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Abstract
The complex structure of timber has traditionally been difficult to model as it is a highly heterogeneous material. The density 
and material properties for structural species such as Pinus radiata (radiata pine) can vary greatly across the growth rings. 
Numerical simulation methods are becoming more prevalent as a method of predicting moisture migration, stress and strain 
distributions, and fungal/rot intrusion in engineered wood products (EWPs). All these applications require a computational 
mesh that captures the growth ring structure to facilitate an accurate assessment of the performance of EWPs. In this work, 
a low-cost image-based algorithm is developed for generating a virtual representation of a small cross laminated timber 
panel sample. Specifically, the proposed method results in a virtual description of an EWP sample comprised of a triangular 
prismatic mesh where the nodes are aligned on the growth rings of each individual timber component of the EWP, with 
specific wood material properties allocated to each mesh element. Each small component is treated individually and we 
assume there is no longitudinal variation in the density, pith location, and pith angle within the mesh structure. The initial 
step involves analysing an image of the end grain pattern of a single clear wood sample to identify the growth rings using 
a spectral clustering algorithm. Next, the centre of the tree (pith) is located through an iterative constrained least-squares 
algorithm to determine the pith angle. Image analysis of an anatomical image combined with the pith location allows for 
a constant density value to be assigned to each mesh element. The capability of this framework is then demonstrated by 
simulating the moisture migration and heat transfer throughout a CLT sample under atmospheric and saturating boundary 
conditions. Furthermore, the virtual representation provides the basis for simulating additional physical and biological phe-
nomena, such as moisture-induced swelling, decay and fungal growth.

1 Introduction

Timber as a construction material provides many benefits 
over alternatives such as steel, concrete, or clay bricks; it 
is often cheaper, more sustainable and has comparative 
strength characteristics  (Thomas and Ding 2018; Abed 
et al. 2022). This resource is readily available in Australia 
due to large commercial plantations spread across the coun-
try that were estimated to span 1.93 million hectares in 

2019 (Downham and Gavran 2019). Timber can be sawn, 
peeled and glued into a variety of shapes and sizes. Sawn 
timber boards are restricted to the size of the tree they are cut 
from, while engineered wood products (EWPs) made from 
laminated timbers, which are constructed by gluing boards 
or peeled surfaces together into a panel, board, or beam, 
can be fabricated into much greater sizes. Throughout this 
paper, we will refer to each small timber board section as an 
individual component of the EWP sample. Timber produc-
tion technologies have improved significantly over the past 
decade and these advancements have led to the construction 
of multi-storey buildings using EWPs. There are many types 
of engineered wood products that are used in construction, 
with some of the most popular being glued laminated timber 
(glulam) and cross-laminated timber (CLT), see Fig. 1a, b, 
respectively. The tallest building in Australia constructed 
entirely of engineered wood products, 25 King Street in For-
titude Valley, Brisbane, Queensland, stands 51 meters high 
and spans 10 floors. The building features a primary support 
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structure made of glulam beams, while its walls and floors 
are assembled from CLT panels (Wood Solutions 2022).

Timber is a highly heterogeneous material with sharp 
density changes over the growth rings, making it challeng-
ing to model physical processes such as moisture migra-
tion, stresses and strains, and heat transfer throughout the 
product. The sharp change in density is attributed to the 
cellular structure of timber, as depicted in Fig. 2. Here the 
transition from latewood to earlywood is distinct, where the 
cells drastically increase in size and the cell wall thickness 
becomes much thinner. This abrupt change in the underlying 
structure of wood results in the material properties such as, 
thermal conductivity, bound water diffusivity, relative and 
absolute permeabilities, etc, varying greatly over the growth 
rings (Perré and Turner 2001a, b). The accurate simulation 
of transport phenomena is important to understand how 
moisture migration affects the stress and strain characteris-
tics of the complex layered EWPs. These numerical simula-
tion methods require the development of a virtual descrip-
tion of the timber being studied, which captures the rapid 
variation in density evident across the growth rings. A study 
investigating water ingress in Sitka spruce (Picea sitchensis) 
using 3D X-ray computed tomography (Burridge et al. 2021) 

showed a complex flow pattern, where the water quickly 
permeates longitudinally in the latewood section followed 
by the saturation of the earlywood sections. This type of flow 
cannot be replicated in simulations by treating the timber as 
a homogenous material, and this provides the motivation for 
developing a detailed heterogeneous virtual representation 
of the timber sample.

As for all organisms, timber is constructed from cells, 
the vast majority of which are called tracheid cells (Siau 
1984). Tracheids are long and thin cells with a void space 
in the centre called the lumen, where water and air can flow. 
Pits are gaps in the cell wall that allow water and nutrients 
to travel between cells. Figure 2 depicts how the tracheids 
are tightly packed in the radial and transverse directions in 
a section of radiata pine. It should be noted in this figure 
that the longitudinal direction aligns parallel to the centre 
of the log. In Fig. 2, the cell diameters in the transverse 
direction remain roughly equal between the earlywood and 
latewood regions, while the cell diameter in the radial direc-
tion increases drastically in the earlywood. The growth ring 
width can vary anywhere between 2 mm through to 20 mm, 
generally decreasing further away from the pith (Ivković 
et al. 2013). Three anatomical images are used in assign-
ing the density to each mesh element, which is discussed in 
detail in Sect. 2.7

X-Ray computed tomography (CT) scanning is often 
used in modelling timber as it naturally provides a three-
dimensional representation of the material. CT scanning is 
the gold standard for timber imaging as it can provide local 
density, moisture content, and fibre angle information (Bur-
ridge et al. 2021; Huber et al. 2022). However, it is not 
always feasible to obtain a CT scan due to maximum size 
restrictions, cost, time, or practicality issues. Thus, in this 
work we have investigated the suitability of a method based 
on using visible light camera images to generate the mesh 
structure and a microscope image of the cellular structure 
to assign a density to each mesh element. This technology 
is readily available and offers an alternative to CT scanning 
for smaller research laboratories when more sophisticated 
imaging capability is not accessible.

As mentioned above, the computational modelling of heat 
and mass transfer in a timber board requires the use of a 
mesh, which is a collection of nodes connected together to 
form elements. These mesh elements can be comprised of 
any polygon in two-dimensions or polyhedra in three-dimen-
sions. We will consider an unstructured two-dimensional 
triangular mesh that is then extruded longitudinally into a 
triangular prismatic mesh. The mesh must be carefully con-
structed to capture the sharp density variation present across 
the growth rings within the geometry. To ensure this, it is 
important that no element lies across the earlywood-late-
wood boundary as each element will have a unique density 
associated with it. An example of such a mesh is depicted 

(a) (b)

Fig. 1  Illustrative diagram of two engineered wood products. a Glu-
lam beam. b Cross laminated timber panel (CLT). The yellow regions 
between the boards indicate the glue lines

Fig. 2  Anatomical image of a radiata pine cross-section depicting a 
single growth ring, captured using an optical microscope equipped 
with a polarizing filter. The image highlights a distinct transition in 
cell wall thickness observed between the earlywood and latewood 
regions within the growth rings. Chalk was used to fill any voids 
within the cells. Image obtained at Queensland Department of Agri-
culture and Fisheries (QDAF)
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in Fig. 3 with the full details of its construction described in 
the methodology section.

There exist several methodologies for image based mesh 
generation, however each method is specialised for a given 
application. Specifically, in the medical industry where 
three-dimensional data is readily available from computed 
tomography (CT) and magnetic resonance imaging (MRI) 
scanning technologies, Neittaanmäki et al. (2004) develop 
a mesh of a human skull. Fang and Boas (2009) generate 
meshes for a blood vessel network, human brain, and breast 
tissue from three-dimensional MRI data. Kong et al. (2021) 
develop a mesh of a human heart using CT scan data. As 
mentioned previously, Burridge et al. (2021) used 3D X-ray 
CT scanners to determine the density of the softwood, Sitka 
spruce (Picea sitchensis), and the timber saturation under 
moisture ingress.

Perré (2005) developed the MeshPore software which 
allowed the generation of unstructured triangular meshes 
that align with high contrast features of the input image, 
either manually or automatically. However, it is worth noting 
that the software was developed around two decades ago, 
and its availability may be limited in the present context. 
Moreover, this software relied on high contrast images as 
inputs, which might not always be readily accessible. The 
MeshPore application was instrumental in the development 
of the two-dimensional version of a heterogeneous wood 
drying model (Carr et al. 2011, 2013; Perré and Turner 
1999). Our work starts with a typical end grain image of 
radiata pine as exhibited in Fig. 4 obtained from a DSLR 
camera. This image shows two zones, one with a distinct 
earlywood-latewood interface and a region where the inter-
face is more ambiguous.

The image-based mesh generation problem can be 
thought of as two smaller problems, involving growth ring 
identification and mesh generation. The growth rings can 
be identified using image analysis techniques and data seg-
mentation algorithms and the mesh can be generated using 
available software such as Gmsh (Geuzaine and Remacle 
2009). With such an open ended problem there are likely 

to be many possible and equally valid solution methodolo-
gies. There are many image analysis methods which can be 
used to identify image features including: thresholding (Liu 
et al. 2015), gradient watershed (Gauch 1999), edge detec-
tion  (Shrivakshan and Chandrasekar 2012), and colour 
feature detection (Gevers et al. 2006). These techniques 
return data which will then need to be segmented. Similarly, 
there are many algorithms for segmenting the data such as: 
K-Means clustering (Dehariya et al. 2010), DBSCAN (Mül-
ler and Guido 2016), spectral segmentation (Meilă and Shi 
2001), computer vision and machine learning (Liu et al. 
2012).

The main aim of this work is to develop a low cost, acces-
sible, method for generating a complete virtual description 
of a small engineered wood product sample. To achieve 
this, we start by generating a mesh of an individual timber 
component using a cross-sectional image captured by read-
ily available camera technology. Mathematical tools avail-
able in MATLAB (The Mathworks, Inc. 2022a) are used to 
identify the timber material property information, such as 
density variation and pith angle, that is subsequently accom-
modated in the mesh structure generated using the Gmsh 
software (Geuzaine and Remacle 2009). These individual 
components are then assembled into the required EWP sam-
ple. Our water ingress case study demonstrates the ability of 
the virtual representation to support the modelling of com-
plex moisture migration flows. However, in this work we are 
not quantitatively analysing any model parameters or data 
of the resulting flow patterns. We aim to extend this work 
to accurately simulate heat and mass transfer and swelling 
of EWP samples in the future. A key feature of this future 
research will be the calibration of model parameters using 
experimental data.

There are several assumptions and simplifications that 
we have made that streamline our approach. Firstly, because 
we are working with small wood sample sizes (with a maxi-
mum longitudinal dimension of approximately 10  cm), 
we assumed the variation in the longitudinal direction in 
the growth ring structure, pith location, and pith angle is 

Fig. 3  Example two-dimensional triangular mesh where the nodes 
(dots) are connected to form triangular elements (lines)

Fig. 4  End grain of a 90 mm by 35 mm board of radiata pine. The 
solid black box shows a region where the earlywood-latewood inter-
face is ambiguous while the dashed region shows a distinct boundary 
between the earlywood and latewood sections
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negligible. We have also assumed that we are modelling 
clear wood samples that do not contain knots. Furthermore, 
the EWPs under consideration are constructed of radiata 
pine sapwood samples.

The paper is organised as follows. In Sect. 2, we outline 
the methodology used to develop the virtual three-dimen-
sional model of the EWP samples. This discussion includes 
the chosen timber imaging techniques, image masking 
method, generation of the radial-transverse cross-sectional 
mesh and extrusion in the longitudinal direction for each 
component of the EWP. It also covers the  algorithm devel-
oped for locating the pith, estimation of the pith angle, and 
the allocation of wood density to mesh elements, which are 
all used in the evaluation of the material properties required 
for the heat and mass transfer model (TransPore) that include 
permeability, capillary pressure, bound water diffusivity, and 
thermal conductivity. In Sect. 3, the individual components 
are combined to create the virtual representation of the EWP 
sample. We also present visualisations of the evolution of 
the moisture, temperature, and saturation fields over a 64 h 
period for an application involving a two-component CLT 
panel sample. The EWP is subjected to water ingress on one 
of the RT faces of the top component, with imperfect contact 
boundary conditions imposed for nodes that lie on the glue 
line. Additionally,  with a set of psychrometric conditions on 
all other faces that is representative of typical environmental 
conditions experienced in Brisbane, Australia. In Sect. 4, 
we discuss the outcomes of the study and then provide the 
conclusions of the work in Sect. 5.

2  Methodology

The example used in this paper to demonstrate our meth-
odology is a three layer cross-laminated timber (CLT) sam-
ple where each individual small board component has the 
dimensions of 0.09m × 0.045m × 0.09m in length, width 
and depth (longitudinal) respectively. The proposed meth-
odology for generating the mesh of an individual timber 
component can be summarized as follows. A photograph 
or a scan of the end grain pattern of a clear wood sample 
serves as the starting point for generating the mesh. Ini-
tially, an unstructured two-dimensional triangular mesh (in 
a radial-transverse cross-section) is generated using the end 
grain image. Next, the pith is located using an iterative con-
strained nonlinear least squares algorithm fitting multiple 
circles through the identified growth rings, which allows for 
the computation of the pith angle. The density of each tri-
angular mesh element is then computed by first defining the 
intra-growth ring fractional radial position (FRP), which is 
a proportional measure of the distance a given mesh element 
is through the growth ring. The density across the growth 
ring is computed by analysing an anatomical image of the 

cellular structure, where a five-point logistic (5PL) function 
fit is constructed to map the FRP to a density value. The tri-
angular mesh is then extruded into the longitudinal direction 
using triangular prismatic mesh elements. The meshes of 
multiple timber components are combined to create a mesh 
for the entire EWP sample. Finally, moisture, temperature, 
and density based material properties can now be computed 
for each mesh element, resulting in the full virtual represen-
tation of an EWP sample. The majority of the code is writ-
ten in MATLAB, and Gmsh is used to mesh the geometry 
specified by the MATLAB codes. All code and supporting 
files are uploaded to GitHub.

2.1  Timber imaging

The process of mesh generation commences with the capture 
of an image of the end grain of a clear wood sample. As 
mentioned in the introduction, one of the requirements of 
our modelling strategy is to use readily available, inexpen-
sive equipment and we have found that either a digital single 
lens reflex (DSLR) camera or a flatbed scanner were suitable 
for this task. For this research we captured the images using 
an Epson V600 flatbed scanner (in 800 dots per inch mode) 
and a Nikon D500 21 megapixel DSLR camera. While test-
ing we found it was best to capture these images in the high-
est resolution possible as they can be downsampled later. 
Perspective distortion (also called wide-angle distortion) 
can cause the resulting image of the timber to be warped. 
This effect occurs when using a wide-angle lens which is 
positioned close to the wood sample. This can cause objects 
closer to the edge of the frame to appear warped which can 
make the end grain pattern non-rectangular, thus leading to 
a poor virtual reconstruction. This effect is conceptualised 
in Fig. 5, whereby perspective warping can be mitigated 
by using a lens with a longer focal length and positioning 
the lens further away from the sample. Positioning the cam-
era more than 1.5 m away with a focal length greater than 
100 mm full frame equivalent minimised this effect for our 
imaging needs. A flatbed scanner is able to obtain higher 
resolution images and does not have the perspective warp-
ing issue as the scan head moves in parallel with the sample. 
However, the size of the EWP sample is limited by the size 
of the scanning bed.

2.2  Image masking

Once a clear, in focus image is obtained it is converted to 
grayscale and the size of the image is reduced so that the 
long side has approximately 250 pixels (the short side ranges 
from approximately 100–150 pixels), which we found has 
produced acceptable results and speeds up processing time. 
Next, a Gaussian blur (with standard deviation of � = 0.5 , 
chosen through testing) is applied to the image to reduce 

https://github.com/psgrant/TimberMeshGen
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high fidelity noise. Then, a mask is generated which is a 
logical array having the same size as the image. The mask 
contains either zeros or ones, a one indicates pixels in the 
darker latewood sections and a zero indicates pixels in the 
earlywood, refer Fig. 6. The MATLAB function gray-
thresh (The Mathworks, Inc. 2022a) is used to obtain a 
thresholding value, where pixels darker than the threshold 
are marked. Lastly a median filter is applied to remove small 
isolated regions of masked pixels that do not correspond to 
the latewood region (again refer Fig. 6).

2.3  Spectral segmentation

Once the image mask has been generated and filtered, the 
pixels in the mask can be converted into a list of data points 
containing the horizontal and vertical position. The data can 
now be segmented using a recursive bipartitioning spectral 
clustering algorithm. This algorithm is desirable as it is a 
high performance data segmenting algorithm where orienta-
tion does not matter (Cour et al. 2005). The process begins 

with the generation of a similarity matrix W ∈ ℝ
n×n where 

n is the number of pixels to be segmented (Von Luxburg 
2007). The entries in the similarity matrix can be con-
structed to take into consideration different data property 
features, some examples include: spatial distance, pixel 
colour, pixel light intensity (Jia et al. 2014). For our imple-
mentation we have used spatial distance between the points 
in the image mask. The graph Laplacian, L ∈ ℝ

n×n , is then 
generated as:

where D ∈ ℝ
n×n is the diagonal matrix,

The elements of W are computed as a Gaussian weighted 
spatial distance between each point pair in the data set,

where xi and xj are the ith and jth position vectors in the 
image mask respectively and � is a parameter which controls 
the size of the point neighbourhoods. The method for select-
ing � is discussed towards the end of this subsection. The 
eigenvalues and eigenvectors of the graph Laplacian, L , are 
computed and sorted in ascending order. The signs of the 
elements in the eigenvector that corresponds to the second 
smallest eigenvalue (Fiedler vector) designate which biparti-
tion that point is in, see Fig. 7a. The second vector is chosen 
as the elements in the first eigenvector are all constant with 
a value of 1∕

√
n . This process is repeated until all data sets 

are segmented. The outcome is exhibited in Fig. 7b.

(1)L = D −W,

(2)Dii =

n∑
j=1

Wij, i = 1,… , n.

(3)Wij = exp

�
−
‖xi − xj‖22

2�2

�
,

Resulting Image Resulting Image

Diagram not to scale

Fig. 5  Schematic representation of perspective warping. The differ-
ence in distance between the edges (solid line) and the centre (dashed 
line) of the wood sample is much greater when the camera is close to 
the sample. An image taken using a setup similar to that on the left 

could result in the edges of the board sample becoming warped (as 
seen in the resulting image), while the right setup would result in the 
expected rectangular image of the sample
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Fig. 6  Example image mask of a reduced size image where the blue 
dots highlight the flagged pixels in the image mask
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Notice that there are partially incomplete regions evident 
in the image mask, on the bottom side of the two central 
growth rings in Fig. 7b. These regions form as a result of the 
latewood section not being as dark in these sections and thus, 
were not captured in the thresholding stage. These incom-
plete regions can be filled by fitting a boundary around the 
points in each newly segmented growth ring as illustrated in 
Fig. 8. The boundaries are computed using the inbuilt MAT-
LAB function: boundary (Mathworks, Inc. 2022), which 
takes the x and y positions of each point and a shrink fac-
tor parameter 0 ≤ S ≤ 1 as inputs. MATLAB’s boundary 
function generates an alpha shape which returns a triangula-
tion that encloses a set of data points when given a radius, 
� (Edelsbrunner and Mücke 1994). The � radius is directly 
correlated to the shrink factor, S, in the boundary func-
tion. When S = 0 the boundary is the convex hull of the data 
points, and S = 1 generates the tightest single region bound-
ary around the points. As the shrink factor decreases from 
one to zero the boundary becomes less compact. The bound-
aries depicted in Fig. 8 use a shrink factor of S = 0.15 . Dur-
ing testing it was found that this choice of shrink parameter 

is ideal as it follows the edges of the growth rings closely 
and bridges the gaps evident in the incomplete regions iden-
tified in Fig. 7b. Larger values of S result in the boundary 
not filling these regions and smaller values start filling in too 
much as the boundary approaches the convex hull. The area 
enclosed by these boundaries is then filled with data points 
and these new regions are used when fitting the smoothing 
splines for the earlywood–latewood boundaries that will be 
outlined in Sect. 2.4.

To determine if a bipartition (cut) is optimal, we check if 
the boundary elements of each data set lie directly adjacent 
to each other. This way we ensure that each segment con-
tains only one growth ring. The left side of Fig. 9 presents 
an example of a suboptimal bipartition. In panels A and B, 
observe that the boundary points of the two clusters (black 
circles) are next to each other. An optimal cut is achieved 
by reducing the � parameter thus obtaining a different cut as 
depicted in panels C and D. The right side of Fig. 9 presents 
an optimal cut.

The coding implementation uses the MATLAB function 
spectralcluster as it can automatically determine the � 
parameter. The function uses a median distance to the nearest 
neighbour heuristic for determining the value of � (Mathworks, 
Inc. 2022). The function also takes the number of clusters as an 
input, we set it for 2 clusters as we don’t know the number of 
growth rings at the start of the process and so we can still apply 
our bipartitioning algorithm. The automatically determined heu-
ristic can be computed and if a suboptimal bipartition is obtained 
another � value is sampled uniformly from the interval between 
1 and two times the neighbour heuristic until an optimal biparti-
tion is made. This process has always resulted in successful seg-
mentation on all the image masks tested thus far. We also found 
that the DBSCAN (MATLAB inbuilt function) algorithm was 
able to successfully segment each of the masked growth rings 
when given the correct input parameters: epsilon neighbourhood 
and minimum number of core points (Müller and Guido 2016). 
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Fig. 7  a Example Fiedler vector values, each element of the vector corresponds to a point in the image mask where the sign of the value deter-
mines which cluster that point lies in. b Final result of clustering where each segment is a different colour

Fig. 8  Boundaries determined using MATLAB’s boundary func-
tion, with shrink factor S = 0.15
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However, the spectral clustering function allows us to imple-
ment a check for suboptimal bipartitions by only updating one 
parameter instead of the two needed for DBSCAN.

2.4  Determining the Earlywood–Latewood 
boundaries

The points on the boundary of each growth ring section are 
found using the previously mentioned boundary function with 
S = 1 , to ensure the tightest single region boundary is identified. 
The boundary points above and below the latewood sections are 
then isolated and a cubic smoothing spline is fitted through the 
boundaries. The result of this process is shown in Fig. 10.

The piecewise cubic smoothing spline f(x), over the inter-
val x ∈ [a, b] , with smoothing parameter p ∈ [0, 1] mini-
mizes the following functional (De Boor 1978):

(4)
p

n∑
i=1

|yi − f (xi)|2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Least Squares Term

+ (1 − p)∫
b

a

(
d2f

dx2

)2

dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Roughness Penalty

,

where xi , yi are the x- and y-coordinates of the boundary points 
respectively, and n is the number of points. The first term is a 
standard least squares minimization and the second term is a 
roughness penalising term. When p = 1 the smoothing spline 
simply interpolates all the data points, when p = 0 the mini-
mization problem reduces to a linear least squares estimate. 
For intermediate values the smoothing spline lies somewhere 
between the piecewise smooth cubic interpolation and the linear 
least squares estimate (De Boor 1978). Reinsch (1967) recom-
mends a value of p = 1∕(1 + h3∕6) , where h is the average 
spacing of the data. MATLAB’s curve fitting toolbox is used to 
generate and evaluate the splines (The Mathworks, Inc. 2022b).

2.5  Generating the computational mesh

The benefit of using splines is that they are defined over the 
whole domain. They also smooth out the noise inherited from 
the image masking process in the input data, providing a more 
realistic fit to the growth ring boundaries. Next, we need to gen-
erate the mesh (using Gmsh) from the fitted smoothing splines. 
Gmsh is an open source meshing software package that provides 
the user with many powerful tools for mesh generation (Geu-
zaine and Remacle 2009). The user defines the geometry of the 
object to be meshed alongside the desired level of refinement, 
then Gmsh will generate the mesh for that geometry and refine-
ment. The meshes can be one-, two- or three-dimensional and 
consist of many element types, for example: triangular, quadri-
lateral, tetrahedra, triangular prism, etc. The strategy we adopt 
is to generate a two-dimensional unstructured triangular mesh 
that describes the growth ring variation in the RT cross-section, 
then extrude the mesh (in the longitudinal direction) to produce a 
three-dimensional triangular prismatic mesh for each component 
of the EWP sample.

When passing this mesh to the TransPore model to 
simulate heat and mass transfer processes in wood, see for 

Fig. 9  Example bipartitions, where the yellow regions represent 
already-segmented growth rings, and the red and blue regions indi-
cate the bipartitions currently under consideration. Panels A and B 

illustrate suboptimal cuts, which involve cutting through a growth 
ring. Panels C and D show optimal cuts with reduced � , which 
involve segmenting the entire growth ring
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Fig. 10  Fitted cubic smoothing splines through the earlywood-late-
wood boundaries
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example Perré and Turner (2002); Carr et al. (2011), it is 
important that there only exists one material type density 
allocated to each triangular element, either the earlywood or 
latewood. By placing the nodes of the mesh on the growth 
ring boundaries it ensures that the triangular elements will 
not cross this boundary. For the mesh generation, we are 
only interested in the latewood to earlywood (from the pith, 
discussed in Sect. 2.6) spline because that is where the sharp 
density variation arises. We have used both splines when 
locating the pith to improve accuracy, refer to Sect. 2.6 
for more details. Control over the mesh refinement is also 
required, especially on the edges of the sample and along 
the internal growth ring boundaries, as these are the loca-
tions where steep gradients may arise in the moisture content 
fields. Mesh refinement is controlled by specifying the num-
ber of nodes along these splines, which is achieved by defin-
ing the splines as a Transfinite curve type in Gmsh. The pro-
cess of mesh generation commences with the construction of 
smaller rectangular boxes where the mesh refinement will be 
specified within that box. Figure 11 demonstrates how each 
part of the splines passes through each box. Careful consid-
eration has been given to where the curves briefly enter a 
zone and leave quickly. For these scenarios, the refinement 
of the previous box is applied, refer to the top right corners 
of the two internal boxes in Fig. 11.

The splines that pass through different refinement zones 
get split into multiple smaller sub-splines, one for each zone. 
Gmsh handles mesh refinement in several ways however it 
was found that defining the number of nodes desired along 
each sub-spline produced suitable meshes. The length of 
each segment is computed and the corresponding node count 
applied. For example, if a sub-spline is 283 pixels long and 
is located in the 25 pixels per node (PPN) section then there 
would be 11 nodes placed along that segment (including the 
two end nodes). Figure 12 displays a mesh that is refined 
more towards the edges of the domain, showing that a higher 
PPN results in a coarser mesh.

Using the extrude function within Gmsh the two-
dimensional mesh can easily be extended into the longitudi-
nal dimension. Figure 13 depicts the full three-dimensional 
mesh generated from the RT cross-sectional mesh shown 
in Fig. 12, extruded with 21 layers (including the initial 
two-dimensional mesh). To specify � layers of triangular 
prisms the number of layers option for the extrude function 
needs to be set to � + 1 in the Gmsh geometry file. Mesh 
refinement factors are carefully considered with the view of 
minimising the total number of mesh elements used for the 
virtual representation of each component of the EWP, so that 
overall computation times for numerical simulations can be 
minimised. The mesh data consists of the nodal positions in 
three-dimensional space, element connectivity information, 
surface quadrilaterals and triangular faces among other sub-
sidiary mesh information. Gmsh can export the mesh data 
in many widely used formats, for our implementation we 
export the mesh data as a MATLAB script file.

2.6  Pith location algorithm and pith angle 
computation

Material properties important for modelling moisture 
migration and heat transfer (such as effective thermal con-
ductivity, bound water diffusivity, etc.) are defined in the 
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Fig. 11  Example geometry refinement zones with two internal boxes. 
It can be observed that the splines that only slightly extend into the 
top right corner of the internal boxes do not undergo any refinement 
changes

Fig. 12  Example mesh with three refinement zones, starting with 45 
pixels per node (PPN) in the red zone, 60 PPN in the blue zone and 
90 PPN in the purple zone

Fig. 13  Example three-dimensional triangular prism mesh with 21 
non-uniformly distributed layers
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radial, transverse and longitudinal directions of the timber 
board (Perré and Turner 2001a, b). For numerical simulation 
these material properties need to be defined in the x, y and 
z directions. Thus, the pith location and pith angle needs to 
be estimated and computed respectively. A standard trans-
formation matrix must be applied to the material properties 
defined in the RTL framework to map them to the x, y and 
z coordinate directions. To illustrate, we exhibit how this 
rotation is applied to the effective thermal conductivity K̃eff 
tensor:

where KR
eff

 , KT
eff

 , and KL
eff

 are the effective thermal conduc-
tivities in the radial, transverse and longitudinal directions 
respectively. The rotated effective thermal conductivity ten-
sor is then expressed as follows:

with the following rotation matrix R , given by

where � is the pith angle. This angle is defined between the 
horizontal axis located at the pith and the chosen sample 
mesh point, refer Fig. 14a. It is assumed to be unchanged 
throughout the longitudinal direction of the component.

To determine the pith angle for each node in the mesh, 
it is necessary to estimate the location of the pith. To do 
this, we sample points from the cubic smoothing splines 
previously discussed in Sect. 2.4 and fit a circle through 
each spline, in a least squares sense, to identify the radius 
and the center of the circle. Consider the equation for a 
circle centred at 

(
x0, y0

)
 with radius R:

(5)K̃eff =

⎛
⎜⎜⎝

KR
eff

0 0

0 KT
eff

0

0 0 KL
eff

⎞
⎟⎟⎠
,

(6)�eff = R
T
K̃effR,

(7)R =

⎛⎜⎜⎝

cos � − sin � 0

sin � cos � 0

0 0 1

⎞⎟⎟⎠
,

(8)
(
x − x0

)2
+
(
y − y0

)2
= R2,

which can be expressed as:

then the subsidiary coefficients can be absorbed into a new 
variable A = R2 − x2

0
− y2

0
 , to give

Using Eq. (10) and the selected data points from the spline, 
the coefficients A, x0 and y0 can be found using least squares. 
The radius can be recovered with:

The process is performed twice for each growth ring to 
determine the pith location and radius for the two borders of 
the latewood section. This yields a set of potential pith loca-
tions and radii. In the subsequent iteration, we recalculate 
the least squares fit, constraining the pith locations within a 
box with a height and width that equals half of the standard 
deviation of the circle centers from the previous iteration, 
refer to electronic supplementary material 2 (Fig. 1) for the 
results obtained after six iterations. Figure 15a presents the 
approximate pith location for a backsawn timber wood com-
ponent of radiata pine after 15 iterations. This method allows 
for an approximate pith location to be found, which can then 
be used to allocate the pith angle throughout a given compo-
nent. We reinforce the assumption of no longitudinal vari-
ation through these small samples so we can use the same 
pith angle longitudinally through the sample. With the pith 
location computed, the pith angle can be found for each ele-
ment and node of the mesh using basic trigonometry, refer 
Fig. 15b. The material properties can now be defined in the 
x, y and z directions which is needed for numerical simula-
tions using the TransPore model.

Recent published research has used a similar approach 
to locate the pith of Norway spruce timber (Habite et al. 
2020), to achieve good estimations of the pith locations 
and average annual growth rate (growth ring width). Their 
method starts with an initial estimate of the pith location and 
average growth ring width, to which a cost function of the 

(9)x2 + y2 = R2 + 2xx0 + 2yy0 − x2
0
− y2

0
,

(10)x2 + y2 = A + 2xx0 + 2yy0.

(11)R =

√
A + x2

0
+ y2

0
.

Fig. 14  a Description of the 
pith angle � , where R and T rep-
resent the radial and transverse 
directions respectively. b Visual 
description of the fractional 
radial position (FRP) which is 
a relative measure of how far a 
point is through a given growth 
ring

Pith

θ

Pith
θ θ
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pith locations and ring width is determined and then mini-
mised. They assumed that the growth ring width is constant 
throughout the whole board, which for Norway spruce is a 
valid assumption. This assumption may be breached when 
considering timber species with non-uniform growth ring 
widths and spacing, such as radiata pine. Comparisons to 
this algorithm are made later in the discussion section. The 
method presented in this article allows for varying growth 
ring sizes as each earlywood–latewood boundary is consid-
ered independently, instead of treating the latewood section 
of the growth ring as one entity. In later works, Habite et al. 
(2022) used a one-dimensional convolutional neural network 
to achieve good estimates of the pith location, where input 
was a horizontal slice through visible light images of the 
four non-end grain faces of the board.

2.7  Mesh density

Computed tomography (CT) and magnetic resonance imag-
ing (MRI) scanners have been demonstrated to generate 3D 
profiles of timber density and moisture (Burridge et al. 2021; 
Lazarescu et al. 2010). However, the requirement for iso-
lated timber sections, together with the need for specialized 
training and expensive equipment make their practical usage 
challenging. We propose a method for determining local 
density values by computing the intra-growth ring fractional 
radial position (FRP) across the component. We then use a 
five-point logistic function to map the FRP to the density. 
This function is chosen as the parameters convey a physical 
meaning which we will discuss shortly. The data for the fit is 

obtained by sectioning an anatomical image into strips and 
computing the proportion of those strips that are pixels of 
the cell wall, then we multiply this proportion by the known 
cell wall density (1530 kg m−3 ) as demonstrated in Perré 
(1997), refer to Fig. 17 for a conceptualisation. Lastly, each 
element in the two-dimensional triangular mesh is assigned 
a constant density value, which is then used for all triangu-
lar prismatic elements emanating from that triangular face 
extruded into the longitudinal direction.

To determine local density, the first step is to identify 
which growth ring boundaries the centroid of each mesh 
element lies between. We only need to consider the latewood 
to earlywood boundary (from the pith) as that is where the 
sharp change in density exists. Next, the FRP is computed 
by seeing how far through a given growth ring each ele-
ment centroid is located, refer Fig. 14b. The FRP is used as 
the relative distance between each growth ring, and scaling 
the distances between zero and one allows the density to be 
easily computed by applying the five-point logistic function 
that is defined over the domain [0,1]. Each spline is extended 
outside the sample boundaries so that the distance for points 
on the edge can still be computed.

For regions where there is no spline between the pith 
and the element, (regions labelled 0 in Fig. 16a), we use the 
next growth ring (regions labelled 1) splines. The idea is to 
use information from the neighbouring growth ring as if the 
element was inside that growth ring. Similarly this idea is 
applied to elements where there is no spline that intersects 
the pith-element ray after the element (regions labelled 4), 
however we use information from the previous growth ring 
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Fig. 15  a Fitted circles through the earlywood–latewood interface with an approximate pith location shown as the black dot, measured in pixels. 
b The pith angle (radians), � , of the backsawn board
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(regions labelled 3) in this case. This process enables the 
centroid of each mesh element to have assigned a FRP along 
the growth ring.

Next the five-point logistic (5PL) function (Koya and 
Goshu 2013) is used to convert the FRP to a density value 
for each element. Each parameter in the 5PL function has a 

distinct physical characteristic that affects the shape of the 
curve, where the five-point logistic function is defined as:

(12)
�(x) = �0 +

�1 − �0(
1 +

(
x

�2

)�3
)�4

,

Fig. 16  a Regions which 
indicate how many growth 
rings a ray between the pith and 
each mesh element would pass 
through. b The fractional radial 
position across the whole wood 
sample
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Fig. 17  The flowchart illustrates the process for determining den-
sity values within a single growth ring. The four main steps, indi-
cated by arrows and corresponding step numbers, are: (1) selection 
of the desired region and conversion to grayscale, (2) application 
of an image mask to identify the cell wall pixels using MATLAB’s 

adaptthresh function, (3) calculation of the proportion of black 
pixels within each column and multiplication by a solid density �

s
 , (4) 

normalisation of horizontal pixel distance to a fractional radial posi-
tion and fitting of a five-point logistic function
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where � is the density, x is the fractional radial position, 
�0 and �1 are the maximum and minimum densities respec-
tively, �2 is the inflection point (when �4 = 1 ), �3 is the slope 
factor which describes the steepness of the curve and �4 is 
an asymmetry coefficient (Psaltis et al. 2021). The 5PL is 
often used in many biological applications where growth is 
concerned (Koya and Goshu 2013) and has previously been 
used for fitting the modulus of elasticity in timber (Psaltis 
et al. 2021). We extend its application to fitting the density 
of radiata pine to the FRP.

The radial density is computed using image analysis on 
three anatomical images of timber acquired at the Queens-
land Department of Agriculture and Fisheries experimen-
tal facility located at Salisbury in Brisbane, using the 
method described in Perré (1997). The three images cho-
sen to determine density have varying thicknesses of the 
latewood band. The two images exhibited in electronic 
supplementary material 1 (refer Figs. 1 and 2) are growth 
rings with relatively thin and thick latewood regions of the 
growth rings respectively. The anatomical image depicted 
in Fig. 2 has a relatively medium latewood band thick-
ness. To extract the density across the growth rings, the 
images are thresholded so the cell wall pixels are masked, 
then divided into vertical strips and the proportion of each 
strip that is the cell wall can be computed. This proportion 
is then multiplied by the solid phase density of timber, 
�s = 1530 kg m−3 . The horizontal distance of each image 
encompasses a single growth ring, the x-coordinate data 
is then rescaled to be between 0 and 1, which is fitted 
using the 5PL function. This process is conceptualised 
in Fig. 17 using the medium thickness anatomical image. 
Table 1 presents the coefficients for each image (thin, 
medium and thick), alongside the r2 value, and the upper 
and lower bounds for each parameter. The coefficients are 
determined by completing a constrained least-squares fit 
using MATLAB’s Curve fitting toolbox (The Mathworks, 
Inc. 2022b).

A simple heuristic based on the the percentage of late-
wood within each growth ring is used to determine which 

one of the 5PL curves to use for a given growth ring. The 
latewood area can be computed by using the splines either 
side of the growth rings, refer to Fig. 10, using MATLAB’s 
polyarea function. The area of the entire growth ring can 
then be calculated, which allows for the percentage of the 
latewood that occupies a growth ring to be computed. We 
have designated that the thin 5PL function is used in growth 
rings with less than 15% latewood area, the middle curve is 
chosen for percentages between 15 and 25%, and the thick 
curve is selected for latewood percentages above 25%. These 
values are chosen so that all three curves are selected when 
developing our EWP sample and to provide further heteroge-
neity into the model. If an element is identified for a growth 
ring that is not fully present (regions labelled 0 and 4 in 
Fig. 16a), the median of all the selected curves for elements 
which have a complete growth ring is taken. Figure 18a 
shows an example where each mesh element is assigned a 
density as computed from two of the 5PL functions. This 
can then be extruded from the two-dimensional triangular 
mesh into a three-dimensional triangular prismatic mesh, as 
shown in Fig. 18b.

2.8  Initial moisture content field

With the virtual representation now constructed, we can 
compute the initial moisture content field. If the average 
moisture content of the component, X , is below fibre satu-
ration point, XFSP , then we take the initial moisture content 
field as constant throughout the component at the average 
value. Otherwise, we need to determine the spatial variation 
of the moisture content field. The main driver of moisture 
migration (when X > XFSP ) is capillary pressure. The initial 
moisture content field is reached when the capillary pres-
sures across the component are in equilibrium (Perré and 
Turner 2002). The local capillary pressure, Pc(S

(i)
w , �

(i)

0
, T) , 

is defined in terms of the free water saturation, density, 
and the temperature and its functional form is described in 
Perré and Turner (2001a). This process is applied to the two-
dimensional triangular mesh with the moisture content being 
extruded into the three-dimensional mesh. Each component 
of the EWP is treated individually and can have different 
average initial moisture contents. To compute the initial 
moisture content field, the averaged timber density at each 
node is required and we construct control volumes around 
each node in a vertex-centred manner, as demonstrated in 
Carr et al. (2011). The average density �(i)

0
 defined at each 

node i is described as follows:

(13)�
(i)

0
=

∑m

j=1
�
(j)

0
Aj∑m

j=1
Aj

,

Table 1  Fitted parameter values for the five-point logistic function 
described in Eq. (12) for the three anatomical images used

Refer to electronic supplementary material 1 (Fig. 3) for the plots of 
these three functions

Coefficient Thin Medium Thick Lower bound Upper bound

�
0

800 573.3 648.6 400 800
�
1

282.1 262.8 305.2 0 400
�
2

1.2 1.1 1.3 0 10
�
3

10 5.1 2.9 0 10
�
4

10 9.4 10 0 10
r
2 0.6374 0.9482 0.8506 – –



European Journal of Wood and Wood Products 

where m is the number of elements that surround node i, �(j)
0

 
is the density that is associated with element j and Aj is the 
area of the sub-control volume in element j. Note that as 
this process is applied to the two-dimensional mesh in the 
RT plane, our control volumes are considered to be areas. 
The initial moisture content field is determined by solving 
a system of nonlinear equations, f(s) = 0 , that enforces the 
equilibrium of the capillary forces and an overall mass bal-
ance throughout the domain (Perré and Turner 2002). The 
coordinate functions for this system are given as follows:

where N  is the number of nodes, s = (S
(1)
w , S

(2)
w , 

… , S
(N)
w ,Pc

eqm)T is the solution vector containing the free 
water saturation values at each node and the equilibrium cap-
illary pressure, �(i) is the nodal porosity, Ai is the control vol-
ume area of node i, and X is the averaged moisture content 
of the timber component. The fibre saturation point, XFSP = 
0.325–0.001T, linearly decreases with temperature (Stamm 
1961). The nodal moisture content is computed from the free 
liquid saturation, S(i)w :

where �w is the density of water. The resulting nonlinear 
system can be solved with an iterative solver such as an 
inexact Newton’s method using first order finite difference 
approximations for the terms in the Jacobian matrix (Bur-
den et al. 2015). The initial condition for Newton’s method 
is simply that every node has a constant value of X and the 
equilibrium capillary pressure is arbitrarily chosen as 10,000 
pascals. The solver typically converges to a solution within 

fi(si) = Pc(S
(i)
w
, �

(i)

0
, T) − Pc

eqm, i = 1, 2,… ,N

fN+1(si) = �w

∑N

i=1
�(i)S

(i)
w Ai∑N

i=1
�
(i)

0
Ai

+ XFSP − X,

(14)X(i) =
�(i)S

(i)
w �w

�
(i)

0

+ XFSP, �(i) = 1 − �
(i)

0
∕�s,

20 iterations with a Newton step size less than 10−8 . An 
example three-dimensional initial moisture content field for 
a CLT sample with X = 1 kg (water)/kg (dry solids) for each 
component is presented in Fig. 19c.

3  Results

The combination of the methodologies described in the 
previous section allows for the generation of virtual three-
dimensional representations of the individual components 
that form an EWP sample. These virtual representations 
can be used individually or combined as an EWP sample 
for numerical simulations involving moisture migration and 
heat transfer. The mesh contains information on density 
and pith angle which enable the calculation of the model 
effective parameters that are defined based on wood den-
sity. Fig. 19a–c illustrate an example of a three-layer cross-
laminated timber panel section, along with the computed 
elementwise density, and initial moisture field respectively. 
We see that the moisture distribution tends to follow the den-
sity variation, pooling in the less dense, earlywood regions. 
From this it is easy to observe the impact of the assumption 
of negligible longitudinal variation of the material proper-
ties on the moisture distribution throughout the CLT panel 
sample.

To further demonstrate the use of the virtual representa-
tion Fig. 20 depicts an example of the use of the two-equa-
tion TransPore model to simulate the heat and mass transfer 
phenomena arising in a prototypical CLT panel section. A 
summary of the model description, initial and boundary con-
ditions, and numerical solution strategy for this simulation 
are presented in electronic supplementary material 3. Due 
to the significant amount of computation time required for 
simulating three-dimensional moisture migration, we have 
elected to simulate over a two-layered CLT sample. 

Fig. 18  a Two-dimensional mesh populated with density values, where each growth ring is labelled for which 5PL function was used for assign-
ing the density to the elements in that growth ring. b Extruded three-dimensional mesh for an example of a typical EWP sample component
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For this simulation, we show the evolution of the mois-
ture, saturation, and temperature fields at 1, 4 and 64 h 
for the CLT sample subjected to typical climatic condi-
tions experienced in Brisbane, Australia. The leading RT 
cross-sectional face of the top component is subjected to a 
saturating boundary condition, while all other faces experi-
ence changing psychrometric conditions involving relative 
humidity and temperature (using fitted cosine functions with 
a period of 24 h). It can be observed that the moisture field at 
first migrates along the longitudinal direction of the top com-
ponent, and slowly approaches near full saturation. There-
after, the moisture penetrates the second component as it 
dries and migrates very slowly through the surface due to the 
influence of the imposed external conditions. In fact, these 
conditions can lead to a drying phenomenon being evident 

in the EWP sample. The effects of the growth ring hetero-
geneity on the moisture and saturation fields are clearly evi-
dent in the results. Furthermore, we have modelled the glue 
line interface between the two components using an imper-
fect flux boundary condition that allows minimal moisture 

Fig. 19  a Texture mapped surface of a 3-layered EWP sample. b Elementwise density of the EWP sample. c Nodal initial moisture content field 
with an average initial moisture content of X = 1 kg (water)/kg (dry solids) for each component

Fig. 20  Numerical simulation of heat and mass transfer over 64  h 
using the TransPore model in a two-component cross laminated tim-
ber panel sample. The first two rows and column display graphs of 
the averaged moisture content and averaged temperature for each 
component individually and across the whole product. The plots in 
the right column graph the wet and dry bulb temperatures and the rel-
ative humidity over a 24 h period. Each column of the three-dimen-
sional plots represents moisture content, saturation, and temperature, 
while each row denotes simulation times at 0, 1, 4, and 64 h respec-
tively

◂
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transfer, while a perfect contact boundary condition is used 
for the heat flux. Refer to March and Carr (2019) for the 
definitions of these boundary conditions. The temperature 
distribution in the EWP sample oscillates according to the 
variation in the dry and wet bulb temperatures over the 24 h 
period as expected. This application highlights the capability 
of the virtual model to facilitate the simulation of moisture 
ingress and egress through the heterogeneous timber com-
ponents of the CLT sample. A complete animation of the 
moisture and temperature variation over the 64 h simulation 
period is provided in the GitHub repository.

4  Discussion

The aim of this research is to develop a low-cost method 
for generating virtual representations of engineered wood 
product samples, accurately capturing the sharp density vari-
ations across the growth rings within the mesh geometry. 
By integrating well-established image analysis techniques, 
linear algebra, and spectral clustering algorithms, we can 
achieve three-dimensional reconstructions of these samples. 
This method offers an alternative to CT scanning, provid-
ing users with detailed virtual reconstructions of engineered 
wood product samples. Our method of virtual reconstruction 
utilises two important inputs: the first is a grayscale image 
of the end grain of a timber sample, and the second is a 
series of anatomical images of the growth ring structure. 
From the end grain image, we are able to generate a mesh 
capturing the main macroscopic features (growth ring loca-
tions) of the board sample. The growth ring identification 
also facilitates the identification of the pith location. Next, 
the anatomical image is used to allow for density variation 
across the growth ring to enable material properties to be 
allocated to elements within the mesh. However, it should 
be noted that the current method, which involves generat-
ing a two-dimensional triangular mesh and extruding it into 
a three-dimensional triangular prismatic mesh, potentially 
results in the loss of information along the longitudinal 
direction. This limitation arises from the assumption that 
the growth ring patterns do not vary longitudinally, which 
is a reasonable assumption given the small sample sizes we 
are considering and the constraints of working with a single 
image where access to the sides of the samples is lost dur-
ing lamination. Overcoming this challenge and developing 
a method that incorporates longitudinal variation into the 
three-dimensional mesh formation process is non-trivial and 
a topic recommended for future work.

As mentioned above, we have extended the method for 
locating the pith developed by Habite et al. (2020), where 
they fitted a series of circles with the same center through 
the growth rings and a constant averaged growth ring 
width. This approach may not be suitable for radiata pine 

due to the varied growth ring width. Our algorithm locates 
the pith by fitting a possible pith location and growth ring 
radius for each growth ring individually and then con-
straining the pith locations to a smaller region until they 
all converge to the pith. Our algorithm has been tested 
on three virtual cuts made in the end of a log, depicted in 
electronic supplementary material 2 (Fig. 2), where we 
achieved an average absolute error of 11.33 mm from the 
manually determined pith location. Habite et al. (2020) 
achieved an average error of 6.99 mm for their samples 
where the pith was located outside of the board with their 
largest reported discrepancy being 16.28 mm, which is the 
largest error that our developed methodology achieved. We 
believe the iterative pith location algorithm developed in 
Sect. 2.6 offers a new contribution to the research field and 
is able to produce plausible pith locations that accounts 
for irregular growth ring widths and spacings exhibited in 
wood species such as radiata pine.

We have also demonstrated that the resulting virtual 
representation is suitable for numerical simulations, in our 
case moisture ingress. This mesh can be extended to model 
other physical effects such as stress and strain dynam-
ics, and fungal/rot intrusion. Our results also compare 
well to the flow patterns observed in work by Burridge 
et al. (2021), where the denser, latewood regions saturate 
quickly which is then followed by the earlywood sections. 
Moreover, flow in the longitudinal direction is significantly 
faster than the radial and transverse directions which is 
expected (Perré and Turner 2001a). The example simula-
tion further illustrates the capability of virtual represen-
tation for capturing complex moisture flow patterns that 
would otherwise be impossible to capture in a homogenous 
modelling framework.

5  Conclusion

This work presents a comprehensive procedure for generating 
detailed virtual representations of engineered wood product 
samples. The method utilizes techniques from image analy-
sis and spectral segmentation to generate a two-dimensional 
unstructured triangular mesh where the elements are aligned 
along the growth rings. The pith is then located using an 
interactive constrained least-squares algorithm which has 
performed consistently to similar methods in the literature. 
Each element can be assigned a density based on its rela-
tive position inside a growth ring using a five-point logistic 
function fitted from data obtained from three anatomical 
images. This density variation enables the determination 
of the initial moisture content field within each component 
of the EWP sample. Three-dimensional meshes are gener-
ated by extruding the two-dimensional triangular meshes 

https://github.com/psgrant/TimberMeshGen
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into triangular prismatic meshes, along with the density and 
moisture information. Lastly, the EWP sample can be recon-
structed by combining the meshes of multiple individual tim-
ber components. An example simulation was also provided 
to demonstrate the capability of the virtual representation 
which exhibited similar flow patterns to those observed in the 
literature. The main findings of this study were:

• Standard image analysis techniques can be used to gener-
ate an image mask highlighting the latewood sections of 
the growth rings.

• The pith can be well estimated using an iterative con-
strained least-squares algorithm that fits circles for each 
growth ring.

• Five-point logistic functions fitted against data obtained 
from an anatomical images can be used to compute the 
density across the growth rings.

• The macroscopic features of each wood component can 
be used to generate a three-dimensional mesh, which can 
then be combined to form the virtual representation of 
the entire EWP sample.

• This virtual representation can be used for simulating 
moisture migration within the EWP sample and captures 
the impact of the heterogeneous nature of each compo-
nent on the overall moisture profile.

The method developed in this study has shown great promise 
in generating a computational mesh that accurately repre-
sents the sharp variation in density across the growth rings 
of EWP samples constructed from radiata pine. The use 
of image analysis techniques and spectral segmentation is 
a low-cost approach, making it an attractive alternative to 
other more expensive and time consuming methods such as 
X-Ray CT scanning. However, due to the restriction to opti-
cal light images of the end grain pattern we have assumed 
there to be no longitudinal variation in each of the clear 
wood samples. This assumption is justified by the small 
sample sizes used in this study so the effect of longitudinal 
variation is minimal. The virtual representation serves as a 
foundational platform for future research, allowing for the 
accurate simulation of heat and mass transfer within these 
EWP samples. Additionally, by coupling the heat and mass 
transfer model with stress and strain analysis, it has the 
potential to unveil the effects of swelling on the structural 
properties of the EWP samples, providing valuable knowl-
edge for practical applications.
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