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Abstract: Carbohydrate levels are important regulators of the growth and yield of tree crops. Current
methods for measuring foliar carbohydrate concentrations are time consuming and laborious, but
rapid imaging technologies have emerged with the potential to improve the effectiveness of tree
nutrient management. Carbohydrate concentrations were predicted using hyperspectral imaging
(400–1000 nm) of leaves of the evergreen tree crops, avocado, and macadamia. Models were devel-
oped using partial least squares regression (PLSR) and artificial neural network (ANN) algorithms
to predict carbohydrate concentrations. PLSR models had R2 values of 0.51, 0.82, 0.86, and 0.85,
and ANN models had R2 values of 0.83, 0.83, 0.78, and 0.86, in predicting starch, sucrose, glucose,
and fructose concentrations, respectively, in avocado leaves. PLSR models had R2 values of 0.60,
0.64, 0.91, and 0.95, and ANN models had R2 values of 0.67, 0.82, 0.98, and 0.98, in predicting the
same concentrations, respectively, in macadamia leaves. ANN only outperformed PLSR when pre-
dicting starch concentrations in avocado leaves and sucrose concentrations in macadamia leaves.
Performance differences were possibly associated with nonlinear relationships between carbohydrate
concentrations and reflectance values. This study demonstrates that PLSR and ANN models perform
well in predicting carbohydrate concentrations in evergreen tree-crop leaves.

Keywords: chemometric analysis; Macadamia integrifolia; Persea americana; PLSR; reducing sugars;
sample size; starch; tree crops

1. Introduction

Tree crops are an important contributor to food production for the growing human
population [1]. Understanding how crop nutrition limits vegetative growth, flowering
and fruit development is essential for maintaining tree-crop yields [2–4]. Carbohydrate
concentrations and carbohydrate forms play critical roles in regulating vegetative growth,
fruit set, and yield of tree crops [5–10]. Foliar carbohydrate concentrations are manipulated
using girdling, pruning or limb removal to increase fruit set and reduce fruit abscission,
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but monitoring and measuring foliar carbohydrate concentrations is usually laborious and
time consuming [10–12]. Alternative rapid-assessment technologies are needed to quantify
foliar carbohydrate concentrations in real-time, enabling an agile response in on-farm
management practices to increase fruit set and yield.

Hyperspectral imaging (HSI) is emerging as a portable assessment technique that can
assess tree nutrition in real time [13–15]. Hyperspectral imaging provides both spectral
and spatial information, giving this technology an advantage over conventional visible-to-
near-infrared (NIR) spectroscopy [16]. Reflectance data are extracted from hyperspectral
images and correlated with chemical concentrations obtained from samples [17–22]. The
foliar concentrations of carbohydrates such as starch, sucrose, glucose, and fructose have
been predicted successfully using NIR spectroscopy or HSI in a range of forest tree species
and recently in microalgae [23–26]. HSI has also been developed to predict foliar mineral-
nutrient concentrations in tree crops such as apple, avocado, citrus, cocoa, and macadamia,
as well as in forest leaf litter [13,15,21,27,28]. However, hyperspectral technology has not
yet been developed to predict carbohydrate concentrations in horticultural tree crops.

Hyperspectral imaging produces large datasets and so machine learning techniques
have been used to extract information and develop predictive models [21,22,29–32]. Par-
tial least squares regression (PLSR) and artificial neural network (ANN) are two of the
most frequently used modelling methods in HSI and NIR spectroscopy studies [27,33–35].
However, the performance of PLSR and ANN in predicting a variable may be affected
by various factors. For example, both PLSR and ANN perform well when data are noisy.
Linear models such as PLSR are usually preferred over non-linear models such as ANN
due to their simplicity; however, linear models have limitations when the relationship
between reflectance and measured values is non-linear [34]. ANN may out-perform PLSR
for prediction accuracy when the data are noisier and the relationship between reflectance
and measured values is non-linear [34,36]. Furthermore, datasets sometimes show sub-
clustering and so model development may be required for each sub-cluster to improve
prediction accuracy [37]. Using sub-clusters reduces the number of samples, which can re-
duce the prediction accuracy of PLSR and ANN models [38]. The performance of PLSR and
ANN in predicting foliar carbohydrate concentrations of tree crops has not been compared
between models using sub-clusters and models that use the entire dataset.

Carbohydrates such as starch, sucrose, glucose and fructose are major forms of car-
bohydrate storage and supply in plants [39]. Here, we used avocado and macadamia
leaves to examine the potential for HSI to predict foliar carbohydrate concentrations in
evergreen tree crops. We aimed specifically to (1) determine the potential for HSI to predict
starch, sucrose, glucose, and fructose concentrations in avocado and macadamia leaves;
(2) compare the performance of PLSR and ANN in predicting starch, sucrose, glucose
and fructose concentrations; and (3) compare the reliability of PLSR and ANN models
developed using sub-clusters with those developed using entire datasets, examining the
effects of sample size on model reliability.

2. Materials and Methods
2.1. Sample Collection and Preparation

‘Hass’ avocado leaves were collected from two commercial orchards. Different sam-
pling strategies, such as sample collection from different orchards, different seasons, or
different management practices, are used to increase variability in the dataset, which
in turn increases model reliability [40–44]. The first orchard was Eastridge (25◦13′25′′S
152◦18′54′′E) at Childers, Queensland, Australia. Leaves of ‘Hass’ trees were collected at
peak flowering in September 2018 (spring) when the trees were 5 years old and vegetative
flushing was minimal. One branch of approximately 1 m length from each of five trees, with
the leaves on each branch having a range of maturity levels was collected. The branches,
with leaves attached, were immediately placed in water and transported to the laboratory.
Then, 10–20 leaves ranging in maturity along each branch were collected, with a total of
80 leaves from the 5 branches. Parts of each leaf were sampled, avoiding the midrib vein.
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The dried leaf samples were later ground with a mortar and pestle before image collection
and carbohydrate analysis.

The second orchard was Simpson Farms (25◦08′36′′S 152◦22′46′′E) at Goodwood,
Queensland, Australia. Leaves of ‘Hass’ were collected in 2020 when the trees were
4 years old. At this orchard, 1 or 2 branches of approximately 1 m in length from each of
7 trees were girdled, providing 12 branches in total. Branch girdling is commonly used in
horticulture to promote starch accumulation in the leaves and so girdling was performed
in this study to increase the foliar starch concentrations [45]. Girdling involved removing a
5–6 mm full circumference of bark from the selected branches (Figure 1), which had similar
size and moderate crop load [45].
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Figure 1. A freshly applied girdle on an avocado branch, shown by a yellow arrow.

Branches were girdled in January 2020 (summer) and 150 leaves were collected from
the branches 5 weeks later. The leaves were collected along the length of the branches
to obtain samples representing a wide range of leaf maturity levels and carbohydrate
concentrations. The midrib vein was removed immediately after leaf collection, and the
leaf samples were placed on dry ice for transport to the laboratory. We stored samples at
−70 ◦C prior to freeze-drying. The dried samples were then ground to homogeneity with a
Fritsch Pulverisette 14 variable-speed rotor mill (Fritsch GmbH, Idar-Oberstein, Germany)
prior to image collection and carbohydrate analysis. In total, 80 avocado leaf samples
were processed from Eastridge in 2018 and 150 avocado leaf samples were processed
from Simpson Farms in 2020. Large numbers of samples are used to develop reliable
models, but the cost of chemical analysis associated with large numbers of samples may be
prohibitive [40]. The models provide robust predictions when data with high variability are
collected to train the models, regardless of the sample size used for model development [41].

In addition to avocado leaves, we collected ‘Daddow’ macadamia leaves at peak
flowering in September 2018 (spring), when vegetative flushing was minimal, from Alloway
orchard (24◦56′06′′S 152◦21′20′′E) near Bundaberg, Queensland, Australia. One branch
of approximately 1 m length from each of four trees was collected, with the leaves on
each branch having a range of maturity levels. The branches, with leaves attached, were
immediately placed in water and transported to the laboratory. Then, 17–28 leaves per
branch were harvested, with 94 leaves in total. Parts of each leaf were sampled, avoiding
the midrib vein, and then freeze dried. The dried samples from each leaf were later ground
with a mortar and pestle prior to carbohydrate analysis.

In the same macadamia orchard in January 2020 (summer), one or two branches of
approximately 1 m length on each of nine trees were also girdled, using the same girdling
method described for avocado (above). In total, 12 macadamia branches were girdled.
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In total, 150 leaves were collected from the branches, 5 weeks later and samples were
processed using the same method used for avocado leaves in 2020 (above). In total, 94
macadamia leaf samples were collected in 2018 and 150 leaf samples were collected in 2020.
Sample collection and sample processing is summarized (Figure 2).
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2.2. Carbohydrate Analysis

Approximately 50 mg of ground leaf tissue, with mass recorded, was taken from
each sample for carbohydrate analysis and the remainder of each sample was used to
obtain hyperspectral images. Laboratory analysis of foliar carbohydrate concentrations
is typically undertaken using dry ground leaf samples. In addition, dried samples avoid
water interference during calibration of chemometric models, allowing for selection of
appropriate spectral wavelengths during model development [18]. Therefore, dry ground
leaf tissue was used in this study. Then, 5 mL of 80% ethanol was added to the leaf
subsample, with the addition of a known quantity of adonitol as an internal standard. The
subsample was incubated for 1 h at 60 ◦C, and was centrifuged at 4200 rpm for 10 min.
The supernatant was decanted, the pellet was rinsed with 5 mL of 80% ethanol, and
the residual pellet was centrifuged twice more with a further addition of 2.5 mL of 80%
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ethanol. A final rinse was applied, only for the avocado samples, using a small volume
of ice-cold water. A subsample of the combined supernatant from each sample was dried
and solubilised in ultrapure water prior to quantification. Sucrose, glucose, and fructose
concentrations were quantified against known external standards using a Thermo Scientific
DIONEX ICS-5000+ High Pressure Ion Chromatography (HPIC) system (Thermo Fisher
Scientific, Waltham, MA, USA) with a CarboPac PA20 column and amino trap guard, using
electrochemical detection [39]. Data were extracted using the Thermo Scientific Chromeleon
7.2.10 Chromatography Data System. The leaf starch in the pellet was then quantified using
a colorimetric method [10].

2.3. Hyperspectral Imaging System, Image Acquisition, and Spectral Data Extraction

Images of the 194 avocado and 244 macadamia ground-leaf samples were captured
using a 12-bit push-broom hyperspectral camera (Pika XC2, Resonon Inc.; Bozeman, MT,
USA). The system collects images that contain 462 wavelengths of spectral data at 1.3 nm
resolution in the region between 400 and 1000 nm. The hyperspectral system was cali-
brated prior to image collection by removing dark current noise (D) and making a white
response correction (W) by imaging highly reflective Lambertian material that provides
99% reflectance. Reflectance (R) was then calculated from raw spectral reflectance (I0) using
Equation (1):

R = (I0 − D)/(W − D) (1)

Ground leaf samples were placed on a linear translation stage and illuminated using
four wide-spectrum quartz-halogen lights. Camera and stage progression were coordi-
nated using SpectrononPro (v2.94) software (Resonon Inc.; Bozeman, MT, USA). Following
calibration, images were captured using acquisition settings of 25.52 frames per second and
33.46 ms integration time, with all other settings unchanged from the software defaults.
Regions of interest (ROIs) were manually selected using SpectrononPro software by select-
ing all pixels in the visible surface area of each sample using the native lasso tool, and the
mean spectra for each wavelength were extracted and used for further data processing and
model development (Figure 3) [46].
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The mean reflectance for all pixels selected in a typical ROI is depicted for an avocado
and a macadamia leaf sample (Figure 4).

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. Ground (a) avocado and (b) macadamia leaf samples, showing one shaded region of in-
terest (ROI) for each species where mean spectra were extracted. 

The mean reflectance for all pixels selected in a typical ROI is depicted for an avocado 
and a macadamia leaf sample (Figure 4). 

 
Figure 4. The mean corrected relative reflectance of the Vis/NIR spectrum (400–1000 nm) from avo-
cado leaves (n = 210) and macadamia leaves (n = 218). The 100% reflectivity was scaled to 10,000 
(integers) by default. 

2.4. Model Development, Selection, and Evaluation 
Outliers were identified using Hotelling’s T2 test with a 99% confidence level and 

removed. The remaining data were divided randomly into two independent datasets. One 
dataset containing 80% of the available data was used for model calibration and one 

0

2,000

4,000

6,000

8,000

10,000

12,000

350 450 550 650 750 850 950 1,050

Re
fle

ct
an

ce

Wavelengths (nm)

Avocado

Macadamia

Mean ± SD (avocado)

Mean ± SD (macadamia)

Figure 4. The mean corrected relative reflectance of the Vis/NIR spectrum (400–1000 nm) from
avocado leaves (n = 210) and macadamia leaves (n = 218). The 100% reflectivity was scaled to 10,000
(integers) by default.

2.4. Model Development, Selection, and Evaluation

Outliers were identified using Hotelling’s T2 test with a 99% confidence level and
removed. The remaining data were divided randomly into two independent datasets. One
dataset containing 80% of the available data was used for model calibration and one dataset
containing 20% of the available data was used as a test dataset for model evaluation [21].
The calibration datasets contained 184 samples for avocado and 196 samples for macadamia,
while the test datasets contained 46 samples for avocado and 48 samples for macadamia
(Table 1).

PLSR models were developed to correlate the concentrations of starch, sucrose, glucose,
and fructose with the spectra of both the avocado and macadamia samples. Full cross-
validation (leave-one-out) was used to select the optimal number of latent variables and
avoid overfitting [18,47]. Wavelength selection was also applied to remove wavelengths
with the lowest β-coefficients [33]. Among the remaining wavelengths, the principal
wavelengths were then selected to further simplify and highlight spectral regions that were
important for predictions. A wavelength was selected as a principal wavelength when
either its β-coefficient was greater than the standard deviation of the model β-coefficients
or its variable importance in projection (VIP) was greater than 1.0 [21,48,49]. VIP was
calculated using Equation (2):

VIPj =

√
∑F

f=1 w2
jf·SSYf·J

SSYt·F
(2)

where VIPj is the importance of the jth wavelength in the model, F is the number of compo-
nents, Wjf is the loading weight of the corresponding wavelength in the fth component,
SSYf is the explained sum of squares of the targeted carbohydrates in the fth component,
SSYt is the total sum of squares of the targeted carbohydrate, and J is the total number of
wavelengths used in the model. All stages during PLSR model development including
outlier detection and removal, wavelength selection, and redevelopment of models were
performed using Unscrambler software (Version: 10.5.1; CAMO, Oslo, Norway).
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Table 1. Starch (%), sucrose (%), glucose (%), and fructose (%) concentrations in avocado and
macadamia leaves that were used to develop hyperspectral models.

Kernels Set Average SD Min Max CV

Avocado

Starch Calibration 24.36 21.71 3.74 139.92 89.12
Test 25.69 29.35 5.92 183.29 114.39

Sucrose Calibration 26.10 30.94 0.02 105.32 118.54
Test 25.93 30.62 0.03 96.70 118.08

Sucrose 1 * Calibration 58.15 15.14 33.08 96.7 26.04
Test 66.49 20.21 31.13 105.33 0.3

Sucrose 2 * Calibration 0.49 0.74 0.02 4.37 153
Test 6.06 8.17 0.02 27.24 1.34

Glucose Calibration 11.22 5.81 0.10 26.77 51.78
Test 10.84 7.45 1.03 25.98 68.72

Fructose Calibration 12.82 6.17 1.96 28.47 48.12
Test 12.82 6.26 0.30 22.87 48.82

Macadamia

Starch Calibration 4.66 4.10 0.14 21.81 87.98
Test 4.59 3.08 0.50 12.20 67.10

Sucrose Calibration 6.88 5.55 0.17 22.03 80.66
Test 7.96 6.56 0.42 22.20 82.41

Glucose Calibration 27.46 14.91 2.84 47.57 54.29
Test 29.10 14.79 2.92 47.23 50.82

Glucose 1 * Calibration 5.00 2.68 2.84 20.17 53.62
Test 6.12 4.26 3.59 19.85 68.67

Glucose 2 * Calibration 37.25 5.42 21.87 47.57 14.55
Test 35.48 3.32 28.43 41.94 9.30

Fructose Calibration 17.87 11.39 0.64 34.01 63.73
Test 20.27 11.10 0.59 33.86 54.76

Fructose 1 * Calibration 2.48 2.35 0.59 8.91 94.81
Test 2.70 3.10 0.83 13.7 114.9

Fructose 2 * Calibration 26.98 3.26 15.13 34.01 12.08
Test 24.47 2.62 18.99 29.27 10.68

* 1 and 2 indicate that two sub-clusters of data were used for model development when distinct sub-clusters were
observed in the data.

ANN models were also trained with the logistic sigmoid function to predict carbohy-
drate concentrations using Levenberg–Marquardt backpropagation [50,51]. Determining
the optimal number of hidden neurons, prior to developing ANN models, is important
to avoid overfitting and underfitting during the training process [52]. We systematically
changed the number of hidden layers (between 5 and 10) and selected the number of
hidden layers to provide the lowest root mean square error (RMSE) during cross-validation.
This number of hidden layers was then used to develop the best-fit ANN model for each
corresponding variable. All datasets were examined with cluster analysis to find hidden
patterns or sub-clustering. The datasets for sucrose concentration in avocado leaves, and
glucose and fructose concentrations in macadamia leaves, had two distinct sub-clusters
within the entire dataset. Therefore, two sub-clustered datasets were manually created,
sub-clusters 1 and 2, and PLSR and ANN models were developed for each sub-clustered
dataset separately. Sub-clusters 1 and 2 for avocado sucrose concentration had 53 and
73 leaf samples, respectively. Sub-clusters 1 and 2 for macadamia glucose concentration
had 62 and 160 leaf samples, respectively. Sub-clusters 1 and 2 for macadamia fructose
concentration had 72 and 150 leaf samples, respectively.

Random or systematic data partitioning is commonly applied for selecting calibra-
tion, validation and test datasets to ensure models are validated with robust datasets
(LWT) [41,53]. In the current study, random data partitioning was applied prior to all
model development and the models were then cross validated [13,22,33,54,55].

Generally, better model predictions are represented by higher R2 and ratio of prediction
to deviation (RPD) values, and lower RMSE values. The R2, RMSE and RPD were calculated
using Equations (3)–(5), respectively [21,56]:
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R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

RMSE =

√(
∑n

i=1(ŷi − y)
)

/n (4)

RPD = SDtest/RMSEtest (5)

where yi and ŷi are the reference and predicted values, respectively, of the target variables
in the ith sample, ȳi is the mean of the reference values, n is the number of samples, SDtest
is the standard deviation, and RMSEtest is the root mean square error of the test dataset.

The prediction accuracy of models was assessed using the coefficient of determination
of the test dataset (R2

test). A model provides the following: (a) screening and approximate
quantitative predictions if 0.66 ≤ R2 < 0.82, (b) usable predictions for most applications if
0.82 ≤ R2 < 0.92, (c) usable predictions for most applications including quality assurance
if 0.92 ≤ R2 < 0.98, and (d) excellent predictions if R2 ≥ 0.98 [57]. Models were evaluated
on the basis that, if 1.5 ≤ RPD < 2.0, then the model is capable of rough estimates for high
and low reference values. If 2.0 ≤ RPD < 2.5, the model has moderate predictive ability,
if 2.5 ≤ RPD < 3.0, the model has very good predictive ability and if RPD ≥ 3.0, then the
model has excellent predictive ability [42,56].

3. Results
3.1. Prediction of Carbohydrate Concentrations in Avocado Leaves

Starch concentrations were predicted in avocado leaves with R2
test = 0.51, RMSEtest = 21.01

and RPD = 1.39 using PLSR (Table 2). However, developing the model using ANN increased
the prediction accuracy to R2

test = 0.83 and RMSEtest = 15.10 (Table 2). Sucrose concentrations
was predicted in avocado leaves with R2

test = 0.82, RMSEtest = 12.69 and RPD = 2.41 using
PLSR (Table 2). Using ANN provided similar prediction accuracy to PLSR, with R2

test = 0.83
and RMSEtest = 14.72. The sucrose concentration data contained two sub-clusters. Both PLSR
and ANN provided similar prediction accuracy within each sub-cluster. PLSR and ANN
models provided R2

test = 0.69 and 0.55 in sub-cluster 1, respectively, and R2
test = 0.98 and

0.99 in sub-cluster 2, respectively (Table 2). PLSR using sub-cluster 2 had similar prediction
accuracy to using the entire dataset (Table 2).

Table 2. Performance of partial least squares regression (PLSR) and artificial neural network (ANN)
models in predicting starch (%), sucrose (%), glucose (%) and fructose (%) concentrations in avocado
and macadamia leaves using hyperspectral images.

RMSE (%) RMSE (%) RMSE (%) R2 R2 R2 RPD
Calibration Validation Test Calibration Validation Test Test

Avocado

Starch PLSR (284) 9.12 11.20 19.10 0.71 0.56 0.62 1.53
PLSR (462) 10.58 12.85 21.01 0.64 0.47 0.51 1.39
ANN (462) 9.82 14.74 15.10 0.90 0.79 0.83 1.98

Sucrose PLSR (179) 12.20 12.70 13.65 0.84 0.83 0.79 2.24
PLSR (462) 10.53 11.99 12.69 0.88 0.85 0.82 2.41
ANN (462) 10.45 7.58 14.72 0.95 0.95 0.83 1.29

Sucrose 1 PLSR (462) 15.15 11.78 20.21 0.89 0.71 0.69 1.00
ANN (462) 5.15 13.94 19.90 94.00 0.74 0.55 1.02

Sucrose 2 PLSR (462) 6.08 6.85 7.28 0.95 0.96 0.98 1.12
ANN (462) 6.03 6.60 4.06 0.99 0.98 0.99 2.01

Glucose PLSR (76) 2.38 2.61 2.90 0.83 0.79 0.85 2.98
PLSR (462) 2.30 2.62 2.50 0.84 0.79 0.86 2.98
ANN (462) 1.21 2.06 3.66 0.98 0.90 0.78 0.89

Fructose PLSR (192) 2.78 2.96 2.83 0.79 0.77 0.79 2.21
PLSR (462) 2.58 2.95 2.46 0.82 0.77 0.85 2.54
ANN (462) 1.15 2.37 3.39 0.98 0.84 0.86 1.11
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Table 2. Cont.

RMSE (%) RMSE (%) RMSE (%) R2 R2 R2 RPD
Calibration Validation Test Calibration Validation Test Test

Macadamia

Starch PLSR (93) 2.01 2.16 2.15 0.75 0.72 0.52 1.45
PLSR (462) 1.90 2.26 2.20 0.78 0.69 0.60 1.57
ANN (462) 1.89 2.16 3.59 0.89 0.61 0.67 1.17

Sucrose PLSR (111) 2.83 3.40 3.81 0.73 0.62 0.65 1.44
PLSR (462) 2.67 3.35 3.89 0.76 0.63 0.64 1.36
ANN (462) 2.58 2.56 3.61 0.89 0.92 0.82 1.47

Glucose PLSR (166) 4.56 4.87 4.37 0.90 0.89 0.92 3.53
PLSR (462) 4.32 4.63 4.40 0.91 0.90 0.91 3.51
ANN (462) 1.04 1.62 2.54 0.99 0.99 0.98 1.30

Glucose 1 PLSR (462) 3.59 1.24 1.17 0.96 0.97 0.86 3.64
ANN (462) 3.92 2.45 3.51 0.66 0.97 0.18 1.21

Glucose 2 PLSR (462) 5.42 4.84 3.33 0.81 0.82 0.87 1.00
ANN (462) 1.89 3.07 4.00 0.91 0.82 0.71 0.83

Fructose PLSR (200) 2.97 3.09 2.37 0.93 0.92 0.95 4.68
PLSR (462) 2.93 3.05 2.60 0.93 0.92 0.95 4.25
ANN (462) 0.65 2.50 2.26 0.99 0.97 0.98 1.22

Fructose 1 PLSR (462) 2.36 3.68 3.10 0.94 0.98 0.99 1.00
ANN (462) 1.21 0.41 3.50 0.91 0.48 0.53 0.89

Fructose 2 PLSR (462) 3.26 3.06 2.61 0.94 0.81 0.86 1.00
ANN (462) 2.91 1.92 3.37 0.67 0.04 0.49 0.78

RMSE: Root mean square error; RPD: ratio of prediction to deviation; Numbers of wavelengths inside parentheses;
1 and 2 represent two sub-clusters of data used for model development.

Glucose and fructose concentrations were successfully predicted in avocado leaves,
with R2

test values ranging between 0.78 and 0.86, and RMSEtest between 2.46 and 3.66 using
both ANN and PLSR models (Table 2). RPDs varied between 0.89 and 2.98 (Table 2). The
PLSR model for predicting glucose concentrations provided the highest RPD among all
avocado models (Table 2).

3.2. Prediction of Carbohydrate Concentrations in Macadamia Leaves

Starch concentrations were predicted in macadamia leaves with R2
test = 0.60, RMSEtest = 2.20

and RPD = 1.57 using PLSR (Table 2). ANN increased the starch prediction accuracy slightly,
providing R2

test = 0.67 and RPD = 1.17 but provided higher RMSEtest = 3.59 (Table 2). Sucrose
concentrations were predicted in macadamia leaves with R2

test = 0.64, RMSEtest = 3.89 and
RPD = 1.36 using PLSR (Table 2). ANN provided greater prediction accuracy than PLSR, with
R2

test = 0.82 and RMSEtest = 3.61 (Table 2).
Glucose and fructose concentrations were successfully predicted in macadamia leaves,

with R2
test values ranging between 0.91 and 0.98, and RMSEtest values ranging between

2.26 and 4.40 for both ANN and PLSR models (Table 2). The RPDs varied between 1.22
and 4.64 (Table 2). The PLSR model provided higher RPD than ANN for predicting both
glucose and fructose concentrations (Table 2). Both the glucose and fructose data contained
two sub-clusters. PLSR provided better prediction accuracy and model robustness than
ANN for each of the sub-clustered datasets of both the glucose and fructose concentrations,
i.e., in all four datasets (Table 2). All PLSR models developed using the sub-clustered data
provided similar prediction accuracy to their corresponding PLSR models developed using
the entire dataset (Table 2).

3.3. Important and Overlapping Principal Wavelengths

The models developed after wavelength selection provided similar accuracy in pre-
dicting starch, sucrose, glucose, and fructose concentrations than models developed using
all 462 wavelengths (Table 2; Figures 5 and 6). The model for predicting glucose concentra-
tions in avocado leaves used 76 wavelengths, which was the fewest wavelengths among
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all the models (Table 2). The peaks with highest or lowest β-coefficient values were not
necessarily overlapping in all regions between the two species (Figure 7). However, we
found that some of the principal wavelengths did overlap between species for some of the
carbohydrates (Figure 8). For example, the principal wavelengths used to predict starch
concentrations were in the 685–708 nm region for both avocado and macadamia leaves
(Figure 8). The principal wavelengths for predicting sucrose concentrations had some
overlap in the 689–693 nm and 698–714 nm regions between the models used for avocado
and macadamia leaves (Figure 8). No overlap of principal wavelengths was found in the
models used to predict glucose concentrations (Figure 8). Interestingly, only one principal
wavelength, 709 nm, predicted glucose concentrations in avocado leaves (Figure 8). Princi-
pal wavelengths in the 693–701 nm regions showed overlap in the models for predicting
fructose concentrations between avocado and macadamia leaves (Figure 8).
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ratio of prediction to deviation.
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Figure 6. Measured vs. predicted values for (a) starch (%), (b) sucrose (%), (c) glucose (%) and
(d) fructose (%) concentrations of macadamia leaves using hyperspectral images. Partial least squares
regression models were developed after wavelength selection. RPD: ratio of prediction to deviation,
RMSE: root mean square error.
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predict (a) starch, (c) sucrose, (e) glucose, and (g) fructose concentrations of avocado leaf samples and to
predict (b) starch, (d) sucrose, (f) glucose, and (h) fructose concentrations of macadamia leaf samples.
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Figure 8. β-coefficients of principal wavelengths identified using variable importance in projec-
tion (VIP) and used in models for predicting (a) starch, (b) sucrose, (c) glucose, and (d) fructose
concentrations of avocado (amber columns) and macadamia (white columns) leaf samples.

4. Discussion

Hyperspectral imaging successfully predicted carbohydrate concentrations in avocado
and macadamia leaves, with either or both PLSR or ANN models providing high accuracy.
The PLSR models developed using sub-clustered data had similar accuracy to the models
developed using entire datasets.

The best-fit models provided R2 values between 0.67 and 0.98 for predicting starch,
sucrose, glucose, and fructose concentrations. R2 values between 0.67 and 0.98 are useful for
providing a range of predictions from screening and approximate quantitative predictions
to excellent predictions [57]. Datasets collected across multiple orchards and sampling
times are generally considered effective in providing usable variation for modelling [58].
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Robust data collection is even more important than the number of samples used to develop
the models [41,42]. Small datasets can provide high model robustness when there is high
variability within both the internal and external test datasets [41]. The current study had
a robust data collection plan to ensure that the datasets contained sufficient variability
for model development, including sampling from both girdled and ungirdled branches,
sampling two different avocado orchards, and sampling two different years for both
avocado and macadamia.

The successful prediction of carbohydrate concentrations could be explained partly by
high peaks at wavelength regions that detect C–O, C–H and O–H bonds. The important
wavelengths used to predict carbohydrate concentrations were distributed across the elec-
tromagnetic spectrum of 400–1000 nm, but specifically at 450–550 nm, 650–750 nm, and
950–1000 nm. Generally, wavelengths in the 800–1000 nm region have been associated with
vibrations in the pyranose ring of glucose, and wavelengths in the 980–1150 nm region
have been associated with C–O bonds in starch [59]. Calibration models often use the
750 nm, 840 nm, 910 nm, 960 nm, and 985 nm wavelengths, which detect O–H and C–H
bond vibrations [60]. Wavelengths of 916 nm and 990 nm have been recommended for
predicting carbohydrate concentrations, mainly starch, in potato tubers [26,61]. Absorption
at wavelengths between 740 and 750 nm and between 975 and 985 nm is related to different
vibrational states of water molecules [62]. Negative correlations between sugar concentra-
tion (Brix value) and moisture content can lead to the erroneous selection of moisture bands
as the primary variable in a calibration equation, due to the stronger absorption by water
compared with that of sugar at these wavelengths [62–64]. However, dried samples were
used in this study to avoid water interference during calibration of the models, allowing
for the selection of appropriate wavelengths.

The PLSR and ANN models had similar accuracy in predicting either starch, sucrose,
glucose, or fructose when sample size was not a limiting factor. However, PLSR mostly
provided higher accuracy than ANN when sub-clustered data were used to develop the
models. Each sub-cluster used only a fraction of the whole dataset [65]. PLSR is com-
monly used for small datasets, particularly when a linear relationship exists between the
reflectance data and the variable values [66]. ANN solves non-linearity issues within a
dataset, but a decreasing number of samples reduces the performance of ANN algorithms
in predicting a variable [67,68]. The sub-clustered datasets had lower sample numbers than
the entire datasets, which may explain why PLSR provided higher accuracy than ANN in
predicting carbohydrate concentrations.

There are limitations in using HSI, including relatively high equipment costs, slow
imaging speeds compared with RGB or multispectral imagers, and the possibility of col-
lecting noisy data from outdoor settings. Visible to near infrared (VNIR) HSI cameras
(400–1000 nm) are the most cost-effective equipment among HSI sensors. Generally, VNIR
HSI cameras use silicon (Si) sensors [69]. These are significantly more affordable than
indium-gallium-arsenide (InGaAs) sensors, which are used for detecting longer wave-
lengths. In this study, our models were successfully trained to predict carbohydrate
concentrations using a VNIR HSI (Si sensor), which reduces the equipment cost and avoids
the strong water-absorption wavelengths, 1930–1940 nm, 1450–1460 nm, and 1375–1385
nm [62]. Identifying the most important wavelengths may help in developing multispec-
tral cameras that are even more affordable than HSI cameras. Reducing the number of
wavelengths will also address the issue of slow imaging speed. For example, reducing
the number of wavelengths in some of the current models to less than 100 (such as 76
wavelengths for glucose prediction) still provided comparable accuracy to models that used
all 462 wavelengths. Future research needs to examine other machine learning techniques
that could further shorten the data processing time for real-time applications. HSI also
needs to be developed for on-farm applications to overcome environmental factors that
affect image collection in outdoor conditions and subsequent model development. Overall,
HSI in the VNIR spectral range combined with machine learning techniques was able to
predict carbohydrate concentrations in fruit-tree and nut-tree foliage, providing a potential
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alternative to the traditional wet-chemical methods that are time consuming. The current
work has proven the potential of HSI technology in predicting tree nutrition of avocado
and macadamia, allowing the research to be expanded to other tree crops.

5. Conclusions

This study has shown that hyperspectral imaging is a useful tool to predict foliar
concentrations of carbohydrates in both avocado and macadamia dried tissue. Both PLSR
and ANN predicted starch, sucrose, fructose, and glucose concentrations with high accuracy.
PLSR provided better prediction accuracy than ANN especially when the number of
samples was limited. This study suggests that hyperspectral imaging has the potential to
predict carbohydrate concentrations in evergreen tree crops, allowing rapid assessment of
tree carbohydrate responses to management practices such as branch girdling or pruning.
Rapid assessment of tree carbohydrate responses to orchard operations could lead to
improved management of flowering, fruit set, and tree yield.

Author Contributions: Conceptualization, S.H.B., H.M.W. and S.J.T.; methodology, S.H.B., W.K., H.B.
and T.P.; validation, S.H.B. and M.B.F.; formal analysis, S.H.B. and M.T.; data curation, S.H.B., I.T.,
M.B.F. and M.T.; visualization, S.H.B. and M.B.F.; writing—original draft preparation, S.H.B. and
M.T.; writing—review and editing, S.H.B., M.T., W.K., I.T., M.B.F., H.J., T.P., J.N., H.M.W. and S.J.T.;
supervision, S.H.B., H.B. and S.J.T.; project administration, J.N. and S.J.T.; funding acquisition, S.H.B.,
H.M.W. and S.J.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Project PH16001 of the Hort Frontiers strategic partnership
initiative developed by Hort Innovation, with co-investment from Griffith University, Plant and Food
Research Limited, University of the Sunshine Coast, and contributions from the Australian Government.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author. Data will be made available on
request with the permission of Hort Innovation.

Acknowledgments: We thank Eastridge Avocado Orchard, Simpson Farms and Alloway Macadamia
for providing access to their orchards.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. FAO. World Food and Agriculture–Statistical Yearbook 2022; FAO: Rome, Italy, 2022.
2. Bai, Q.; Shen, Y.; Huang, Y. Advances in mineral nutrition transport and signal transduction in Rosaceae fruit quality and

postharvest storage. Front. Plant Sci. 2021, 12, 620018. [CrossRef] [PubMed]
3. Huett, D.; Dirou, J. An evaluation of the rationale for fertiliser management of tropical fruit crops. Aust. J. Exp. Agric. 2000, 40,

1137–1143. [CrossRef]
4. Matsuoka, K. Methods for nutrient diagnosis of fruit trees early in the growing season by using simultaneous multi-element

analysis. Hortic. J. 2020, 89, 197–207. [CrossRef]
5. Boldingh, H.; Alcaraz, M.; Thorp, T.; Minchin, P.; Gould, N.; Hormaza, J. Carbohydrate and boron content of styles of ‘Hass’

avocado (Persea americana Mill.) flowers at anthesis can affect final fruit set. Sci. Hortic. 2016, 198, 125–131. [CrossRef]
6. Herbert, S.W.; Walton, D.A.; Wallace, H.M. The influence of pollen-parent and carbohydrate availability on macadamia yield and

nut size. Sci. Hortic. 2019, 251, 241–246. [CrossRef]
7. Huett, D. Macadamia physiology review: A canopy light response study and literature review. Aust. J. Agric. Res. 2004, 55,

609–624. [CrossRef]
8. McFadyen, L.M.; Robertson, D.; Sedgley, M.; Kristiansen, P.; Olesen, T. Post-pruning shoot growth increases fruit abscission and

reduces stem carbohydrates and yield in macadamia. Ann. Bot. 2011, 107, 993–1001. [CrossRef]
9. Olesen, T.; Robertson, D.; Muldoon, S.; Meyer, R. The role of carbohydrate reserves in evergreen tree development, with particular

reference to macadamia. Sci. Hortic. 2008, 117, 73–77. [CrossRef]
10. Smith, G.; Clark, C.; Boldingh, H. Seasonal accumulation of starch by components of the kiwifruit vine. Ann. Bot. 1992, 70, 19–25.

[CrossRef]
11. Rivas, F.; Gravina, A.; Agustí, M. Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivars. Tree

Physiol. 2007, 27, 527–535. [CrossRef]
12. Boldingh, H.; Pereira, T.; Shepherd, S.; Hewitt, K.; Cooney, J.; Rowan, D.; Hedderley, D.; Jensen, D.; Trower, T.; Richardson, A.

Diurnal fluctuations of metabolites in leaves of ‘Zesy002’ kiwifruit. Acta Hortic. 2022, 1322, 155–162. [CrossRef]

https://doi.org/10.3389/fpls.2021.620018
https://www.ncbi.nlm.nih.gov/pubmed/33692815
https://doi.org/10.1071/EA00047
https://doi.org/10.2503/hortj.UTD-R006
https://doi.org/10.1016/j.scienta.2015.11.011
https://doi.org/10.1016/j.scienta.2019.03.006
https://doi.org/10.1071/AR03180
https://doi.org/10.1093/aob/mcr026
https://doi.org/10.1016/j.scienta.2008.03.026
https://doi.org/10.1093/oxfordjournals.aob.a088434
https://doi.org/10.1093/treephys/27.4.527
https://doi.org/10.17660/ActaHortic.2022.1332.21


Remote Sens. 2024, 16, 3389 15 of 17

13. Hapuarachchi, N.S.; Trueman, S.J.; Kämper, W.; Farrar, M.B.; Wallace, H.M.; Nichols, J.; Bai, S.H. Hyperspectral imaging of adaxial
and abaxial leaf surfaces for rapid assessment of foliar nutrient concentrations in Hass avocado. Remote Sens. 2023, 15, 3100. [CrossRef]

14. Watt, M.S.; Buddenbaum, H.; Leonardo, E.M.C.; Estarija, H.J.C.; Bown, H.E.; Gomez-Gallego, M.; Hartley, R.; Massam, P.; Wright,
L.; Zarco-Tejada, P.J. Using hyperspectral plant traits linked to photosynthetic efficiency to assess N and P partition. ISPRS J.
Photogramm. Remote Sens. 2020, 169, 406–420. [CrossRef]

15. Ye, X.; Abe, S.; Zhang, S. Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral
imaging. Precis. Agric. 2020, 21, 198–225. [CrossRef]

16. Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc.
Rev. 2014, 43, 8200–8214. [CrossRef]

17. Farrar, M.B.; Wallace, H.M.; Tahmasbian, I.; Yule, C.M.; Dunn, P.K.; Hosseini Bai, S. Rapid assessment of soil carbon and nutrients
following application of organic amendments. Catena 2023, 223, 106928. [CrossRef]

18. Malmir, M.; Tahmasbian, I.; Xu, Z.; Farrar, M.B.; Bai, S.H. Prediction of macronutrients in plant leaves using chemometric analysis
and wavelength selection. J. Soils Sediments 2020, 20, 249–259. [CrossRef]

19. Sun, D.-W. Computer Vision Technology for Food Quality Evaluation; Academic Press: Cambridge, MA, USA, 2016.
20. Tahmasbian, I.; Hosseini Bai, S.; Wang, Y.; Boyd, S.; Zhou, J.; Esmaeilani, R.; Xu, Z. Using laboratory-based hyperspectral imaging

method to determine carbon functional group distributions in decomposing forest litterfall. Catena 2018, 167, 18–27. [CrossRef]
21. Tahmasbian, I.; Xu, Z.; Boyd, S.; Zhou, J.; Esmaeilani, R.; Che, R.; Hosseini Bai, S. Laboratory-based hyperspectral image analysis

for predicting soil carbon, nitrogen and their isotopic compositions. Geoderma 2018, 330, 254–263. [CrossRef]
22. Farrar, M.B.; Omidvar, R.; Nichols, J.; Pelliccia, D.; Lateef Al-Khafaji, S.; Tahmasbian, I.; Hapuarachchi, N.; Hosseini Bai, S.

Hyperspectral imaging predicts macadamia nut-in-shell and kernel moisture using machine vision and learning tools. Comput.
Electron. Agric. 2024, 224, 109209. [CrossRef]

23. Chu, B.; Li, C.; Wang, S.; Jin, W.; Li, X.; He, G.; Xiao, G. Nondestructive determination and visualization of protein and
carbohydrate concentration of Chlorella pyrenoidosa in situ using hyperspectral imaging technique. Comput. Electron. Agric.
2023, 206, 107684. [CrossRef]

24. Ely, K.S.; Burnett, A.C.; Lieberman-Cribbin, W.; Serbin, S.P.; Rogers, A. Spectroscopy can predict key leaf traits associated with
source–sink balance and carbon–nitrogen status. J. Exp. Bot. 2019, 70, 1789–1799. [CrossRef] [PubMed]

25. Ramirez, J.A.; Posada, J.M.; Handa, I.T.; Hoch, G.; Vohland, M.; Messier, C.; Reu, B. Near-infrared spectroscopy (NIRS) predicts
non-structural carbohydrate concentrations in different tissue types of a broad range of tree species. Methods Ecol. Evol. 2015, 6,
1018–1025. [CrossRef]

26. Wang, F.; Wang, C.; Song, S.; Xie, S.; Kang, F. Study on starch content detection and visualization of potato based on hyperspectral
imaging. Food Sci. Nutr. 2021, 9, 4420–4430. [CrossRef] [PubMed]

27. De Silva, A.L.; Trueman, S.J.; Kämper, W.; Wallace, H.M.; Nichols, J.; Hosseini Bai, S. Hyperspectral Imaging of Adaxial and
Abaxial Leaf Surfaces as a Predictor of Macadamia Crop Nutrition. Plants 2023, 12, 558. [CrossRef]

28. Liu, Y.; Lyu, Q.; He, S.; Yi, S.; Liu, X.; Xie, R.; Zheng, Y.; Deng, L. Prediction of nitrogen and phosphorus contents in citrus leaves
based on hyperspectral imaging. Int. J. Agric. Biol. Eng. 2015, 8, 80–88.

29. Farrar, M.B.; Wallace, H.M.; Brooks, P.; Yule, C.M.; Tahmasbian, I.; Dunn, P.K.; Hosseini Bai, S. A performance evaluation of
Vis/NIR hyperspectral imaging to predict curcumin concentration in fresh turmeric rhizomes. Remote Sens. 2021, 13, 1807.
[CrossRef]

30. Han, Y.; Liu, Z.; Khoshelham, K.; Bai, S.H. Quality estimation of nuts using deep learning classification of hyperspectral imagery.
Comput. Electron. Agric. 2021, 180, 105868. [CrossRef]

31. Tahmasbian, I.; Morgan, N.K.; Hosseini Bai, S.; Dunlop, M.W.; Moss, A.F. Comparison of Hyperspectral Imaging and Near-
Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat. Remote Sens. 2021, 13, 1128. [CrossRef]

32. Tahmasbian, I.; Wallace, H.M.; Gama, T.; Bai, S.H. An automated non-destructive prediction of peroxide value and free fatty acid
level in mixed nut samples. LWT 2021, 143, 110893. [CrossRef]

33. Kämper, W.; Trueman, S.J.; Tahmasbian, I.; Bai, S.H. Rapid determination of nutrient concentrations in Hass avocado fruit by
Vis/NIR hyperspectral imaging of flesh or skin. Remote Sens. 2020, 12, 3409. [CrossRef]

34. Mayr, S.; Beć, K.B.; Grabska, J.; Wiedemair, V.; Pürgy, V.; Popp, M.A.; Bonn, G.K.; Huck, C.W. Challenging handheld NIR
spectrometers with moisture analysis in plant matrices: Performance of PLSR vs. GPR vs. ANN modelling. Spectrochim. Acta Part
A Mol. Biomol. Spectrosc. 2021, 249, 119342. [CrossRef] [PubMed]

35. Han, Y.; Bai, S.H.; Trueman, S.J.; Khoshelham, K.; Kämper, W. Predicting the ripening time of ‘Hass’ and ‘Shepard’avocado fruit
by hyperspectral imaging. Precis. Agric. 2023, 24, 1889–1905. [CrossRef]

36. Larose, D.T.; Larose, C.D. Discovering Knowledge in Data: An Introduction to Data Mining, 2nd ed.; John Wiley & Sons: Hoboken, NJ,
USA, 2014.

37. Araújo, S.R.; Wetterlind, J.; Demattê, J.A.M.; Stenberg, B. Improving the prediction performance of a large tropical vis-NIR
spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques. Eur. J. Soil
Sci. 2014, 65, 718–729. [CrossRef]

38. Lucà, F.; Conforti, M.; Castrignanò, A.; Matteucci, G.; Buttafuoco, G. Effect of calibration set size on prediction at local scale of soil
carbon by Vis-NIR spectroscopy. Geoderma 2017, 288, 175–183. [CrossRef]

https://doi.org/10.3390/rs15123100
https://doi.org/10.1016/j.isprsjprs.2020.09.006
https://doi.org/10.1007/s11119-019-09661-x
https://doi.org/10.1039/C4CS00062E
https://doi.org/10.1016/j.catena.2023.106928
https://doi.org/10.1007/s11368-019-02418-z
https://doi.org/10.1016/j.catena.2018.04.023
https://doi.org/10.1016/j.geoderma.2018.06.008
https://doi.org/10.1016/j.compag.2024.109209
https://doi.org/10.1016/j.compag.2023.107684
https://doi.org/10.1093/jxb/erz061
https://www.ncbi.nlm.nih.gov/pubmed/30799496
https://doi.org/10.1111/2041-210X.12391
https://doi.org/10.1002/fsn3.2415
https://www.ncbi.nlm.nih.gov/pubmed/34401090
https://doi.org/10.3390/plants12030558
https://doi.org/10.3390/rs13091807
https://doi.org/10.1016/j.compag.2020.105868
https://doi.org/10.3390/rs13061128
https://doi.org/10.1016/j.lwt.2021.110893
https://doi.org/10.3390/rs12203409
https://doi.org/10.1016/j.saa.2020.119342
https://www.ncbi.nlm.nih.gov/pubmed/33360568
https://doi.org/10.1007/s11119-023-10022-y
https://doi.org/10.1111/ejss.12165
https://doi.org/10.1016/j.geoderma.2016.11.015


Remote Sens. 2024, 16, 3389 16 of 17

39. Boldingh, H.; Richardson, A.; Minchin, P.; MacRae, E. Planteose is a major sugar translocated in Actinidia arguta ‘Hortgem Tahi’.
Sci. Hortic. 2015, 193, 261–268. [CrossRef]

40. Rajput, D.; Wang, W.-J.; Chen, C.-C. Evaluation of a decided sample size in machine learning applications. BMC Bioinform. 2023,
24, 48. [CrossRef]

41. Gama, T.; Farrar, M.B.; Tootoonchy, M.; Wallace, H.M.; Trueman, S.J.; Tahmasbian, I.; Bai, S.H. Hyperspectral imaging predicts
free fatty acid levels, peroxide values, and linoleic acid and oleic acid concentrations in tree nut kernels. LWT 2024, 199, 116068.
[CrossRef]

42. Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and
vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [CrossRef]

43. Anderson, N.; Walsh, K.; Subedi, P.; Hayes, C. Achieving robustness across season, location and cultivar for a NIRS model for
intact mango fruit dry matter content. Postharvest Biol. Technol. 2020, 168, 111202. [CrossRef]

44. Hapuarachchi, N.S.; Kämper, W.; Wallace, H.M.; Hosseini Bai, S.; Ogbourne, S.M.; Nichols, J.; Trueman, S.J. Boron effects on fruit
set, yield, quality and paternity of Hass avocado. Agronomy 2022, 12, 1479. [CrossRef]

45. Davie, S.J.; Stassen, P.J.C.; van der Walt, M.; Snijder, B. Girdling Avocado Trees for Improved Production. In South African Avocado
Growers’ Association Yearbook 1995; Institute for Tropical and Subtropical Crops: Nelspruit, South Africa, 1995; pp. 51–53.

46. Bai, S.H.; Tahmasbian, I.; Zhou, J.; Nevenimo, T.; Hannet, G.; Walton, D.; Randall, B.; Gama, T.; Wallace, H.M. A non-destructive
determination of peroxide values, total nitrogen and mineral nutrients in an edible tree nut using hyperspectral imaging. Comput.
Electron. Agric. 2018, 151, 492–500. [CrossRef]

47. Malmir, M.; Tahmasbian, I.; Xu, Z.; Farrar, M.B.; Bai, S.H. Prediction of soil macro- and micro-elements in sieved and ground
air-dried soils using laboratory-based hyperspectral imaging technique. Geoderma 2019, 340, 70–80. [CrossRef]

48. Li, B.; Liew, O.W.; Asundi, A.K. Pre-visual detection of iron and phosphorus deficiency by transformed reflectance spectra. J.
Photochem. Photobiol. B Biol. 2006, 85, 131–139. [CrossRef] [PubMed]

49. Wold, S. PLS for Multivariate Linear Modeling. In Chemometric Methods in Molecular Design, 1st ed.; Waterbeemd, H.v.d., Ed.;
Wiley VCH: Weinheim, Germany, 1995; Volume 2, pp. 195–218.

50. Huang, H.-H.; He, Q. Nonlinear regression analysis. In International Encyclopedia of Education, 4th ed.; Tierney, R.J., Rizvi, F.,
Ercikan, K., Eds.; Elsevier: Oxford, UK, 2023; pp. 558–567.

51. Huang, C.; Chang, Y.; Han, L.; Chen, F.; Li, S.; Hong, J. Bandwidth correction of spectral measurement based on Levenberg–
Marquardt algorithm with improved Tikhonov regularization. Appl. Opt. 2019, 58, 2166–2173. [CrossRef]

52. Weiss, S.M.; Kulikowski, C.A. Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine
Learning, and Expert Systems; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1991.

53. Kamruzzaman, M.; Elmasry, G.; Sun, D.W.; Allen, P. Non-destructive prediction and visualization of chemical composition in
lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci. Emerg. Technol. 2012, 16, 218–226.
[CrossRef]

54. Brown, M.B.; Forsythe, A.B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 1974, 69, 364–367. [CrossRef]
55. Gastwirth, J.L.; Gel, Y.R.; Miao, W. The impact of Levene’s test of equality of variances on statistical theory and practice. Stat. Sci.

2009, 24, 343–360. [CrossRef]
56. Saeys, W.; Mouazen, A.M.; Ramon, H. Potential for onsite and online analysis of pig manure using visible and near infrared

reflectance spectroscopy. Biosys. Eng. 2005, 91, 393–402. [CrossRef]
57. Williams, P.; Antoniszyn, J.; Manley, M. Near-Infrared Technology: Getting the Best out of Light; African Sun Media: Stellenbosch,

South Africa, 2019. [CrossRef]
58. Peirs, A.; Tirry, J.; Verlinden, B.; Darius, P.; Nicolaï, B.M. Effect of biological variability on the robustness of NIR models for

soluble solids content of apples. Postharvest Biol. Technol. 2003, 28, 269–280. [CrossRef]
59. Lammers, K.; Arbuckle-Keil, G.; Dighton, J. FT-IR study of the changes in carbohydrate chemistry of three New Jersey pine

barrens leaf litters during simulated control burning. Soil Biol. Biochem. 2009, 41, 340–347. [CrossRef]
60. Golic, M.; Walsh, K.; Lawson, P. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar

concentration and temperature. Appl. Spectrosc. 2003, 57, 139–145. [CrossRef] [PubMed]
61. Chen, J.Y.; Miao, Y.; Zhang, H.; Matsunaga, R. Non-destructive determination of carbohydrate content in potatoes using near

infrared spectroscopy. J. Near Infrared Spectrosc. 2004, 12, 311–314. [CrossRef]
62. Siesler, H.W.; Ozaki, Y.; Kawata, S.; Heise, H.M. Near-Infrared Spectroscopy: Principles, Instruments, Applications; John Wiley & Sons:

Hoboken, NJ, USA, 2001. [CrossRef]
63. Guthrie, J.; Walsh, K. Non-invasive assessment of pineapple and mango fruit quality using near infra-red spectroscopy. Aust. J.

Exp. Agric. 1997, 37, 253–263. [CrossRef]
64. Kawano, S.; Watanabe, H.; Iwamoto, M. Determination of sugar content in intact peaches by near infrared spectroscopy with fiber

optics in interactance mode. J. Jpn. Soc. Hort. Sci. 1992, 61, 445–451. [CrossRef]
65. Esbensen, K.H.; Swarbrick, B.; Westad, F.; Whitcombe, P.; Anderson, M. Multivariate Data Analysis: An Introduciton to Multivariate

Data Analysis, Process Analytical Technology and Quality by Design, 6th ed.; CAMO Software: Oslo, Norway, 2018.
66. Rossel, R.A.V. ParLeS: Software for chemometric analysis of spectroscopic data. Chemom. Intellig. Lab. Syst. 2008, 90, 72–83.

[CrossRef]

https://doi.org/10.1016/j.scienta.2015.07.009
https://doi.org/10.1186/s12859-023-05156-9
https://doi.org/10.1016/j.lwt.2024.116068
https://doi.org/10.1016/j.postharvbio.2007.06.024
https://doi.org/10.1016/j.postharvbio.2020.111202
https://doi.org/10.3390/agronomy12061479
https://doi.org/10.1016/j.compag.2018.06.029
https://doi.org/10.1016/j.geoderma.2018.12.049
https://doi.org/10.1016/j.jphotobiol.2006.06.005
https://www.ncbi.nlm.nih.gov/pubmed/16890448
https://doi.org/10.1364/AO.58.002166
https://doi.org/10.1016/j.ifset.2012.06.003
https://doi.org/10.1080/01621459.1974.10482955
https://doi.org/10.1214/09-STS301
https://doi.org/10.1016/j.biosystemseng.2005.05.001
https://doi.org/10.18820/9781928480310
https://doi.org/10.1016/S0925-5214(02)00196-5
https://doi.org/10.1016/j.soilbio.2008.11.005
https://doi.org/10.1366/000370203321535033
https://www.ncbi.nlm.nih.gov/pubmed/14610949
https://doi.org/10.1255/jnirs.439
https://doi.org/10.1002/9783527612666
https://doi.org/10.1071/EA96026
https://doi.org/10.2503/jjshs.61.445
https://doi.org/10.1016/j.chemolab.2007.06.006


Remote Sens. 2024, 16, 3389 17 of 17

67. Habibi, V.; Ahmadi, H.; Jafari, M.; Moeini, A. Machine learning and multispectral data-based detection of soil salinity in an arid
region, Central Iran. Environ. Monit. Assess. 2020, 192, 759. [CrossRef]

68. Bian, M.; Skidmore, A.; Schlerf, M.; Liu, Y.; Wang, T. Estimating biochemical parameters of tea (Camellia sinensis (L.)) using
hyperspectral techniques. Int. Arch. Photogram. Remote. Sens. Spatial Inf. Sci. 2012, XXXIX-B8, 237–241. [CrossRef]

69. Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors,
data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10661-020-08718-z
https://doi.org/10.5194/isprsarchives-XXXIX-B8-237-2012
https://doi.org/10.3390/rs9111110

	Introduction 
	Materials and Methods 
	Sample Collection and Preparation 
	Carbohydrate Analysis 
	Hyperspectral Imaging System, Image Acquisition, and Spectral Data Extraction 
	Model Development, Selection, and Evaluation 

	Results 
	Prediction of Carbohydrate Concentrations in Avocado Leaves 
	Prediction of Carbohydrate Concentrations in Macadamia Leaves 
	Important and Overlapping Principal Wavelengths 

	Discussion 
	Conclusions 
	References

