed that
the closest sequence was that of N. acutidens (lemon shark) with
only one nucleotide difference between them (Fig. 2).

Overall, there were significant nucleotide differences
observed between all taxa included in analysis, with little
or no intra-taxon variation (Table 3). The intra-genus differ-
ence observed for Glyphis was far less than that observed for
Carcharhinus (Fig. 2).

Control region (CR)
Two regions of the CR were amplified and sequenced, with the
larger fragment using primers GWF and GWR (∼1000 base
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pairs) and the smaller fragment using GWF and the internal
reverse primer 470R2 (∼500 base pairs). Four samples were
chosen to trial the primers and determine whether the 500-base
pair fragment would be sufficient to detect genetic variation
within the Glyphis species. The four samples represented the
extremes of the geographic range of both species: G. glyphis
(GL5 from the Northern Territory and GL25 from Queensland)
and G. garricki (GL4 from the Northern Territory and GL13
from Western Australia).

The larger fragment did not amplify in GL4 and GL13, pos-
sibly as a result of a mutation in the binding site for the GWR
primer for G. garricki.The larger fragments from GL5 and GL25
were sequenced, giving a truncated sequence length of 934 base
pairs. No variable sites were detected.

The smaller fragment amplified in all four samples, and these
were sequenced. The truncated aligned sequence was 421 base
pairs, and 12 of these were variable between G. glyphis and
G. garricki. There was no intra-specific variation observed for
either species. The CR sequences obtained from each species
have been submitted to GenBank (accession numbers FJ460518
and FJ460519).

Discussion

The DNA barcoding gene employed in this study showed strong
support for the separation of Glyphis glyphis and G. garricki as
distinct species. The nine species-specific nucleotide differences
detected across 602 base pairs of cox1 were far fewer than were
detected between any of the Carcharhinus species examined in
this study. This suggests a much closer relationship within the
Glyphis genus than seen within Carcharhinus. Such clear dif-
ferences between species allowed unambiguous identification
of three unknown specimens included in the study. Two of the
unknown Glyphis specimens were identified to species, and the
third unknown was identified as an unrelated species. Examina-
tion of this specimen by one of the authors (H. Larson) confirmed
the original misidentification, as its morphological characters
agreed with that of a lemon shark (N. acutidens). The cox1 gene
was therefore found to be an excellent marker for distinguishing
Glyphis species and can be effectively used to support iden-
tifications made in the field, especially where confusion with
C. leucas, N. acutidens or other species may occur.

The genetic differences observed between G. glyphis and
G. garricki confirm the reports of their overlapping distribu-
tion, with both detected in the East and West Alligator Rivers in
this study. Indeed, one G. glyphis individual was caught within
metres of two G. garricki individuals in the same trip indicating
that these species not only occur within the same river sys-
tems, but may also have overlapping niches. This also raises
ecological questions about potential competition and possible
hybridisation. While the data obtained in this study do not sup-
port introgression with the absence of shared haplotypes between
the Glyphis species, the inclusion of nuclear markers alongside
a more thorough sampling of these river systems would assist in
addressing this issue.

To strengthen the findings of this study regarding the taxon-
omy of the Australian Glyphis species, it would be beneficial
to incorporate samples of these species collected from popula-
tions identified from New Guinea and the Bay of Bengal. Cryptic

species have been identified in at least one shark species using
molecular techniques (Quattro et al. 2006; Ward et al. 2008) and
sampling across the geographic ranges of both species would be
useful to explore this possibility as the large distances between
river systems may foster segregation to such an extent as to
result in speciation. The addition of samples from other Glyphis
species would also serve to reinforce the taxonomic findings
to date. These would include samples from G. gangeticus from
India, G. siamensis from Myanmar and G. sp. B from Borneo.
While the logistics of obtaining such samples may be prohibitive,
specimens identified in the course of any field research in these
regions should be sampled and stored for future molecular-based
studies.

A striking feature of the cox1 sequence data was that no varia-
tion was observed between individuals within each of the species
investigated. While this enhances the ability to identify species,
this molecular marker appears unsuitable for addressing ques-
tions at the intra-specific level. A preliminary investigation into
the utility of the mitochondrial CR for exploring population
subdivision within G. garricki and G. glyphis was undertaken
using several individuals from the extremes of the sampled
range. The CR has often been demonstrated to be hyper-variable
and has been used in a range of diverse marine and riverine
taxa to address population genetic questions (e.g. Zane et al.
2006; Castro et al. 2007; Mabuchi et al. 2008). In this study,
however, the intra-specific sequences were found to be invari-
ant, and this was not pursued further at this time. While the
CR has shown significant variation within several shark species
(e.g. Pardini et al. 2001; Keeney et al. 2003; Quattro et al.
2006), only five polymorphisms identifying six haplotypes were
detected over 1085 base pairs in the basking shark (Hoelzel et al.
2006). As such, while only a handful of Glyphis samples were
sequenced albeit from the extremes of their range in Australia,
to detect possible variation within the CR requires the entire
region to be sequenced incorporating more samples from both
species.

An absence of genetic variation was also noted between
the populations of G. glyphis, which showed morphological
differences in the Wenlock River population compared with
individuals found in the Northern Territory. The significance of
marked differences in pectoral fin colouration was not known;
however, such differences were not reflected in the genetic
data. Similarly, Thorburn and Morgan (2004) reported that the
presence of fused vertebrae and spinal deformation was not
uncommon in a Western Australian population of G. garricki
and suggested that this might be indicative of a small gene
pool. The present genetic data do not reflect any differentiation
between geographically distant populations of this species, and
to explore whether such morphological differences are reflected
as genetic variation would require the screening of additional,
more variable markers.

The absence of intra-specific variation may be a result of pan-
mixia. Conversely, significant population subdivision may well
exist across the geographical range, but was simply not detected
using the cox1 and CR markers. Such a scenario is possible if
insufficient time has lapsed in relation to the mutation rate of
the marker. Given the paucity of data pertaining to the repro-
duction and ecology of both Glyphis species, it is difficult to
address either hypothesis adequately. Based on limited data and
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comparison to similar species, G. garricki and G. glyphis are
thought to be viviparous, with females giving birth to live
young (Stevens et al. 2005). The local abundance of Glyphis
juveniles reported in rivers and the absence of adults suggests
that it is possible that these species adopt a similar strategy to
C. leucas, whereby juveniles utilise riverine or nearshore waters
before migration to marine waters to mature and breed (Thorburn
2006). If female sharks show philopatry to particular river sys-
tems, then population divergence might be expected to occur
and could be reflected in mitochondrial genes. However, if
the females show little or no philopatry then the migration to,
and breeding in, marine waters where greater mixing of adults
might occur, could act to reduce or negate population subdi-
vision. To address whether panmixia is possible across such
broad geographical distances, more information regarding adult
movements is required (e.g. through tagging studies) before any
conclusions can be drawn.

The lack of intra-specific variation was also observed for
C. leucas across a similar geographic range to G. garricki, as
samples from both Western Australia and the Northern Ter-
ritory were included. The invariant nature of the cox1 gene
for the three species of interest in this study suggests that
the marker is uninformative rather than being indicative of an
absence of population subdivision per se. While mtDNA has
been found to be variable within several shark species, includ-
ing the Australian gummy shark (Mustelus antarcticus), sandbar
shark (C. plumbeus), shortfin mako shark (Isurus oxyrinchus),
sharpnose shark (Rhizoprionodon terraenovae) and deepwater
sharks (Centrophorus and Centroscymnus species; Heist et al.
1995, 1996a, 1996b; Gardner and Ward 1998; Moura et al.
2008), evidence for population subdivision was lacking in all
but the gummy shark. This was not the case for hammerhead
shark (Genus Sphyrna) populations where cox1 and CR markers
showed evidence of cryptic speciation (Quattro et al. 2006).

This study provided the first investigation into the distribution
of Glyphis species across northern Australia and confirms the
identity of the two species reported to occur here. Future studies
will require more variable markers (e.g. alternative mitochon-
drial genes and nuclear genes, such as ribosomal ITS regions
and/or microsatellite loci) to better explore the genetic variation
within these species. An increase in the sample sizes of popu-
lations and broader sampling across the geographic ranges will
serve as a solid basis to better address the future conservation
issues confronting G. glyphis and G. garricki in Australia.
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