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Abstract: Mango (Mangifera indica L.) is a popular fruit grown in tropical and subtropical regions.
Mango has a distinctive aroma, flavour, and nutritional properties. Annual global mango production
is >50 million tonnes. Major producers of mango include India, Bangladesh, China, Mexico, Pakistan,
Indonesia, Brazil, Thailand, and the Philippines, and it is shipped worldwide. Harvested mango
fruit are highly perishable, with a short shelf life. Physiological disorders are among the major
factors limiting their postharvest quality and shelf life, including when fruit need phytosanitary
treatments, such as hot water treatment, vapour heat treatment, and irradiation. This review focuses
on problematic physiological disorders of mango flesh, including physiology and biochemistry.
It considers factors contributing to the development and/or exacerbation of internal disorders.
Improved production practices, including pruning, nutrient application, and irrigation, along with
monitoring and managing environmental conditions (viz., temperature, humidity, and vapour
pressure deficit), can potentially maintain fruit robustness to better tolerate otherwise stressful
postharvest operations. As demand for mangoes on international markets is compromised by internal
quality, robust fruit is crucial to maintaining existing and gaining new domestic and export consumer
markets. Considering mango quality, a dynamic system, a more holistic approach encompassing
pre-, at-, and post-harvest conditions as a continuum is needed to determine fruit predisposition and
subsequent management of internal disorders.

Keywords: calcium; disorders; internal breakdown; quality; Mangifera indica L.; mango; nitrogen

1. Introduction

Fruit quality is a suite of valued characteristics that augment worth. Perceived quality
differs from the perspectives of producers and consumers. As key characteristics of fruit
quality, producers typically favour enhanced yield, disease resistance, and postharvest life,
including low susceptibility to disorders. On the other hand, consumers are interested
in fruit flavour and visual appeal [1]. Reduced shelf life, skin damage, lenticel spotting,
off-flavours, postharvest diseases (e.g., anthracnose, stem-end rot) [2], and flesh breakdown
are problems that compromise fruit quality [3]. They negatively affect fruit mouthfeel,
visual appeal, marketability, and overall consumer satisfaction.

Physiological disorders affecting commercially important mango cultivars include
blacktip [4], fruit splitting [5], internal necrosis [6], and internal breakdown [7]. Internal
breakdown disorders encompass specific symptoms that include soft nose [8], spongy
tissue [9], stem-end cavity [10], jelly seed [11], and internal browning [12]. Internal disorders
(IDs) often lack external manifestation, which renders them problematic to detect [13]. IDs
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were first reported in Indian mango export consignments destined for Europe in 1932–1933
by Cheema and Dani [14]. Such disorders are still prevalent and pose a significant challenge
for the mango industry across the globe [15–20].

Diverse predisposing factors have been associated with IDs, including manage-
ment/cultural practices, environmental and edaphic factors, fruit characteristics (e.g., size,
weight, density/specific gravity), and nutritional imbalance [11,21,22]. Nutrient deficiency
is considered a key factor contributing to pre- and/or postharvest physiological dysfunc-
tion [9]. Measures to identify susceptible fruit are sought for a better understanding of the
causes of physiological disorders and their prevention.

This literature review covers key physiological and biochemical changes associated
with major mango internal disorders. It also overviews factors that contribute to their
expression and identifies research gaps in the interactive factors towards better-informed
management of IDs.

2. Common Internal Disorders of Mango

Major IDs of mango fruit include soft nose, jelly seed, stem-end cavity, flesh cavity,
flesh browning, and spongy tissue.

• Soft nose is characterized by flesh softening and yellowing at the fruit apex due to
mesocarp breakdown [23] (Figures 1 and 2a). The ‘beak end’ of the fruit appears over-
ripe, indicating rapid localised ripening [24]. Soft nose may be assessed by touching
the beak end, it being softer than the rest of the fruit [25]. Soft nose incidence is both
cultivar-dependent and less prevalent in alkaline soils than in acidic sandy soils [26].

• Stem-end cavity is characterized by cavity formation in the proximal area between the
peduncle and the mesocarp as vascular tissue deterioration (Figures 1 and 2b) [10].
In the early stages of development, tissues at the proximal end of affected fruit turn
brown, followed by cavity formation and necrosis [25]. In advanced stages, necrosis
around the cavity manifests in the internal mesocarp. Symptoms are like spongy tissue
and jelly seed. Microscopic analysis reveals xylem deterioration, procambium damage,
and calcium oxalate crystal accumulation in the cavity [10].

• Jelly seed appears as flesh breakdown in the mesocarp around the fruit seed/endocarp
(Figure 2c). It manifests as a jelly-like mass around the fruit stone. Complete tissue
disintegration leads to tissue browning and the appearance of watery translucent areas
in extreme cases [27]. Jelly seed onset symptoms vary among cultivars. ‘Van Dyke’
and ‘Tommy Atkins’ showed jelly seed after 8 weeks of fruit set [10]. By contrast,
symptoms in ‘Irwin’ appeared 12 weeks after fruit set [10]. Harvesting fruit early is
recommended to mitigate jelly seed incidence [28].

• Internal flesh browning is an important physiological disorder of fleshy fruit (Figure 2d).
It is typically associated with long-term storage-related physiological changes in
fruit [29–31]. Flesh browning is considered a result of cell wall and membrane degra-
dation. Concomitant release and mixing of enzymes are associated with browning
(viz., polyphenol oxidase and phenylalanine ammonia-lyase) and phenolic substrate
compounds. The enzymes and phenolics are usually localised in different cellular
compartments to prevent their mixing. Upon cell wall weakening and degradation,
phenolic compounds oxidise to coloured O-quinones [32]. Cell wall weakening is often
associated with low Ca concentration in fruit mesocarp [33]. Lo’ay and Ameer [34]
discerned positive effects of ascorbic acid-blended Ca nanoparticles for the alleviation
of internal flesh browning in low-temperature stored ‘Hindi Be-Sennara’ mango by
inhibiting cell wall degrading enzymes, such as pectinase and cellulase.

• Spongy tissue disorder is common in Indian mango cultivars, particularly ‘Alphonso’.
Affected tissue displays symptoms like soft nose and jelly seed, with spongy mesocarp,
off-odour, and pale-yellow or off-white flesh, with or without cavities (Figure 2e) [35,36].
Early studies implicated nutritional imbalance (e.g., high nitrogen and low calcium)
and environmental factors (e.g., rain and field temperatures) in this disorder [36,37].
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Dysfunction ultimately resulted in a shift from aerobic to anaerobic respiration, including
an acid pH shift, cell wall degradation, and synthesis of free radicals [38].

Similarities among symptoms of jelly seed, spongy tissue, stem-end cavity, and soft
nose disorders suggest some commonalities. Raymond et al. [10] concluded that all com-
mence with cellular disorganisation and cell wall degradation. Nevertheless, temporospa-
tial distribution of symptoms in different parts of the fruit distinguishes each disorder;
hence, their specific symptomology.

The progressive expression of internal visual symptoms makes their early detection
difficult [39].
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3. Anatomy and Biochemistry of Internal Disorders

Macroscopic differences have been observed among IDs based on the spatial distri-
bution of symptoms and their visual appearance. Information in the literature on the
anatomy of IDs in mango is otherwise limited. Generally, however, cell disintegration and
cell wall rupture appear to be the first indication of disorder onset. However, histological
studies suggest differences among cultivars affected by different disorders. Torres and
Saúco [8] observed severe xylem deterioration and cell wall disintegration in the internal
breakdown-affected mesocarp of highly susceptible ‘Tommy Atkins’ as compared to less
susceptible ‘Lippens’, which showed translucent mesocarp with intact cell walls.

Raymond et al. [10] characterised early symptoms of stem-end cavity in cultivars
‘Tommy Atkins’, ‘Irwin’, and ‘Van Dyke’ as tannin deposition in resin ducts and xylem
that leads to the discolouration of flesh around the cavity. The continuous accumulation
of tannins eventually causes toxicity and necrosis in the advanced stages of stem-end
cavity disorder development [10]. Ca accumulates in the stem-end cavity in the form of
oxalate crystals and creates a localised deficiency in the cells because it is not available
for biochemical functions even though total pulp Ca concentrations may be high [10,42].
This vascular disruption markedly limits the nutrient supply to inner mesocarp cells and
weakens the flesh cellular integrity proximal to the seed.

Biochemical changes associated with physiological disorders in mango fruit have
been studied by Chitarra et al. [33] and De Oliveira Lima et al. [43]. Mesocarp of spongy
tissue-affected ‘Alphonso’ mango fruit showed increased pectin methyl esterase and malic
enzyme activities [44] and reduced invertase and amylase activities. A study on ‘Dashehari’
and ‘Langra’ mangoes revealed higher activities of polymethyl esterase and cellulase in jelly
seed-affected flesh [45]. A recent transcriptomic study revealed abscisic acid interacted with
ethylene to accelerate starch decomposition into sugars and promoted soft nose incidence
in cv. ‘Keitt’ mango [46].

Enzymes associated with biochemical changes in mango flesh affected by various IDs
are presented in Table 1.

Previous studies also indicated the role of gas exchange in the development of IDs [47].
In particular, the shift in metabolic processes from aerobic to anaerobic is due to the low
availability of oxygen inside mango fruit [48]. Consequently, cell membrane integrity
may diminish and result in internal quality defects, including cavities, flesh gelation, and
tissue browning. Over-mature mango fruit tend to accumulate more anaerobic metabolites,
such as acetaldehyde and ethanol, in fruit flesh over time [49]. The accumulation of such
metabolites in muskmelon fruit has been associated with reduced sugar content and water-
soaked tissue appearance [50]. These metabolites can be used as biochemical markers to
predict the predisposition of fruit to disorders, such as for internal browning in pears under
storage conditions [51,52].

A similar response in late-harvested litchi fruit compared to early-harvested under
modified atmosphere storage has been reported [53]. This was ascribed to fermentation
leading to flesh deterioration. Reduced mitochondrial activity due to membrane damage
may render cells incapable of producing sufficient energy to sustain normal cell activity [54].

Table 1. Enzyme activities in mango flesh afflicted by various internal disorders.

Cultivar Disorder Enzyme Activity Reference

‘Alphonso’ Spongy tissue Superoxide dismutase, catalase,
peroxidase, polyphenol oxidase Lower [55]

‘Tommy Atkins’ Spongy tissue Amylase Lower [56]

‘Alphonso’ Spongy tissue α-amylase, invertase Lower [35]

‘Tommy Atkins’ Spongy tissue Peroxidase, polyphenol oxidase Higher [43]

‘Alphonso’ Spongy tissue Pectin methyl esterase, malic enzyme Higher [44]
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Table 1. Cont.

Cultivar Disorder Enzyme Activity Reference

‘Chiin Hwang’ Jelly seed, lumpy tissue, soft nose, α-amylase activity Lower [57]

‘Langra’ Jelly seed α-amylase, pectin methyl esterase,
cellulase, polyphenol oxidase Higher [45]

‘Dashehari’ Jelly seed α-amylase, pectin methyl esterase,
Cellulase, polyphenol oxidase Higher [45]

‘Amrapali’ Jelly seed Pectin methyl esterase, pectate lyase,
polygalacturonase Higher [58]

4. Factors Affecting Fruit Quality and Robustness

Fruit quality attributes are largely determined and/or influenced by preharvest factors
and early fruit development conditions [59]. Fruit susceptibility to physiological disorders
depends upon cultivar type, untoward environmental variability, poor management prac-
tices, and postharvest handling conditions [60]. Table 2 presents the range of factors that
directly and/or indirectly influence fruit quality and physiology.

Table 2. Preharvest factors affecting mango fruit quality.

Genotype Cultivar (Rootstock, Scion)

Environment

Soil type (pH, cation exchange capacity, water holding capacity)
Temperature (heat injury, chilling injury)
Moisture (rain, relative humidity, precipitation)
Radiation (day-length, wavelength, intensity)

Management

Canopy management (pruning, thinning, plant growth regulators)
Nutrition (calcium, nitrogen, potassium, boron)
Irrigation (time, frequency)
Harvest (maturity, timing, method)

4.1. Role of Mineral Nutrients in Fruit Flesh

An imbalance of mineral nutrients, such as nitrogen (N), calcium (Ca), potassium (K),
magnesium (Mg), and boron (B), is influential in fruit susceptibility to IDs (Table 3). Many
studies conclude that low Ca, high N, and a high N/Ca ratio in fruit flesh predispose fruit
to IDs [57,60–63]. There are also conflicting reports implicating fruit flesh K, Mg, P, and B
in disorders (Table 3).

Considering Table 3, the following discussion focuses on Ca and N in the internal
quality of mango fruit. It explores their transport, accumulation, and analysis in the soil–
plant–fruit continuum. Also, considering variability across cultivars and regions, there are
no generic threshold values for element ratios as indices for fruit quality [8,64,65].

Table 3. Mineral nutrients associated with increased (↑) or decreased (↓) expression of some major
internal disorders in mango flesh. ‘↑/↓’ denotes associations with both increased and decreased
defect expression.

Defect N Ca K P Mg B N/Ca Reference

Spongy tissue ↑ ↓ ↑ ↑ [35,61,66,67]

Jelly seed ↑ ↓ ↑ [57,61,62]

Internal flesh breakdown ↑ ↓ ↑/↓ ↑ ↑/↓ ↓ ↑ [7,8,18,44,64,68,69]

Soft nose ↑ ↓ ↓ ↑ [24,57,70]
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The balance between nutrients putatively potentiates fruit robustness at harvest and
its subsequent inherent ability to withstand the rigours of postharvest handling [63]. Innate
fruit robustness generally cannot be improved after harvest. It is, therefore, important to
focus on the best management strategies for ensuing preharvest periods. Studies of prehar-
vest N and Ca application to internal fruit breakdown are collated in Table 4. Applications
of N and Ca nutrient solutions reduced internal breakdown in the ‘Tommy Atkins’ mango,
such that the incidence was relatively low when both flesh N and Ca were high versus high
N and low Ca [8]. Silva et al. [71] applied foliar Ca as CaCl2 during fruit development in
‘Tommy Atkins’. Their analysis of peel and flesh tissues at eating ripe revealed an inverse
correlation between Ca and internal breakdown incidence. Although not necessarily or
always representing causation, correlations of fruit flesh N and Ca have been associated
with the incidence and severity of IDs. Such studies often do not necessarily take impor-
tant aspects of elemental distribution and sampling variability of N and Ca analysis into
consideration, which are hereby discussed.

Table 4. Mineral nutrition and internal breakdown in mango cultivars.

Cultivar Disorder Nutrient Source Method Time of
Application Results Reference

‘Sensation’ Spongy tissue,
Jelly seed N, Ca NH4NO3,

CaSO4·2H2O
Drip
irrigation

Continuous
throughout
growing season

↑N = ↑Disorder
↑Ca = ↓Disorder [61]

‘Van Dyke’ Jelly seed Ca CaCl2,
Ca(NO3)2

Foliar At fruit set ↑Ca = ↓Disorder [62]

‘Tommy
Atkins’

Internal flesh
breakdown N, Ca - Drip

irrigation

Continuous
throughout
growing season

↑N = ↑Disorder
↑Ca = ↓Disorder [68]

‘Sensation’

Internal flesh
breakdown,
Stem-end
cavity

Ca, Mg, K, B
CaCl2, MgCl2,
KCl, Solubor®

(20% B)
Foliar

Weekly from 3
weeks after fruit set
to 3 weeks
before harvest

No effect [69]

‘Sensation’

Internal flesh
breakdown,
Stem-end
cavity,

Ca Ca-EDTA Stem
injection

One month before
harvest ↑Ca = ↓Disorder [69]

‘Chaunsa’ Soft nose Ca, Mg
CaCl2, CaSO4,
Ca(OH)2,
MgCl2

Foliar 2 weeks
before harvest

↑Ca = ↓Disorder
↑Mg = ↓Disorder [72]

‘Keitt’ Watery pulp
breakdown N, Ca NH4NO2,

CaSO4·H2O Soil Pre- and
post-flowering No effect [64]

“↑” calcium, nitrogen, and magnesium in the results column indicate a higher concentration in flesh in response to
their application. “↑ or ↓ disorder” indicates an increase or decrease in disorder expression, respectively.

4.1.1. Calcium

Ca is critical in fruit development, cell wall strengthening, and signal transduction
pathways [73]. Its deficiency is associated with increased fruit susceptibility to physio-
logical disorders [70,74,75]. These include bitter pit in apples [76], blossom end rot in
tomatoes [77], and cork spot and end spot in pears and avocadoes, respectively [78–80]. Ca
deficiency in mango fruit can weaken mesocarp cell walls resulting in jelly seed [10] and
spongy tissue [81] disorders. Ca import and accumulation in fruit varies spatiotemporally
during development [82–84]. Given the importance of Ca in fruit development and signal
transduction, its availability, concentration, and transport to specific cells need to be regu-
lated physiologically and managed in a cultivation context [85,86]. Excess Ca can result in
cell wall rigidity and cellular phytotoxicity [42,87]. Ca deficiency due to low availability
and/or limited transport can result in cell membrane breakdown (e.g., leakiness) and
disorders (e.g., flesh browning) [88].
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Calcium Translocation

The uptake, translocation, and accumulation of Ca within the plant canopy among its
leaves and fruit is mediated by the factors depicted in Figure 3. The final amount of Ca
in fruit depends on the complex interplay of availability in the soil, uptake through roots,
including competition with other minerals in the root system, mobility in xylem sap, and
competition between vegetative (i.e., foliage) and reproductive (viz., fruit) sinks (Figure 3).
Ca in the soil can be tightly bound to negatively charged particles or soluble in the soil
solution. Plant roots can only take up Ca present in the soil solution [89,90]. The quantity
of Ca in the soil solution is influenced by edaphic factors and can change with soil pH and
type of fertiliser application. Root uptake is modulated by its growth rate and transfer into
xylem vessels via symplastic and apoplastic pathways [91,92]. Ca availability in interaction
with other cations (e.g., K, Mg) affects uptake rate and movement along the soil–root–plant
continuum [90]. These cations tend to compete with Ca for uptake through roots. Thus, a
balance in terms of optimal cation exchange capacity is desirable to facilitate Ca uptake
during critical fruit growth periods [63].

Plants 2024, 13, x FOR PEER REVIEW 7 of 22 
 

 

Calcium Translocation 
The uptake, translocation, and accumulation of Ca within the plant canopy among 

its leaves and fruit is mediated by the factors depicted in Figure 3. The final amount of Ca 
in fruit depends on the complex interplay of availability in the soil, uptake through roots, 
including competition with other minerals in the root system, mobility in xylem sap, and 
competition between vegetative (i.e., foliage) and reproductive (viz., fruit) sinks (Figure 
3). Ca in the soil can be tightly bound to negatively charged particles or soluble in the soil 
solution. Plant roots can only take up Ca present in the soil solution [89,90]. The quantity 
of Ca in the soil solution is influenced by edaphic factors and can change with soil pH and 
type of fertiliser application. Root uptake is modulated by its growth rate and transfer into 
xylem vessels via symplastic and apoplastic pathways [91,92]. Ca availability in interac-
tion with other cations (e.g., K, Mg) affects uptake rate and movement along the soil–root–
plant continuum [90]. These cations tend to compete with Ca for uptake through roots. 
Thus, a balance in terms of optimal cation exchange capacity is desirable to facilitate Ca 
uptake during critical fruit growth periods [63]. 

Ca loaded into xylem vessels is transported towards the shoot by the mass flow of 
water due to more negative water potential in the canopy as generated by growth and 
transpiration [93]. Ca partitioning within the canopy and between leaves and fruit is mod-
ulated by xylem cation exchange capacity, xylem sap Ca content, leaf and fruit growth 
rates and transpiration into the surrounding air [42]. Leaves are relatively strong sinks 
that tend to accumulate more Ca due, by virtue of their high surface area to volume ratio 
and stomatal frequency, to greater transpiration than fruit [94]. Fruit generally exhibit a 
relatively high transpiration rate during early development stages which then diminishes 
as they approach harvest maturity [82,83]. As fruit reach maturity, their relative water 
uptake also decreases due to loss of xylem functionality, stomatal differentiation into len-
ticels, and wax deposition on fruit cuticular surfaces [95–97]. 

 

Figure 3. Processes and their influences on calcium uptake, translocation, and partitioning in fruit
trees. ‘*’ indicate key factors involved in Ca calcium partitioning at branch level.

Ca loaded into xylem vessels is transported towards the shoot by the mass flow of
water due to more negative water potential in the canopy as generated by growth and
transpiration [93]. Ca partitioning within the canopy and between leaves and fruit is
modulated by xylem cation exchange capacity, xylem sap Ca content, leaf and fruit growth
rates and transpiration into the surrounding air [42]. Leaves are relatively strong sinks
that tend to accumulate more Ca due, by virtue of their high surface area to volume ratio
and stomatal frequency, to greater transpiration than fruit [94]. Fruit generally exhibit a
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relatively high transpiration rate during early development stages which then diminishes as
they approach harvest maturity [82,83]. As fruit reach maturity, their relative water uptake
also decreases due to loss of xylem functionality, stomatal differentiation into lenticels, and
wax deposition on fruit cuticular surfaces [95–97].

Ca also acts as a secondary messenger facilitating abscisic acid, auxin, and gibberellic
acid signalling, which regulate biochemical, cellular, and morphological functions, in-
cluding fruit set and cell division and expansion up to and during fruit ripening and
senescence [42,98]. Ca can also influence phytohormones that modulate its distribution at
the tissue level. Auxins are pivotal in developmental pathways, including fruit set, cell
division, and expansion processes, which involve Ca as a secondary messenger [99]. Auxin
export from developing tissues increases Ca partitioning [100–102]. Exogenous application
of the auxin transport inhibitor (2,3,5 tri-iodobenzoic acid; TIBA) reduced the uptake of
Ca during fruit development in tomato [103] and avocado fruit [104]. High light-induced
hydroxycinnamic acid levels in kiwifruit also increased Ca uptake by reducing auxin
degradation [105].

Tonetto de Freitas et al. [106] reported that exogenous application of abscisic acid
enhanced Ca accumulation by increasing xylem sap flow to fruit, resulting in lesser suscep-
tibility to blossom-end rot in tomatoes. Abscisic acid may redirect Ca flow towards fruit
by reducing stomatal conductance in leaves. Foliar application of abscisic acid increased
Ca partitioning into and lessened bitter pit in apple fruit [107]. Transcriptional analysis of
the response to foliar abscisic acid application revealed the down-regulation of MdCAX,
MdACA8, and MdCDPK, three genes involved in the regulation and partitioning of Ca in
apples [107].

Monitoring of Calcium in Mango Fruit

Sampling

To ascertain fruit mineral status, it is advised to collect fruit from the middle part
of the tree to secure a representative sample and to avoid higher and lower levels in the
canopy [76,108–110]. Ferguson and Triggs [108] suggested analysing fewer fruit from many
trees rather than many fruit from fewer trees with a view to obviate fruit-to-fruit variability.
The sampling strategy is an important factor to consider for minimising variability and
realising a truly representative estimation of nutrient levels. In apple fruit, for example, Ca
levels in individual apple fruit from one tree may vary two- to three-fold [111].

Fruit mesocarp analysis has typically been used to indicate fruit Ca status. However,
differences within whole fruit are highly evident amongst local tissue Ca levels [112].
Temperature differences across fruit may exceed ca. 10 ◦C between sun-exposed and
shaded sides of avocado fruit [113]. Hence, sun-exposed tissue may have a different
physiology (e.g., transpiration rate) as compared to other regions of the fruit. Ca is mobile
within the xylem, and its partitioning within the fruit depends to a degree on the local
transpiration rate. Similar temperature differences of ~5 ◦C between sun-exposed and
shaded mango fruit were reported by Katrodia and Sheth [114] and again may differentially
influence local tissue Ca levels.

A typical means of sampling fruit flesh for mineral analysis is to use fruit corer to take
samples from skin to seed along the equatorial region [64]. However, the skin tends to
accumulate more Ca than the inner flesh. Joyce et al. [82] found 0.371 mg/g DW Ca in the
skin versus 0.095 mg/g DW Ca in the inner mesocarp of the ‘Kensington Pride’ mango.
Burdon et al. [70] analysed Ca in mangoes ‘Kent’ and ‘Beverly’ and found that the outer
mesocarp had a higher Ca content (9.52 and 7.21 mg/100 g FW, respectively) as compared
to the inner mesocarp (5.00 and 4.51 mg/g FW, respectively). Similarly, longitudinal spatial
variation in Ca accumulation is seen from the proximal to distal ends of the fruit. The
proximal top of the ‘Kensington Pride’ mango had higher Ca (0.088 mg/g DW) levels
as compared to the distal end (0.052 mg/g DW) [82]. Burdon et al. [70] also reported
such variation for Ca from stem-end to apex in ‘Sensation’ fruit. In ‘Alphonso’, Gunjate
et al. [115] reported variations in Ca from 122 to 110 mg/100 g DW between stem-end and
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apex, respectively. Localised Ca deficiency in the inner mesocarp and the distal part of
the fruit may cause internal breakdown and soft nose, respectively [24,70,116]. Overall,
a general trend is observed in the spatial variation of Ca accumulation of skin > outer
mesocarp ≥ middle mesocarp > inner mesocarp (Table 5) [82,117]. This variation could
be due to physiological differences in cell type, size, and Ca movement from the inner
mesocarp to the outer mesocarp through vascular bundles, at least partially as directed by
transportational mass flow.

It is difficult to compare Ca concentrations among different reports due to the limited
information provided, for example, regarding regions of the fruit sampled and/or units of
measurement, including that converting mg/g FW to mg/g DW is problematic without
known moisture content of the tissue sampled. In this context, it is advisable to specifically
and consistently state the sampling position for these analyses in predicting postharvest
quality and/or the expression of physiological disorders.

Table 5. Calcium concentrations reported in different parts of various mango cultivars.

Cultivars Skin Outer Flesh Middle Flesh Inner Flesh Proximal Flesh Distal Flesh Reference

‘Beverly’ - 7.21 mg/100 g FW - 4.51 mg/100 g FW - - [70]
‘Dashehari’ 4570 mg/kg dw - - 460 mg/kg dw - - [118]
‘Glen’ 1900 mg/kg dw - - 700 mg/kg dw - - [119]
‘Haden’ 2300 mg/kg dw - - 700 mg/kg dw - - [119]
’Irwin’ 3600 mg/kg dw - - 600 mg/kg dw - - [119]
‘Keitt’ 3900 mg/kg dw - - 1000 mg/kg dw - - [64]
‘Kent’ - 9.52 mg/100 g FW - 5.00 mg/100 g FW - - [70]
‘Kent’ 3600 mg/kg dw - - 900 mg/kg dw - - [119]
‘Kensington Pride’ 523 mg/kg dw 123 mg/kg dw 55 mg/kg dw 50 mg/kg dw 94 mg/kg dw 71 mg/kg dw [82]
‘Kensington Pride’ 1670 mg/kg dw - - 580 mg/kg dw - - [120]
‘Kensington Pride’ 1740 mg/kg dw 560 mg/kg dw 400 mg/kg dw 410 mg/kg dw - - [117]
‘Kensington Pride’ 2400 mg/kg dw - - 600 mg/kg dw - - [119]

Calcium Fractions in Fruit

Ca in fruit tissues can be subdivided into various fractions based on solubility, avail-
ability, and biochemical or physiological activity. Exchangeable Ca (e.g., adsorbed on
proteins and pectin) and soluble Ca (e.g., associated mainly with nitrates, chlorides, and
organic acid) are generally considered active forms as compared to tightly bound forms,
like Ca oxalate, carbonate, and phosphates [42,121,122]. Ca deposited in the form of oxalate
crystals in the parenchyma of developing fruit showed low or no solubility and mobil-
ity [42]. The presence of insoluble Ca may create localised deficiencies of physiologically
active Ca, which can lead to physiological disorders [10].

Pavicic et al. [123] determined that bitter pit development in apples was associated
with low soluble Ca concentrations in affected fruit. Studies on cracking resistant and
susceptible cultivars of litchi determined higher levels of Ca present in the cell walls of the
pericarp of resistant cultivars [124,125]. However, the presence of Ca-rich crystalline bodies
in cracking susceptible litchi cultivars, as detected by X-ray microanalysis, suggested that
Ca deficiency might be due to the presence of the insoluble Ca form rather than available
Ca [126]. Therefore, in reporting associations with physiological disorders, it is desirable to
state the Ca form or pool being analysed.

4.1.2. Nitrogen
Sources and Translocation

N is an essential component of amino acids, proteins, enzymes, and chlorophyll. It
plays a key role in cell division during the early growth of young tissues, including leaves,
buds, and flowers, particularly at the onset of flowering and fruit set [127–131]. N is highly
mobile and present mostly as proteins in cells [130]. Fruit trees acquire N for vegetative
growth and reproduction by uptake through the roots and by internal N cycling. In trees
experiencing N deficiency, proteins in older cells undergo proteolysis, and the resultant
amino acids move to newer cells [132]. Proteolysis results in a decline in leaf chlorophyll
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content and attendant chloroplast collapse. Hence, N deficiency is typically evident as
yellowing in older leaves.

Roots take up N in both nitrate (NO3
−) and ammonium (NH4

+) forms. However,
NO3- is the preferred source in well-aerated soils [133]. Both forms are usually derived
from applied mineral fertilisers and/or native N mineralization. After absorption, N is
translocated to different plant organs. Trees may not respond to N fertilisers due to built-up
reserves in perennial organs from previous years [127,128,131,134]. Documentation of
seasonal changes in the composition of amino acids in the xylem sap in apple, grape, and
cherry allows N remobilisation and recently absorbed N to be distinguished [135,136].
N15-labelled fertilisers have been used to follow the fate of recently applied and stored N in
fruit trees. N reserves from the previous year are generally used to support tree N demand
and vegetative growth in the following year. Remobilisation depends on the amount of N
stored, tree size, and age. In apples and other deciduous trees, typically there is intense
N withdrawal from ‘autumn’ leaves for translocation to perennial root, trunk, and stem
storage organs [127,131,137]. According to Niederholzer et al. [138], about 50% of the N
is translocated out of the leaves of peach trees before their abscission. This N is stored
in the tree trunk or roots. Upon either remobilisation from storage or root uptake, N is
preferentially allocated to newly developing vegetative and reproductive organs [139].

Effect of Nitrogen on Fruit Quality

An increase in N supply promotes tree vigour and, if managed carefully, can enhance
yield [129,140,141]. Limited availability slows tree growth and adversely affects crop
load [130]. On the other hand, excess N supply can negatively affect postharvest fruit
quality [142]. The optimum N levels mediate fruit skin colour, size, yield, and flavour [60].

Fruit N concentration is generally high during early development stages and decreases
thereafter. Fruit response to N application is influenced by timing, method, rate, source, tree
phenological stage, and edaphic and climate conditions [143]. Increased tree vigour in re-
sponse to high N supply typically leads to higher leaf-to-fruit ratio and fruit size, and lower
fruit Ca concentrations [144,145]. Positive correlations between fruit size and occurrence of
IDs have been reported for mango [146,147] and other fruit, such as avocado [148,149].

Young [23] reported that increased N fertilisation was associated with increased
soft nose incidence in the ‘Kent’ mango. Inconsistencies in later studies were ascribed to
unaccounted-for seasonal effects [147]. Murthy [44] also questioned the pivotal involvement
of Ca and/or N in the development of internal disorders with findings on the ‘Alphonso’
mango, suggesting that high P and low K were responsible for pulp tissue breakdown.
However, Tarmizi et al. [65] discerned higher N/Ca in the ‘Haramanis’ mango with a
greater incidence of insidious fruit rot. In mango fruit ontology studies from fruit set to
ripening, Raymond et al. [21] found no difference in mineral composition between healthy
fruit and fruit with disorders. However, Torres et al. [68] determined a positive correlation
between internal breakdown and N concentration in the ‘Tommy Atkins’ fruit mesocarp
and an inverse relationship with fruit Ca concentrations. Similarly, Ma et al. [7] found
higher N and lower Ca concentrations when comparing flesh mineral concentrations for
healthy and ‘Keitt’ mangoes showing disorders.

How high the N concentration must be to contribute to IDs in mango fruit remains
unclear. One possible explanation is that high vegetative growth in response to excess N
redirects Ca flow to leaves, rendering developing fruit vulnerable to Ca deficit; the latter
is potentially exacerbated by a concomitant increase in fruit size leading to Ca dilution
in the flesh [149,150]. It follows that rapidly growing fruit with limited Ca supply are
more prone to Ca-mediated physiological disorders during postharvest handling and
storage [79,80,144,151].

Such studies and findings suggest that optimising N is as important as Ca supply
to achieve robust, high-quality, long shelf-life fruit [68]. Improved understanding of the
complex interplay between orchard management practices and preharvest mineral analyses
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regarding postharvest fruit quality, storage, and shelf life potential is enabling the industry
to make more informed decisions.

In an experiment to determine the long-term effects of N application on apple fruit
quality, Fallahi et al. [141] determined that the optimum leaf N content should be in the
range of 2.05–2.30% for acceptable quality in ‘Fuji’ apples. Similarly, studies on mango
orchards in Spain stipulated that trees with leaf N 15–18 g/kg DW and Ca 17–20 g/kg DW
were prone to fruit internal flesh breakdown and deterioration [146].

Mineral analyses of leaves have been extensively used in the industry to predict
outturn fruit quality [152,153]. However, other studies question their reliability due to poor
predictive potential and suggest that fruit mineral analysis is the more reliable diagnostic
tool for quality prediction [154–157]. If fruit can be characterised by industry as likely to be
high or low in certain quality attributes, then it should help with making more informed
decisions to enhance profitability [158]. In this context, the appropriate timing of leaf and
possibly inflorescence and/or immature fruit sampling is an important consideration [159].

4.2. Irrigation and Fruit Quality

The timing and amount of rainfall and irrigation play a prominent role in fruit growth
and sizing [160,161]. Stress due to water deficit from flowering up to halfway through
the mango fruit rapid cell division period markedly affects growth rate and final fruit
size [162]. Due to lower cell number, an overall 34% reduction in fruit size was reported
by Simmons et al. [163] for water-stressed ‘Kensington Pride’ mango trees as compared to
non-stressed fruit. Thus, with a lower cell number, limited water supply may lower Ca
concentrations in developing fruit and can adversely affect postharvest quality attributes.

On the other hand, an oversupply of water in the lead up to fruit maturity during and
after the cell expansion phase leads to increased fruit size, yield, and also susceptibility
to physiological disorders [160,164]. Late development phase fruit expansion leads to Ca
dilution, which negatively affects postharvest fruit quality in terms of susceptibility to
IDs [144,165].

Deficit irrigation studies on pears, apples, and mangoes returned mixed effects on
postharvest fruit quality during critical growth phases [166–169]. Nonetheless, managing
fruit size through best management practice irrigation could prospectively help manage
fruit Ca and overall quality.

4.3. Temperature

Temperature modulates fruit metabolism, growth, maturation, and ripening [170–172].
Both preharvest and postharvest storage temperatures contribute to the final fruit quality
experience of consumers, including the expression of physiological disorders [173].

Preharvest temperatures during fruit development cannot easily be controlled. How-
ever, they can be monitored such that measures can be taken to maintain fruit robust-
ness and quality [174]. Orchard temperatures predominantly affect fruit physiology by
influencing water loss through transpiration in association with prevailing vapour pres-
sure deficits [175,176]. Transpiration-mediated water loss influences fruit growth rate,
diurnal shrinkage, and final quality at harvest [177,178], including fruit size, taste, and
aroma [178,179]. Orchard temperatures can potentially be managed by installing shade net-
ting and/or overhead sprinkler cooling systems to mitigate the adverse effects of extreme
temperatures [180–182].

The internal temperature of the growing fruit reflects the energy exchange associated
with fruit metabolic activity, energy conductance, and evapotranspiration. Collectively,
these define the heat budget of a fruit [183]. Tertiary factors affecting a fruit’s heat budget
include environmental factors, like temperature, humidity, airspeed, solar radiation, and
physical properties, such as fruit volume, skin colour and reflectance, pulp density, and
skin permeability across developmental stages [184].

To maintain quality, optimum postharvest handling, treatment and storage temper-
atures and durations at each step beyond harvest are also equally important. Exposure
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to elevated postharvest temperatures, especially for relatively prolonged durations, can
hasten ripening, inactivate enzymes, inhibit protein synthesis, and alter membrane integrity.
In adversely affected fruit, an increase in reactive oxygen species predisposes fruit quality
deterioration, including flesh discolouration [185], internal breakdown, and cavity forma-
tion [186,187]. Moreover, tropical mango fruit are sensitive to low-temperature storage.
Maintaining a balance between storage time and temperature for specific harvest lots helps
preserve quality and longevity [188].

4.4. Fruit Maturity and Postharvest Implications

Optimum fruit maturity at harvest is important for postharvest quality, shelf life,
and consumer preferences [189]. Fruit maturity is defined as physiological maturity and
commercial maturity. A fruit that has attained maximum growth and development stage
is physiologically mature. Commercial maturity is the stage of fruit development when
consumers’ preferred characteristics have been attained in a commodity [190]. ‘Desert’
mango varieties must be harvested green mature to ripen fully. ‘Salad’ cultivars are
harvested and consumed ‘green’ for culinary purposes. Physiologically mature mangoes
are harvested before the onset of their ethylene and/or respiratory climacteric rises [191].

Early harvest of physiologically immature desert fruit develop poor flavour and
are more susceptible to mechanical damage and physiological disorders (such as flesh
browning and flesh cavities) during postharvest operations, like vapour heat treatment
(VHT), hot water treatment (HWT), and irradiation [49,192,193]. On the other hand, fruit
harvested over-mature can exhibit off-odours, poor texture, and short shelf life. The severity
of IDs, such as jelly seed and watery pulp breakdown in mango [64] and flesh browning in
avocado [194], is characteristically high in over-mature fruit.

5. Control Measures and Recommendations to Minimise Internal Disorders

Mineral nutrient levels change throughout fruit development stages. Young and
Miner [195] recommend maintaining <1.2% leaf N and >2.5% leaf Ca concentrations prior to
flowering with a view to minimising susceptibility to disorders. Hofman and Whiley [191]
developed a best management practice guide for the ‘B74’ mango and recommended main-
taining N at 1.0–1.5% and Ca at 2.0–3.5% in young mature leaves at the bud swelling stage
for optimum quality fruit. Maintaining a balance between N and Ca levels is considered
important to achieve optimum fruit quality. Antagonistic effects of N fertilisation on Ca
uptake and accumulation in fruit have been researched in various fruit crops [61,196,197].
Depending on pH, lime or gypsum are recommended to increase Ca levels in low and
high-pH soils, respectively, to improve the cation exchange percentage in the soil [198].

Subraman et al. [199] found IDs in mango fruit to be more prevalent in the coastal
areas of India compared to inland orchards, possibly due to prevailing high humidities.
Gunjate et al. [200] suggested that prolonged sun exposure following harvest could alter
fruit physiology in favour of the expression of disorders. Katrodia and Rane [201] presented
a heat convection theory that fruit from lower branches were more likely to develop
physiological disorders due to heat convection from soil to surrounding air near the lower
branches of the canopy, which results in high-temperature conditions. In this regard,
orchard management practices such as mulching can lower soil temperatures and reduce
the incidence of IDs [114,202].

In a complex interplay, various other factors can influence fruit quality. For example,
fruit weight and density are potential contributing factors (Figure 4). ‘Alphonso’ mango
fruit harvested at 1.0–1.2 relative density were less likely to manifest IDs than fruit at
>1.2 relative density [22]. Harvesting at the green mature stage is recommended to reduce
IDs, but it may result in poorer eating quality in some cultivars. As late-harvested fruit
are more susceptible to internal flesh browning, an immediate shift to cooling chambers
after harvest is recommended to preserve quality and shelf life [192,193,203]. Noticeable
differences have been observed in the susceptibility to and tolerance of IDs in different
cultivars of mango [41,61,204]. Selecting compatible rootstock and scions could be another
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way to reduce disorders, as certain rootstocks can also improve nutrient uptake and
accumulation in fruit [205,206].
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6. Conclusions

Fruit robustness at harvest and postharvest quality and shelf life are predominantly
linked to preharvest nutrient status.

• Nutrient imbalances, like high fruit N and low Ca, can negatively affect fruit quality
and the incidence of postharvest disorders. Increasing Ca concentrations in fruit flesh
is a challenge, as applying more Ca to the soil does not guarantee its accumulation
in fruit.

• Controlling tree vigour by pruning, managing crop load by thinning, carefully timing
irrigation, and small frequent nutrient applications can potentially improve Ca levels
in fruit, especially during the early developmental stages when the Ca accumulation
rate is high.

• While N manipulation is achievable due to its mobility, application strategies must
limit fruit N without negatively affecting fruit development and yield.

• Careful monitoring of soil, leaf, and fruit nutrient status is recommended and desirable.
• When sampling and analysing fruit and leaf samples, adopting recommended strate-

gies to minimise variation and avoid ambiguity in results is advised. Other factors,
including temperature, humidity, light radiation, and vapour pressure deficit, are
likely to differentially influence fruit development and physiology.

• Considering complex interplays of variables, the consistent production of robust,
quality mango fruit requires a holistic approach. Mango fruit quality is an output of a
dynamic system that integrates influences of the growing environment, genotype, and
associated management practices at preharvest, harvest, and postharvest stages.

7. Future Prospects

Towards producing more robust mango fruit (free of internal disorders), a ‘systems
thinking’ approach could be implemented for fruit quality that uses quality as the system’s
output to map how multiple factors pre-harvest and post-harvest interact to influence
robustness status. Studies in the literature most often consider absolute mineral con-
centrations as a function of fruit robustness. However, minerals are present in different
physiological forms. For instance, Ca is available in plant cells in different fractions, viz.,
soluble Ca (physiologically active form), cell wall-bound, and oxalate crystals. Future
research should consider this aspect as it could inform which type of Ca fertiliser may
prove to be more useful in raising soluble Ca levels in the mesocarp cells during critical
fruit growth and development stages. Future research should also explore rapid, efficient,
and cost-effective benchtop/on-farm analysis tools. These can markedly improve crop
quality through the timely and efficient monitoring of fertiliser application. It also can help
generate extensive datasets to better understand the dynamic roles of these nutrients in
horticultural crops.
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