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Abstract

The growth of omic data presents evolving challenges in data manipulation, analysis,

and integration. Addressing these challenges, Bioconductor
1
provides an extensive

community-driven biological data analysis platform. Meanwhile, tidy R

programming
2

offers a revolutionary standard for data organisation and

manipulation. Here, we present the tidyomics software ecosystem, bridging

Bioconductor to the tidy R paradigm. This ecosystem aims to streamline omic

analysis, ease learning, and encourage cross-disciplinary collaborations. We

demonstrate the effectiveness of tidyomics by analysing 7.5 million peripheral blood

mononuclear cells from the Human Cell Atlas
3
, spanning six data frameworks and

ten analysis tools.

Main

High-throughput technologies for genomics, epigenomics, transcriptomics, spatial

analysis, and multi-omics have revolutionised biomedical research, presenting

opportunities and challenges for data manipulation, exploration, analysis,

integration, and interpretation
4
. To address these challenges, the scientific

community has developed object-oriented frameworks for data organisation and

specialised operations.

In response to the complexity of the software landscape, the Bioconductor Project
1

has emerged as a premier R software repository and platform for omic data analysis.

Bioconductor provides international standardisation and interoperability for data

processing workflows and statistical analysis. With extensive annotation resources

and standardised data formats that link metadata, Bioconductor promotes

reproducibility and community-driven open-source development.
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Recently, the tidy R paradigm and the tidyverse software ecosystem
2
have

transformed R-based data science by prioritising intuitive data representation and

manipulation over complex data structures and syntax. This paradigm uses tables to

represent data, with variables as columns and observations as rows. It simplifies data

manipulation with operations connected in pipelines that use standardised and

natural language vocabulary. The components of the tidyverse rank as the most

frequently downloaded R packages
5
and are widely taught in Data Science and

Bioinformatics programs worldwide
6
.

Bioconductor has remained largely independent of the tidyverse ecosystem. Creating

a bridge between these two ecosystems by providing a tidy interface to standard data

formats
7–9

and analysis
9
would enable researchers to shift their focus from technical

challenges to biological questions. Also, leveraging a standard in data science

education would lower the barrier to entry for analysing diverse omic data.

Here, we present tidyomics, an interoperable software ecosystem that bridges

Bioconductor and other omic analysis frameworks (e.g. Seurat
8
) with the tidyverse.

This ecosystem is installable with a single homonymous meta-package, available in

Bioconductor. tidyomics includes three new packages: tidySummarizedExperiment,

tidySingleCellExperiment, and tidySpatialExperiment, and five publicly available R

packages: plyranges
7
, nullranges

10
, tidyseurat

8
, tidybulk

9
, and tidytof

11
. Importantly,

while tidyomics represents omic data in a tidy format (Figure 1A), it leaves the

original data containers and methods unaltered, ensuring compatibility with existing

software, maintainability and long-term Bioconductor support.

Within Bioconductor, GenomicRanges
12
organises genomic features as ranges (e.g.

genes, exons, SNPs, CpGs) in rows, linked with variables (e.g. range width) as

columns (like the BED
13
format). plyranges

7
extends dplyr verbs to GenomicRanges

objects, facilitating ranges integration, overlap analysis, summarisation, and

visualisation. plyranges interacts with nullranges for matching
14
or bootstrapping

10

ranges to perform overlap enrichment analyses.
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Figure 1: Overview of the tidyomics ecosystem. A: Diagrams of data interfaces show consistent

data representation for the diverse data containers. The hexagonal icons represent the compatible R

packages for each data container. B: The landscape of rich data objects in R/Bioconductor, with

tidyomics verbs as paths connecting these objects. The data containers are represented by rounded

rectangles and functions that connect them as white boxes. SPE = SpatialExperiment, SCE =

SingleCellExperiment, SE = SummarizedExperiment. C: Contrast between the simplicity of the tidy

syntax/grammar and the complex outcome and input data containers (left). Example workflows

include data, biological analysis, data/results manipulation and summarisation, diverse data

structures, visualisation and resulting plots (right). The pink areas include the infrastructure that

4
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shares grammar across omics. D: Engagement within the tidyomics community is multifaceted,

centring around a suite of R packages tailored for streamlined data analysis. This ecosystem is

enhanced by comprehensive documentation, including usage guidelines and development tutorials.

The community thrives on interactive learning, offering workshops created and led by its members.

Collaboration, project development and guidelines are centralised in our tidyomics GitHub

organisation. GitHub and Bioconductor are the primary discussion forums. Additionally,

Bioconductor is a prominent repository for software packages, reinforcing the community's

connection to broader bioinformatics networks such as Bioconductor, tidyverse, and Seurat.

In Bioconductor, SummarizedExperiment and SingleCellExperiment
15

organise

transcriptional abundance as a feature/gene-by-sample matrix linked with metadata.

tidyomics generalises the concept of the variable by providing a tabular interface

with observations (e.g. gene/sample pair) as rows and variables (e.g. abundance,

metadata) as columns. This approach enables complex filtering, summarisation,

analysis, and visualisation using the tidyverse. tidybulk
9
offers a tidy and modular

analysis pipeline for bulk and pseudobulk data.

Bioconductor's flowCore
16

package organises data from mass, flow and

sequence-based cytometry in a cell-by-feature matrix and facilitates data

manipulation. tidytof
11

interfaces flowCore with the tidyverse,

tidySingleCellExperiment, and tidySummarizedExperiment.

Bioconductor's SpatialExperiment
17

organises data from cell/pixel-based

technologies
18
, such as 10X Genomics Xenium, CosMX, Mibi, and MERSCOPE.

tidySpatialExperiment offers a tidy interface for data with spatial coordinates and

provides specialised operations such as gating based on geometric and hand-drawn

shapes.

tidyomics is a unified and interoperable software ecosystem for omic technologies

that covers several omic analysis frameworks. Through conversion and join

operations, a network of functionalities connects all data containers (Figure 1B).

This harmonised approach facilitates seamless container switching, decreasing the

dependence on a specific framework created by domain-specific syntax and

effectively increasing the umbrella of used tools (Figure 1C).
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Figure 2: Performance of the tidyomics ecosystem. A: tidyomics powers large-scale

cross-framework analyses. We compared peripheral blood mononuclear cells between sexes at the

pseudobulk level. The logos represent data and analysis frameworks. The connecting lines represent

pipelines, coloured by the object type. Parallel lines represent parallel workflows. B: Pseudosample

UMAP, coloured by cell type. C: Rank of cell types from the most to the least changed across sexes,

coloured as per the B panel. D: Significant gene overlap across the top nine cell types for sex effect or

its interaction with age. E: Overlap of sex-related genes in CD4 naive cells with GWAS SNPs for

6
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multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus. F: Fraction of sex-related

genes significant as a main effect or interaction with age. The box plot centre line represents the

median value, and the lower and upper hinges represent the first and third quartiles. The lower

whisker extends from the lower hinge to 1.5 times the interquartile range or the lowest value. The

upper whisker extends from the upper hinge to 1.5 times the inter-quartile range or the highest value.

G: Comparison of code readability between standard and tidyverse programming. Two tasks

showcased are visualising a histogram of genomic distances (left) and calculating a multi-gene

signature from single-cell data (right). H: The benchmark of variables, lines of code, and time

efficiency of our ecosystem compared to standard (non-tidy) coding. The operations include common

manipulations and analysis for each package (Methods).

To demonstrate tidyomics’ utility and scalability, we tested sex transcriptomic

differences of the peripheral immune system across 7.5 million blood cells. Our

ecosystem seamlessly bridged six data and analysis frameworks (Figure 2A),

showcasing the benefit of consistently using tidy R grammar instead of mixing the

syntaxes of base R, DuckDB, Seurat, SingleCell- and SummarizedExperiment,

DGEList and GenomicRanges. After preprocessing, we tested 15,494 pseudobulk

samples across 26 immune cell types (Figure 2B) with a multilevel differential

expression model. We identified T CD4 naive cells, T effectors, and B memory cells as

the most changing between sexes (Figure 2C). Most sex-related transcriptional

changes (excluding sex chromosomes) were cell-type specific rather than shared

(FDR < 0.05) (Figure 2D). We tested the proximity of genes with a significant effect

for sex or its interaction with age in CD4 naive cells to GWAS SNPs for three

immune-cell-related and sex-biased diseases: multiple sclerosis, rheumatoid

arthritis, and systemic lupus erythematosus (Figure 2E). We found nine genes

overlapping or near SNPs associated with these diseases (IL2RA, CD40, and KCP

associated with two or more). A large proportion of sex-related genes, 41%, define

divergent immune-ageing trajectories (Figure 2F).

This analysis shows that tidyomics allows code repurposing across diverse data

sources. For example, complex manipulation and visualisation of genome and

transcriptome data can be performed using modular, consistent grammar assembled

into a compact and legible pipeline (Figure 2G). Legibility and coding simplicity are

promoted by fewer intermediate variables and lines of code compared with standard

counterparts while incurring no major execution-time overhead (Figure 2H). Tidy

R favours functional programming (e.g., vectorisation rather than for-loops), which

helps avoid bugs caused by variable updating, especially in interactive programming.
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The Bioconductor coding standards and contribution guidelines adopted by our

dedicated developer community set a solid ground for the long-term maintainability

of the ecosystem (Figure 1D). This ecosystem will grow, including R packages with

compatible goals and standards from Bioconductor and CRAN. While tidyomics is

currently focused on simplification and harmonisation, novel analysis and

manipulation tools are among its goals.

The tidyverse and Bioconductor ecosystems are transforming R-based data science

and biological data analysis. tidyomics bridges the gap between these ecosystems,

enabling analysts to leverage the power of tidy data principles in omic analyses. This

integration fosters cross-disciplinary collaborations, reduces barriers to entry for

new users, and enhances code readability, reproducibility, and transparency. The

tidy standard applied to biological software creates an extensible development

ecosystem where independent researchers can interface new software. Ultimately,

the tidyomics ecosystem, consisting of new and publicly available R packages, has

the potential to significantly accelerate scientific discovery.
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Methods

tidySummarizedExperiment

tidySummarizedExperiment introduces an innovative and versatile approach for

representing and managing bulk data, offering an alternative to and complementing

the conventional methodologies commonly employed in SummarizedExperiment.

This novel approach incorporates adaptors tailored to widespread data manipulation
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and visualisation packages, including dplyr, tidyr, ggplot, and plotly. Crucially, the

core structure of the SummarizedExperiment object remains unaltered, ensuring

seamless compatibility with existing analytical workflows.

Data is represented as a long table, wherein observations are defined by the

abundance of a feature/sample pair, while variables encompass feature and

sample-related metadata. The fundamental columns comprising this representation

consist of the feature and sample columns. Importantly, when any of these essential

columns are absent from the output of a given operation (e.g., select) or when a

summarised version of these columns is generated, an independent table is returned.

This supplementary table adheres to the structure of the SummarizedExperiment

tidy representation, facilitating separate analysis or visualisation as needed.

Furthermore, when the returned subset of observations does not represent a valid

SummarizedExperiment (e.g. it does not correspond to a rectangular slice of the

feature/sample matrix), a tibble is returned for independent analyses.

With the tidySummarizedExperiment approach, newly created or joined columns,

such as those obtained from a metadata table, are automatically incorporated into

the colData, rowData, or assays based on their alignment with feature or sample

identifiers. This versatile mechanism extends the "variable" concept, enabling a

manipulation, displaying, or visualisation of sample, feature, and abundance

information with consistent grammar. Notably, the columns for the sample and

feature identifiers and genomic ranges are designated as read-only to preserve data

integrity.

tidySingleCellExperiment

tidySingleCellExperiment presents a novel approach for representing and

manipulating single-cell data, providing an alternative to and complementing the

conventional methods commonly used in SingleCellExperiment. The main goal and

property of the API are consistent with tidySummarizedExperiment.

However, as the central analysis unit of single-cell data is cells, rather than genes for

bulk data, tidySingleCellExperiment favours the cell-wise (metadata and reduced

dimensions, e.g., principal components and UMAP dimensions) and sample-wise

information rather than gene-wise and sample-wise information for

tidySummarizedExperiment. This design choice keeps the single-cell data
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representation highly interpretable and practically useful at the cost of a partial lack

of consistency to the bulk data. The emphasis on cell-wise information over

transcript-wise information is driven by the priority to facilitate ease of use, data

summarisation, information integration, and data visualisation in the context of cell

analysis and by explicit feature-wise operation not being as common as cell-wise

operation. By focusing on cell-wise information, the abstraction avoids unnecessary

complexity from including feature-level information (e.g., genes, proteins, genomic

regions) by default, especially when performing cell-wise information subsetting.

To access transcript-level information, users can utilise the `join_features` function.

This function enriches the metadata by incorporating transcript identifiers,

transcript abundance, and transcript-wise annotations, including gene length,

genomic coordinates, and functional annotations, as additional columns of the cell

metadata.

The tibble abstraction employed in tidySingleCellExperiment consists of two column

types: editable columns, which allow user interaction and modification, and

view-only columns, which encompass data-derived variables, such as reduced

dimensions. Integrating all cell-wise information, including reduced dimensions,

within a single tibble representation enables seamless data visualisation, filtering,

and manipulation. Importantly, this design ensures compatibility with the tidyverse

ecosystem, enabling data manipulation and plotting using routines from dplyr, tidyr,

ggplot2, and plotly. Furthermore, adopting this abstraction allows users to operate

on the data as if it were a standard tibble while preserving compatibility with any

other algorithms or tools that utilise the SingleCellExperiment framework. This

approach ensures full backward compatibility and facilitates seamless integration

into existing workflows.

tidySingleCellExperiment shares the same grammar and data representation as

tidyseurat, allowing users to use tidy code with SingleCellExperiment and Seurat

data containers.

tidySpatialExperiment

tidySpatialExperiment provides a tidy R abstraction (tibble) of SpatialExperiment

objects. Similarly to tidySingleCellExperiment, it provides cell-wise information,

including cell metadata, spatial coordinates and metadata, and reduced dimensions.
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All information can be processed with tools provided by dplyr, tidyr, ggplot2 and

plotly. tidySpatialExperiment provides the `join_features` function to append the

specified features to the cell-wise information and, consequently, the tibble

abstraction. The `aggregate_cells` function is provided to combine cells by shared

variables and aggregate feature counts.

Benchmarking

We benchmarked standard and tidyomics workflows for common data analysis tasks.

Briefly, the aggregate-cells-by-sample operation aggregates the feature counts of cells

within each sample. The plot features per cell operation plots the distribution of

summed feature counts for each cell within each sample. The subset cells by feature

operation subsets cells by feature signature threshold. The

subset-features-by-mean-count operation subsets features by mean count threshold.

The plot-features-per-sample operation plots the distribution of feature counts for

each sample. The normalise-features operation normalises feature counts across

samples. The plot-normalised-feature-density operation plots the density of

normalised features for each sample. The identify-variable-features operation

identifies the most variable features for each cell type. The aggregate-overlaps

operation identifies and aggregates overlapping regions. The

plot-feature-set-distances operation calculates and plots the distance between

feature sets. The group-disjoin-ranges operation finds disjoint regions within groups

of features and subsets overlaps. The downsample-cells operation randomly subsets

cells from each sample. The plot-PCA operation calculates and plots principal

components. The benchmarking operations were run using R v4.3.1, plyranges

v1.22.0, tidySingleCellExperiment v1.13.3, tidySpatialExperiment v0.99.13,

tidySummarizedExperiment v1.12.0, tidybulk v1.15.4, tidytof v0.0.0, and tidyseurat

v0.8.0. Each benchmarking operation was executed 50 times using the

microbenchmark package, and the mean time elapsed was recorded. The variable

count was calculated as the number of times a new variable was created to store data.

The line count was calculated as the number of lines required for each operation

while following indentation best practice.
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Transcriptional analyses

We collected all human peripheral blood mononuclear cells from the Human Cell

Atlas
1
initiative using the CELLxGENE database. We downloaded the metadata and

gene-transcript abundance through the R package CuratedAtlasQuery

(10.18129/B9.bioc.CuratedAtlasQueryR). We consistently represented age as days

(named `age_days` in our database). Where a categorical value was provided, we

converted it into equivalent days using publicly available references. For example,

the “adolescent stage” was converted to 15 years old (= 5475 days).

Immune cells were labelled using Seurat Azimuth mapping to the PBMC reference
2

(using tidyseurat
3
) and SingleR

4
with the Blueprint

5
and Monaco

6
references

4
. To

identify a consensus, we compared and contrasted the high-resolution labels

`predicted.celltype.l2` for Seurat Azimuth and `label.fine` Blueprint and Monaco

references. When possible, the reference-specific cell-type labels were standardised

under a common ontology (Table SX). Where the resolution of transcriptionally

similar cell types was uncertain with the given tools, cell types were labelled with a

coarser resolution. For example, innate lymphoid and natural killer cells were

grouped under “innate lymphoid”. The cell type curation was performed to obtain a

high confidence, meaningful representation of the immune system’s heterogeneity,

allowing data-rich cell types whose tissue composition can be modelled

probabilistically rather than aiming for the finest resolution possible. The original

annotation provided by the studies was integrated with the three new annotation

sources to identify a total or partial consensus. Cell types without complete or partial

consensus were filtered out.

We selected primary (no re-analysed data or collections) physiological samples (i.e.

no disease). We also excluded samples with less than 30 cells. We excluded

erythrocytes and platelets from the analyses as they were not of interest. To increase

the sample size per demographic group, we merged Asian descendants (labelled in

CELLxGENE as Asian and Chinese). We excluded samples whose ages were

unknown.

tidySingleCellExperiment aggregated cells across samples and cell types in

pseudobulk transcript counts. Pseudobulk samples with less than 5000 genes or 10

cells were filtered out using tidySummarizedExperiment. Quantile normalisation in

15

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2024. ; https://doi.org/10.1101/2023.09.10.557072doi: bioRxiv preprint 

https://paperpile.com/c/ceE3hZ/3vQV
https://paperpile.com/c/ceE3hZ/TaRcY
https://paperpile.com/c/ceE3hZ/d5lE
https://paperpile.com/c/ceE3hZ/GII7b
https://paperpile.com/c/ceE3hZ/gbMvC
https://paperpile.com/c/ceE3hZ/lvCHv
https://paperpile.com/c/ceE3hZ/GII7b
https://doi.org/10.1101/2023.09.10.557072
http://creativecommons.org/licenses/by-nc/4.0/


Limma
7
was used through tidybulk

8
, as across the 28,241 pseudo samples, the data

distribution was heterogeneous and non-controllable. Lowly abundant gene

transcripts were filtered out using edgeR
9
through tidybulk, using sex and ethnicity

as factors of interest, minimum counts of 500, and minimum proportion of 0.9.

Gene-transcript abundance for each cell type was modelled using the following

formulation, with age as a centred and scaled continuous variable (mean age of ~47

years).

counts ~ age*sex + ethnicity + technology + cell_count + ( 1 + age*sex + ethnicity | study )

Given the complexity of the model, tidybulk was also used to identify data subsets

that included complete covariate confounders. Tidybulk was used to fit the multilevel

model through glmmSeq
10

and test hypotheses (FDR < 0.05). Sex-related

transcriptional changes (Figure 2C-F) were defined as genes significant for the main

effect of sex or its interaction with age, excluding genes on sex chromosomes.

Seurat
11
and tidyseurat

3
were used to remove the study effect across cell types from

the pseudobulk data and calculate the UMAP dimensions. Ggplot2 was used for

visualisation
12
.

To overlap genes with significant effect for sex or its interaction with age in CD4

naive cells with GWAS lead SNPs, we used the tidySummarizedExperiment and

plyranges packages to harmonise summary statistics from pseudobulk DE analysis

and three GWAS for multiple sclerosis
13
, rheumatoid arthritis, and systemic lupus

erythematosus
14
. As the GWAS data was provided in all cases for the hg19 genome

build, the gene locations were loaded from the Bioconductor package

TxDb.Hsapiens.UCSC.hg19.knownGene. The overlap analysis used genes with either

significant main effect for sex or sex * age, as estimated from the pseudobulk

multilevel model, with FDR < 0.05. Overlap was calculated as GWAS SNPs within 50

kb from the gene body, and distance was calculated from the GWAS lead SNP to the

gene's TSS.
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Data availability

Human Cell Atlas peripheral blood mononuclear single-cell data was downloaded

from the CELLxGENE database (https://cellxgene.cziscience.com/). Metadata and

gene-transcript abundance for these datasets were downloaded via the

CuratedAtlasQuery R package (available in Bioconductor). CELLxGENE sample

accession codes are available in the supplementary material. Source data for Figure

2H is available in the supplementary material.

Code availability

The tidyomics homepage is https://github.com/tidyomics, which provides links to

the constituent packages. The tidyomicsmeta-package is available at Bioconductor

bioconductor.org/packages/tidyomics/. The tidySummarizedExperiment package is

available at Bioconductor bioconductor.org/packages/tidySummarizedExperiment.

The tidySingleCellExperiment package is available at Bioconductor

bioconductor.org/packages/tidySingleCellExperiment. The tidySpatialExperiment

package is available at Bioconductor

bioconductor.org/packages/tidySpatialExperiment/. The code used to benchmark

workflow efficiency and analyse peripheral blood mononuclear cells from the Human

Cell Atlas is available at github.com/tidyomics/tidyomics_paper.
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