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data and can identify shifts in fishing behaviour, e.g., 
changes in target species. Finally, we review key 
assumptions and limitations of this approach that 
may arise when applied across a broad geographic 
or taxonomic scope. Our aim is to provide a template 
to assist researchers and managers seeking to assess 
stocks of individual species using aggregated multi-
species data.

Keywords Boosted regression trees · Catch 
allocation models · Moreton Bay Bugs · Random 
forests · Scyllaridae

Introduction

Fisheries logbook data inform assessments of fish-
ing effects on wild populations yet are frequently 
imperfect for a variety of reasons. A range of 
approaches have been developed to overcome such 
shortcomings by building on available data to gap-
fill incomplete records. For example, where catch 
and effort data are lacking from some locations due 
to spatio-temporal changes in fisheries (e.g., expan-
sion into new areas), missing values can be imputed 
(Walters 2003; Carruthers et al. 2011). Where fish-
ing location is not documented, records can be 
associated with target species’ habitats based on 
catch composition (Stephens and MacCall 2004). 
Changes in fishing power and gear between early 
and late time series records can also be accounted 
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for using well established standardisation models 
(Campbell 2004; Maunder and Punt 2004; Bishop 
et al. 2008). A less well addressed and increasingly 
problematic shortcoming in fisheries logbook data 
is the aggregation of catch data for multiple spe-
cies into single groups comprising taxonomically 
similar species. Such aggregated catch data compli-
cate efforts to assess and manage effects of fishing 
on individual species with different biological and 
ecological traits (Nakano and Clarke 2006; Saldaña-
Ruiz et al. 2017).

Multi-species catch data are often encountered 
where related or similar species are caught inciden-
tally until shifts in fishing behaviour or conservation 
status demand closer attention at the species level. 
Shifts in fisheries target species can occur in response 
to depletion of previous target stocks or changes in 
market demand and often prioritise species that can 
be targeted with existing gear or fishing knowledge 
to minimise transition costs (Sala et al. 2004; Fulton 
et al. 2014). Climate change also increasingly drives 
changes in target species by way of fishery adaptation 
to species range shifts or changes in species abun-
dance (Pinsky and Fogarty 2012; Rogers et al. 2019; 
Gillanders et  al. 2022). Where species require indi-
vidual assessments, but logbook data were previously 
aggregated in multi-species complexes, spatio-tempo-
ral differences in species distributions can provide a 
useful means to allocate aggregated catch data among 
species.

Species distribution models (SDMs) are a power-
ful tool for resource and conservation management 
at regional scales on land (Ferrier et al. 2002; Guisan 
and Thuiller 2005) and in aquatic systems (Pittman 
et  al. 2007; Moore et  al. 2010). Originally, SDMs 
used relationships between species distributions and 
abiotic factors like climate, elevation (depth in the 
marine realm), or habitat structure to predict distribu-
tions of taxa in data poor regions (Elith and Leath-
wick 2009). Advances in SDMs have been closely 
linked to advances in statistical methods, remote 
sensing, and computational power, leading to a wide 
range of SDM applications. Common SDM applica-
tions include mapping likely distributions (or poten-
tial future distributions) of species of commercial or 
conservation interest (Ferrier et  al. 2002; Maxwell 
et al. 2009; Pitcher et al. 2012), predicting the spread 
of invasive species (Peterson 2003; Robertson et  al. 
2004), and predicting effects of habitat loss or climate 

change on species distributions (Thomas et al. 2004; 
Lenoir et al. 2011).

In the fisheries context, the most common applica-
tion of SDMs involves predicting the distribution of 
fished species under current or projected climate con-
ditions (Cheung et al. 2009; Brodie et al. 2015; Karp 
et  al. 2023). Studies using SDMs to predict interac-
tions between fishing operations and bycatch or 
Threatened, Endangered or Protected species (Breen 
et  al. 2016; Catry et  al. 2013; Stock et  al. 2020) or 
to model catch per unit effort to develop indices of 
abundance (Thorson et  al. 2020; Hoyle et  al. 2024) 
are also well represented. Other applications of SDMs 
in fisheries research include investigations of preda-
tion on target species (Kempf et al. 2013), prediction 
of spawning habitats (González-Irusta and Wright 
2016), and identification of essential fish habitat for 
ecosystem-based management (Moore et al. 2016).

A useful but under-utilised application of SDMs 
in fisheries management is to allocate multi-species 
catch data to species level. Venables and Dichmont 
(2004) advocated use of generalised models (GLM, 
GAM, or GLMM) to allocate aggregated catch 
records among species based on species distribu-
tions. In this way, historical multi-species catch data 
were allocated to species level for two species of 
Tiger Prawns: Penaeus semisulcatus (Penaeidae) and 
P. esculentus (Venables and Dichmont 2004). The 
need for species-specific assessments has grown due 
to increased conservation and management focus on 
individual species since the work of Venables and 
Dichmont (2004) and is likely to grow further with 
climate change and growing demand for fisheries 
resources. Yet despite advances in statistical meth-
ods and computing power, use of SDMs to allocate 
aggregated catch data to species level remains under-
utilised in practice.

Here, we present a case study demonstrating the 
design and decision-making considerations relating 
to catch allocation models. Catch data for two spe-
cies of shovel-nosed lobsters (Moreton Bay Bugs; 
Thenus spp., Scyllaridae) had been recorded together 
as a multi-species complex in logbooks on the east 
coast of Queensland, Australia between 1988 and 
2021. Moreton Bay Bugs comprise two species: Reef 
Bugs (Thenus australiensis) and Mud Bugs (T. parin-
dicus), which are distributed around the northern 
sub-tropical and tropical coast of Australia. Around 
80% of landings occur in the Queensland East Coast 
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Otter Trawl Fishery, amounting to ~ 500–700 tonnes 
per year, with the remainder landed in trawl fisheries 
operating in other jurisdictions in northern Australia. 
Aside from the adoption of Turtle Excluder Devices 
and Bycatch Reduction Devices since the early 
2000s, gear used in the fishery has remained broadly 
similar over the period considered here (1988–2021), 
with vessels typically deploying two to four demer-
sal trawl nets spread by otter boards and separated 
by outriggers. Both species were previously caught 
incidentally but shifts in market demand and fishing 
effort toward targeted fishing drove a need to assess 
stocks of both species separately. Aggregated logbook 
catch data therefore needed to be allocated between 
species to derive long-term catch rate trends for use 
as species-specific indices of abundance.

Methods

Model spatial domain and training data

As a starting point, the spatial extent of all available 
logbook records of Moreton Bay Bug catch was used 
to inform our model’s spatial domain (Fig. 1A). All 
available species composition data were then com-
piled within the model spatial domain to train the 
model to predict catch composition in data poor areas. 
Training data were available from: (1) a long-term 
fishery monitoring survey (n = 1217 sites: O’Neill 
et  al. 2020), (2) a survey of Thenus spp. abundance 
(n = 103 sites: Louw et al. 2024), (3) a study on biol-
ogy and behaviour (n = 1 site: Jones 1988), and 4) a 
study on fishing mortality (n = 147 sites: Courtney 

Fig. 1  A The spatial footprint of all Moreton Bay Bug land-
ings from 1988 to 2021 in the Queensland East Coast Otter 
Trawl Fishery, used to inform our model domain; and B avail-
ability of species composition data for Moreton Bay Bugs from 
all available sources. Sources included two previous stud-

ies (Courtney 1997; Jones 1988), a long-term fishery moni-
toring survey (O’Neill et  al. 2020), a survey of Thenus spp. 
abundance (Louw et  al. 2024), and a fishery-dependent crew 
observer program (McMillan et al. 2023)
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1997) (Fig.  1B). To fill gaps in the training data, a 
fishery-dependent crew observer program was con-
ducted where fishers photographed their catch to 
identify species compositions and recorded location 
and time of data collection (n = 856 sites: McMillan 
et al. 2023) (Fig. 1B). All surveys used similar otter 
trawl gear with net mesh sizes from 2″ to 2½” (51–64 
mm), i.e., smaller than the minimum legal size of 
both Thenus species (75 mm carapace width), ensur-
ing catchability was similar among surveys. All sur-
veys were also conducted at similar depths (10–80 m) 
and at night (6 pm to 6 am). Training data (N = 2324 
sites from all sources combined) were intended to 
inform our response variable, i.e., proportion of Reef 
Bugs in the catch at each location (with the remainder 
comprising Mud Bugs).

Variable selection and habitat data

Both Thenus species prefer similar temperature 
ranges (Mikami and Greenwood 1997), so a focus on 
explanatory variables based on habitat preferences 
was used to model species distributions. Explanatory 
variables considered potentially useful were sourced 
from open-source bathymetric and hydrological mod-
els (Beaman 2010; Steven et  al. 2019), a common 
approach in marine SDM studies. Species’ habitat 
preferences can often be leveraged to improve perfor-
mance of SDMs, but the spatial resolution or cover-
age of habitat data required by researchers is often 
unavailable. Increasing access to open-source data 
repositories and efficient machine learning applica-
tions can assist researchers to generate project-spe-
cific habitat data to address these issues, something 
rarely evident in marine SDM studies (Melo-Merino 
et al. 2020).

Due to known habitat preferences of our candidate 
species (Mud Bugs prefer finer sediments than Reef 
Bugs: Jones 1988; Louw et  al. 2024), we modelled 
sediment distributions throughout the study area for 
use as a habitat variable potentially more informative 
than depth and hydrology. Sediment modelling was 
performed along the Queensland east coast from the 
Torres Strait (10° S) to northern New South Wales 
(29° S) (Fig. 2A). A spatial domain of 0–200 m was 
modelled so that habitat layers exceeded the domain 
modelled for species distributions (5–80 m depth, i.e., 
the depth range of reported Thenus landings) to avoid 
edge effects in the SDM. To reduce computational 

load, the study area was split into four smaller sub-
domains of similar size (Fig.  2A). Data from these 
sub-domains were then mosaicked into a suite of sed-
iment raster layers for the entire model domain.

Extensive sediment point data were sourced from 
Geoscience Australia’s open-source MARine Sedi-
ments (MARS) database (Mathews 2007) and addi-
tional sediment data were derived from a range of 
publicly available studies (Table  S1). This resulted 
in a total of 6761 sites sampled for sediment grain 
size composition and 5851 sites with calcium car-
bonate data (Table S1, Fig. 2B). The additional sedi-
ment data collated during this project have since been 
uploaded to the MARS database. A suite of bathy-
metric (e.g., depth, aspect, slope), hydrologic (e.g., 
wave and current properties), and reefal explanatory 
variables (e.g., distance from reef) with potential to 
influence sediment transport and deposition processes 
were used to model sediment distributions (Table S2).

Machine learning methods generally outperform 
other spatial interpolation techniques for the predic-
tion of sediment distribution (Li et al. 2011). There-
fore, Random Forest (RF) models were used to 
produce spatial predictions of sediment habitat prop-
erties using the package ‘SPM’ (Spatial Predictive 
Modelling: Li 2018) in R (v 4.0.5). Random Forest 
is a machine learning method based on an ensemble 
of decision trees (Breiman 2001; Kingsford and Salz-
berg 2008). Advantages of RF are enhanced classifi-
cation accuracy through the growth of multiple trees, 
reduced chance of model overfitting due to random 
subsampling of the dataset to build each tree, and 
insensitivity to outliers (Breiman 2001).

The cross-validation function in ‘SPM’ (RFCV) 
was used to determine optimal parameters for all RF 
models, including testing the maximum number of 
trees built (ntree, ranging from 500 to 5000 at incre-
ments of 500) and the number of variables tried at 
each node (mtry, ranging from 3 to 9 at increments 
of 1). Model performance was assessed through ten-
fold cross validation (Kohavi 1995). Based on previ-
ous studies, the ten-fold cross validation process was 
repeated for 100 iterations (Li 2013; Li et al. 2013). 
The error produced by these predictions identified the 
optimum model using the variance explained by cross 
validation (VEcv). After model validation, the best 
ranked model outputs of sediment parameters were 
used to produce rasters for use as predictor variables 
in species distribution models (Table S3, Fig. 3).
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Selecting an appropriate response variable

With a suite of potentially influential explanatory var-
iables to model species distributions now available, 
including habitat parameters, bathymetry, and hydrol-
ogy (Table S4), an appropriate response variable was 
developed. Although we are unable to empirically 
determine whether Mud Bugs and Reef Bugs have 
differing levels of catchability with commercial otter 
trawl gear (51–64 mm mesh), we minimised potential 
differences in catchability by retaining only legal-
size individuals (> 75  mm carapace width for both 
species) for analysis, as these are considered fully 
recruited to the fishery. This has the added benefit 
of eliminating any influence of younger life history 
classes on modelled distributions that may not be rel-
evant to the landed catch.

The intended response variable was the propor-
tion of each species in the legal-size catch at each 
sampling site. This proportional factor could sub-
sequently be applied to all historical logbook catch 
records to allocate the catch at each sampling site 
between species. Trawls resulting in catches of ≤ 1 
legal-sized bug were excluded from analyses because 
sites with single animals cause outlying species habi-
tat preferences when modelling species proportions. 
Investigation of species composition data both at 
the scale of individual sampling sites (Fig.  4A) and 
aggregated to the 0.1˚ logbook reporting grids used 
in the fishery (Fig. 4B), revealed strong species par-
titioning, with 89% of sampling sites and 66% of 
0.1° logbook reporting grids containing exclusively 
one species or the other. This type of response vari-
able can be modelled as “proportion of each species” 

Fig. 2  A Model spatial domain (purple) and regional sub-
domains used for habitat modelling (coloured boxes); B avail-
ability of sediment point data from the open-source MARS 

database (blue) and new data collated from various publicly 
available surveys (maroon; see Table S1)
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using a zero-and-one-inflated Beta distribution or 
simplified to “dominant species” (i.e. > 50% of one 
species or the other) using a binomial regression. We 
utilised the “dominant species” approach to reduce 
model complexity, with 0 indicating grids with > 50% 
catch of Mud Bugs, and 1 indicating grids with > 50% 
catch of Reef Bugs.

Model spatial resolution

Selection of an appropriate spatial resolution for 
modelling will depend on the ecology of candidate 
species and the spatial footprint of fishing techniques 
on which logbook data are based. Site-attached spe-
cies, or species caught using methods with a narrow 

spatial footprint, e.g., line fishing of reef species with 
patchy distributions, may require finer spatial resolu-
tion of the modelled response than widely dispersed 
species, or species caught using methods with large 
spatial footprints (e.g., trawl fishing). The fishery in 
our case study used 0.1˚ reporting grids to capture the 
relative spatial ambiguity of trawl catches (i.e., it is 
not known where exactly along a trawl the catch was 
distributed). Because of this and the relatively contig-
uous distribution of our candidate species over large 
areas, we selected these 0.1° reporting grids as the 
spatial resolution of our model. Catch composition 
training data at the scale of individual sampling loca-
tions were therefore aggregated at the 0.1° grid scale 
(Fig.  4C). Mean values for each explanatory vari-
able (habitat parameters, bathymetry, and hydrology) 
were also calculated at the scale of 0.1˚ grids using 
the Zonal Statistics tool in ESRI ArcGIS (v 10.8.1). 
Aggregation of training data at the scale of logbook 
reporting grids had the added benefits of mitigating 
spatial autocorrelation arising from uneven density of 
sampling locations (Fig. 1B) and making model out-
puts directly relevant to the fishery, such that records 
from each logbook reporting grid could be attributed 
to one species or the other.

Model design and application

Modelling of the binomial response “Mud Bug 
dominant grid” (0) or “Reef Bug dominant grid” (1) 
was performed using Bernoulli Boosted Regression 
Trees (BRT) in the ‘gbm’ package in R (Ridgeway 
2006), with supporting diagnostics implemented in 
the ‘dismo’ package (Hijmans et  al. 2017). Boosted 
Regression Trees have several benefits over paramet-
ric and semi-parametric models (e.g., GLM, GAM), 
including their ability to capture complex non-linear 
relationships, inherently detect and model interac-
tions, iteratively build regression trees from random 
subsets of the dataset to capture more variance with-
out overfitting, and rank predictor variables by their 
relative influence (Elith and Leathwick 2009). The 
number of boosting trees was optimised using the 
k-fold cross validation capabilities in the ‘dismo’ 
package (Hijmans et al. 2017).

Although BRTs can be robust to collinearity 
among predictor variables if the collinearity struc-
ture is similar between training and prediction data-
sets, we opted to conservatively use only sets of 

Fig. 3  Example of raster output of sediment properties (sedi-
ment mean grain size in this case) modelled throughout the 
study area for use as predictors of species distributions. Sedi-
ment properties were modelled from 0 to 200 m deep to avoid 
edge effects within the 5–80 m deep species distribution model 
domain (shown here). Wentworth classifications of sediment 
type (mud, sand, and gravel) are provided corresponding to 
mean grain size
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variables that were not collinear (r < 0.7: Dormann 
et al. 2007) in each model build. Seasonality param-
eters were not included due to the limited movement 
of Thenus species and the tendency of each species 
to remain in areas of preferred habitat (Jones 1988; 
McMillan et al. 2023), making it unlikely that species 
composition within 0.1˚ grids significantly changes 
within years. Models were parameterised as follows: 
learning rate (the contribution or weight of each tree 
towards the final model) of 0.001, tree complexity 
(maximum order interactions permitted) of 5, and bag 
fraction (random subset of the dataset used to build 
each tree) at the default value of 0.75.

Model outputs were used to assign logbook catch 
records from 1988 to 2021 to species level based 
on the predicted dominant species at the location of 
each catch. Nominal catch per unit effort (CPUE) 
was then calculated for each species by dividing the 
annual harvest of each species (in kg) by the annual 
effort (in hours) recorded in the fishery. Subse-
quently, a formal stock assessment was undertaken 
separate to this study, during which CPUE was 
comprehensively modelled as an index of abun-
dance for stock assessment (Wickens et  al. 2023). 
This process applied a standardisation approach to 
nominal CPUE that accounted for factors likely to 
affect catch rates, e.g., changes in fishing power and 
targeting behaviour (Wickens et al. 2023).

Fig. 4  Species dominance (i.e., proportion of the catch com-
prising Reef Bugs), A by sampling site, and B when sites were 
aggregated to 0.1° logbook reporting grids. Pink and blue indi-

cate Mud Bug or Reef Bug dominated locations respectively. 
A, B share a common x-axis. C Number of sampling sites 
informing each 0.1° grid comprising our training dataset
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Results

The top ranked model for predicting species distri-
butions included six explanatory variables (by order 
of relative influence): sediment mean grain size 
(41.6%), depth (21.8%), sediment medium sand con-
tent (21.5%), very fine sand content (6.2%), fine sand 
content (4.5%), and distance from the coast (4.4%) 
(Fig. 5A, Table 1). This model accounted for high lev-
els of variance in the dataset  (R2 = 0.93) and demon-
strated high accuracy at predicting both Mud Bug and 
Reef Bug species dominance in the training dataset 
(100% and 99.7% respectively), while also minimis-
ing the number of predictors used. Fitted functions 
for predictor variables indicated Reef Bug dominance 
in grids characterised by coarse mean grain sizes (low 
values of Phi), greater depth, distance from coast, and 
content of medium and fine sands, and lower content 
of very fine sand (Fig. 5A). Species dominance was 
also influenced by a significant interaction between 
mean grain size and depth, whereby Reef Bugs domi-
nated locations at greater depth and with coarse sedi-
ment (low Phi), whereas Mud Bugs dominated only 

locations that were both shallow and with fine sedi-
ment (Fig. 5B). Other high-performing models were 
ranked lower due to declines in variance explained 
 (R2), declines in species-specific classification accu-
racy, uneven species-specific classification accuracy, 
and larger numbers of predictors (Table 1).

Across the fishery (N = 1230 grids), most grids 
were predicted to be dominated by Reef Bugs (861 
grids), mirroring the observed dominance of Reef 
Bugs in the training dataset and field observations 
reported by fishers. Mud Bugs were predicted to be 
dominant in shallower inshore waters with fine sedi-
ments, particularly in Far North Queensland where 
these habitats are widely available (Fig. 6).

Using the outputs from our SDM, fisheries log-
book data were subsequently allocated to species 
level based on the dominant species in each logbook 
reporting grid where catches were reported. In cases 
where candidate species display less distinct parti-
tioning and a proportional response is used, model 
outputs would allocate a proportion of the total catch 
at each location to candidate species. In our case 
study, the allocation of logbook data to species level 

Fig. 5  A Fitted functions for SDM predictor variables. Mean 
grain size = Phi (1–5 φ = coarse sand to mud), Depth = m, sand 
fractions = % of total sediment profile, coast distance = degrees 
longitude. Fitted functions are centred by subtracting their 
mean. Higher fitted values indicate Reef Bug dominance. Rela-

tive influence of each predictor in the model is given in paren-
theses. All panels share common y-axes. B Interaction plot 
showing the influence of mean grain size and depth on species 
distributions. 0 = Mud Bug dominance, 1 = Reef Bug domi-
nance
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revealed important information about the composi-
tion of the fishery for the first time, indicating that the 
proportion of the total catch comprising Reef Bugs 
had increased from 67% at the beginning of logbook 
records in 1988 to 93% in 2021 (Fig. 7A). Compari-
son of nominal CPUE for each species revealed that 
CPUE of Reef Bugs increased markedly from the 
early 2000s (Fig. 7B).

Discussion

In this study, we have demonstrated the application 
of a machine learning SDM approach to allocate 
catch data to species level for assessments where 
species were previously aggregated in fisheries Ta
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dicted by the best Boosted Regression Tree model
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logbooks. This approach leverages habitat prefer-
ences of candidate species to determine likely spe-
cies compositions at harvest locations. Most input 
variables used to build SDMs for catch allocation 
are increasingly available and open access, provid-
ing researchers a wide range of opportunities to 
apply this approach across various systems. Addi-
tionally, we illustrated how more complex project-
specific habitat data can be generated by research-
ers using open access explanatory data and machine 
learning models. We demonstrated this combined 
approach by modelling sediment properties and 
the distribution of Moreton Bay Bug species over a 
large geographic range encompassing the east coast 
of Queensland, Australia. Due to the strong habitat 
partitioning observed between our candidate spe-
cies, we fitted a binomial response achieving almost 
100% accuracy in predicting species dominance at 
398 locations in the training dataset. By allocating 
aggregated catch data to species level, our model 
outputs revealed previously masked harvest trends 
in the fishery including a marked increase in the 
proportion of Reef Bugs comprising landings and 
allowed calculation of nominal CPUE time series 
for each species. The production of these nominal 
catch rates facilitated a formal stock assessment, 
conducted subsequently by Wickens et  al. (2023), 
during which a rigorous standardisation process 
produced reliable indices of abundance for each 
species and revealed a pronounced shift to target-
ing of the larger, more valuable Reef Bugs from the 
early 2000s. A discussion of key assumptions and 

limitations that should be considered when applying 
this approach follows.

Availability of species composition data

To train models for species allocation of aggregated 
catch data, sufficient information on species dis-
tributions is required. These data may be available 
in the form of survey data, often collected for other 
purposes, throughout at least part of the candidate 
species’ distributions. Training data should include 
information on count or weight of candidate species 
suitable to derive species’ relative proportions at each 
site, which can be used as the response variable. In 
this study, all training data were derived from surveys 
using similar otter trawl gear likely conferring similar 
catchability of each species; however, if training data 
are derived from a diverse range of sources where 
catchability may vary, survey type should be included 
as a model term to account for this variation (Nephin 
et al. 2023).

A cost-effective way of obtaining training data 
used in our study was a crew observer program, 
whereby fishers collected photographic information 
on species compositions at locations they fished. Suc-
cess of crew observer programs will benefit from data 
requests and materials being designed to be as effi-
cient and unintrusive as possible to promote uptake 
by fishers alongside their normal work. In-person vis-
its to distribute and retrieve data collection materials 
and discuss project aims also help build relationships 

Fig. 7  A Moreton Bay Bug logbook harvest records from 1988 to 2021 assigned between Reef Bugs (blue) and Mud Bugs (pink). 
B Nominal catch rates (catch per unit effort prior to standardisation) for Reef Bugs (blue) and Mud Bugs (pink) from 1988 to 2021
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with fishers and enhance fisher involvement, increas-
ing the available data pool.

Spatio-temporal differences in species distributions 
improve model performance

To successfully allocate aggregated catch data among 
species based on species distributions, it is criti-
cal that species distributions differ from each other 
in some aspect of space or time. Evidence of habi-
tat partitioning among species or limited spatial or 
temporal overlap in distributions will likely improve 
model performance. In our case study, the candidate 
species displayed strong preferences for different 
habitats (sediment grain size and depth) resulting in 
little spatial overlap. In species with spatial overlap, 
temporal model terms (e.g., month or season) may 
identify trends of seasonal abundance in candidate 
species, as was the case with Tiger Prawns assessed 
by Venables and Dichmont (2004), where one species 
was migratory and the other more resident, resulting 
in seasonal fluctuations in relative abundance.

Incorporating movement and behaviour into SDM 
design

Careful attention should be paid to aspects of the 
ecology and biology of candidate species to ensure 
these are appropriately captured by model design. 
Modelling distributions of highly mobile species may 
be complicated by dispersal (Robinson et  al. 2011; 
Saupe et  al. 2012; Fabri‐Ruiz et  al. 2019). Animal 
movements are often driven by predictable behav-
iours like reproductive cycles and/or environmental 
conditions. Therefore, trialling appropriate temporal 
model terms will likely be important when dealing 
with highly mobile and/or seasonally abundant spe-
cies (Mannocci et  al. 2017; Fernandez et  al. 2018). 
Ontogenetic habitat shifts should also be considered 
when designing SDMs (Robinson et al. 2011; Lloret-
Lloret et al. 2020). However, catch allocation SDMs 
can address this by only using species composition 
training data from mature animals exceeding the min-
imum legal size to avoid potentially erroneous habitat 
associations with immature animals whose distribu-
tion may not reflect the landed catch.

Aggregating behaviour can cause clustering that 
may result in spatial autocorrelation and model 

overfitting (Dormann et al. 2007). In our case study, 
dispersion indices and small-scale movements indi-
cated that aggregations associated with mating, 
spawning, or feeding events were unlikely (Jones 
1988). However, in species where aggregating 
events need to be accounted for, temporally compre-
hensive training data may capture such trends and 
appropriate temporal model terms should be trialled 
to account for these effects. If the focal fishery has 
temporal closures to avoid harvest of pre-spawning 
or spawning individuals, it may be unnecessary to 
account for aggregating events.

Feeding or competitive behaviours will often not 
affect catch allocation SDMs. Most fisheries spe-
cies are likely to prefer similar environmental con-
ditions to their prey given their ectothermic physi-
ological requirements. However, in species that can 
maintain body temperatures above the surrounding 
environment, e.g. tuna, prey distributions may influ-
ence their distributions and should be accounted 
for as model terms (Robinson et al. 2011). Because 
fisheries species are typically broadly distributed 
and  are unlikely to attain carrying capacity, where 
competitive exclusion is most likely to shape popu-
lation structuring, we consider competition unlikely 
to affect the composition of fisheries catches. A 
comprehensive SDM design with appropriate habi-
tat parameters may also adequately describe the 
distribution of co-distributed competitors, making 
inclusion of competitor distributions as model terms 
redundant.

Population status considerations

Processes of habitat selection can result in range 
expansions into secondary habitats as stocks grow, 
while declining stocks may contract into smaller 
core areas around primary preferred habitats (Mac-
Call 1990; Simpson and Walsh 2004; Morfin et al. 
2012). Range extensions and contractions may 
therefore need to be accounted for in cases where 
stock levels are known to have varied substantially 
throughout the time series of available records. 
Ensuring that the model spatial domain captures all 
areas where catch has been reported throughout the 
logbook time series should ameliorate any effects of 
habitat expansion or contraction due to changes in 
population size.
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Sources of explanatory data to model species 
distributions

A large range of spatio-temporal variables have 
been used to model marine species distributions, 
with the selection of appropriate explanatory vari-
ables depending on the physiological and ecologi-
cal requirements of candidate species. Abiotic driv-
ers of species distributions like depth, hydrology, 
or distance-based metrics are frequently employed. 
These data are widely available from open-source 
repositories. Habitat data are less frequently used 
and rarely generated by researchers themselves 
(Melo-Merino et al. 2020) but can be valuable pre-
dictors of species distributions. This is particularly 
true for species with strong habitat preferences as 
in our case study, where sediment characteristics 
were the most influential drivers of species distribu-
tions. Temperature should be used as a model term 
if candidate species display different temperature 
preferences.

Distributions of benthic and demersal species are 
often influenced by seafloor properties due to strong 
preferences for certain types of habitats (Gray 1974; 
Auster and Langton 1999; Kostylev et  al. 2001). 
These traits are conducive to SDM approaches. 
Availability of habitat data from direct habitat sur-
veys is often limited in spatial extent due to logistical 
expense and complexity. Alternative sources of habi-
tat data at broader spatial scales include open-source 
geological surveys (as used in our case study) and air-
borne or satellite photographic surveys (e.g., mapping 
reefs, seagrass, or kelp beds). Increasing access to 
multi-beam sonar and underwater video technology 
will provide detailed high resolution benthic habitat 
data to inform SDMs (Monk et  al. 2012; Courtney 
et al. 2021).

Pelagic species, due to their three-dimensional 
use of the water column, may have less connection to 
physical habitat than benthic taxa. Many pelagic fish-
eries species also move large distances in response 
to climatic variation and productivity hotspots such 
as upwelling fronts or nutrient plumes. Remote sens-
ing data are therefore frequently used to predict dis-
tributions of pelagic species (Zagaglia et  al. 2004; 
Lopez et al. 2017; Erauskin‐Extramiana et al. 2019). 
Sea surface temperature, chlorophyll-a concentra-
tion, sea surface height anomaly, wind, climate oscil-
lation indices, and current strength or direction are 

examples of remotely sensed variables used to model 
pelagic species distributions.

Ecological relationships as predictors of species 
distributions

Relationships with co-located taxa may be informa-
tive predictors of species distributions, e.g., where 
taxa are routinely caught together, the presence of 
well-recorded species may be useful for modelling 
distributions of species with sparser catch records. 
In our case study, Tiger Prawn CPUE was positively 
correlated with Mud Bug CPUE and a useful predic-
tor of Mud Bug distributions at local scales. However, 
this relationship lost its predictive power at the scale 
of the entire fishery, highlighting the importance of 
trialling and selecting model terms at appropriate 
spatial scales.

Addressing edge effects

Machine learning approaches are sensitive to edge 
effects, whereby predictions may be less robust when 
based on spatial extrapolation toward the outer range 
of the training dataset (Stock et  al. 2020). To over-
come this limitation, where possible input data should 
be incorporated into the model framework beyond 
the edges of the area for which SDM predictions will 
be made, in effect pushing the spatial edge of relia-
ble input data beyond the edge of the SDM domain. 
In our case study, explanatory datasets were used 
to build an input data surface extending beyond the 
spatial extent of logbook catch records for our candi-
date species (0–200 m depth) and were subsequently 
trimmed to the 5–80 m depth range where Moreton 
Bay Bug species are encountered.

Conclusions

Fisheries catch data reported as multi-species com-
plexes complicate assessments and management at 
the species level. Assessments of formerly incidental 
species are increasingly necessary, often requiring 
untangling of multi-species records to produce spe-
cies-specific harvest trends. The need for such assess-
ments is growing in response to increasingly com-
mon shifts in target species caused by depletion of 
previous target stocks or range shifts associated with 
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climate change. Species distribution models offer an 
under-utilised tool for fisheries researchers to allocate 
catch records among species to inform species-spe-
cific assessments. Advances in machine learning and 
the availability of open-source data platforms provide 
the opportunity to enhance SDM approaches to allo-
cate aggregated catch data to species level, as well as 
for researchers to generate their own habitat data to 
improve model performance.

Acknowledgements This project was funded by the Fisher-
ies Research and Development Corporation (Project No. FRDC 
2020-022) and the Queensland Department of Agriculture and 
Fisheries. The authors acknowledge the valuable contribution 
of species composition data and advice by Tony Courtney 
and Clive Jones as well as Jason McGilvray and all Fisher-
ies Queensland staff involved in the Saucer Scallop long-term 
monitoring project. Sincere thanks to all commercial fishers in 
the East Coast Otter Trawl Fishery that contributed to the crew 
observer program. We also appreciate the provision of harvest 
and catch rate data by the stock assessment team at Fisheries 
Queensland.

Funding Open Access funding enabled and organized by 
CAUL and its Member Institutions.

Data availability The code and data generated and analysed 
in this study are available in the following repository: https:// 
doi. org/https:// doi. org/ 10. 6084/ m9. figsh are. 25458 676.

Declarations 

Competing interests The authors have no financial or com-
peting interests to declare relevant to this article.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/.

References

Auster PJ, Langton RW (1999) The effects of fishing on fish 
habitat. Paper presented at the American Fisheries Society 
Symposium. 22:150–187

Beaman R (2010) Project 3DGBR: a high-resolution depth 
model for the Great Barrier Reef and Coral Sea. Marine 
and Tropical Sciences Research Facility Project 25i1a 
Final Report: 13

Bishop J, Venables W, Dichmont C, Sterling D (2008) Stand-
ardizing catch rates: Is logbook information by itself 
enough? ICES J Mar Sci 65:255–266. https:// doi. org/ 10. 
1093/ icesj ms/ fsm179

Breen P, Brown S, Reid D, Rogan E (2016) Modelling ceta-
cean distribution and mapping overlap with fisheries in 
the northeast Atlantic. Ocean Coast Manag 134:140–149. 
https:// doi. org/ 10. 1016/j. oceco aman. 2016. 09. 004

Breiman L (2001) Random forests. Mach Learn 45:5–32. 
https:// doi. org/ 10. 1023/A: 10109 33404 324

Brodie S, Hobday AJ, Smith JA, Everett JD, Taylor MD, Gray 
CA, Suthers IM (2015) Modelling the oceanic habitats of 
two pelagic species using recreational fisheries data. Fish 
Oceanogr 24:463–477. https:// doi. org/ 10. 1111/ fog. 12122

Campbell RA (2004) CPUE standardisation and the con-
struction of indices of stock abundance in a spatially 
varying fishery using general linear models. Fish Res 
70:209–227. https:// doi. org/ 10. 1016/j. fishr es. 2004. 08. 
026

Carruthers TR, Ahrens RN, McAllister MK, Walters CJ (2011) 
Integrating imputation and standardization of catch rate 
data in the calculation of relative abundance indices. Fish 
Res 109:157–167. https:// doi. org/ 10. 1016/j. fishr es. 2011. 
01. 033

Catry P, Lemos R, Brickle P, Phillips RA, Matias R, Grana-
deiro JP (2013) Predicting the distribution of a threatened 
albatross: the importance of competition, fisheries and 
annual variability. Prog Oceanogr 110:1–10. https:// doi. 
org/ 10. 1016/j. pocean. 2013. 01. 005

Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson 
R, Pauly D (2009) Projecting global marine biodiver-
sity impacts under climate change scenarios. Fish Fish 
10:235–251. https:// doi. org/ 10. 1111/j. 1467- 2979. 2008. 
00315.x

Courtney AJ, Daniell J, French S, Leigh GM, Yang WH, 
Campbell MJ et  al (2021) Improving mortality rate esti-
mates for management of the Queensland saucer scallop 
fishery. Fisheries Research and Development Corporation 
(FRDC) Final Report Project No. 2017/048, p 259

Courtney AJ (1997) A study of the biological parameters asso-
ciated with yield optimisation of Moreton Bay bugs, The-
nus spp. Fisheries Research and Development Corpora-
tion (FRDC) Final Report Project No. 92/102, p 45

Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger 
J, Carl G et al (2007) Methods to account for spatial auto-
correlation in the analysis of species distributional data: a 
review. Ecography 30:609–628. https:// doi. org/ 10. 1111/j. 
2007. 0906- 7590. 05171.x

Elith J, Leathwick JR (2009) Species distribution models: eco-
logical explanation and prediction across space and time. 

https://doi.org/
https://doi.org/
https://doi.org/10.6084/m9.figshare.25458676
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/icesjms/fsm179
https://doi.org/10.1093/icesjms/fsm179
https://doi.org/10.1016/j.ocecoaman.2016.09.004
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1111/fog.12122
https://doi.org/10.1016/j.fishres.2004.08.026
https://doi.org/10.1016/j.fishres.2004.08.026
https://doi.org/10.1016/j.fishres.2011.01.033
https://doi.org/10.1016/j.fishres.2011.01.033
https://doi.org/10.1016/j.pocean.2013.01.005
https://doi.org/10.1016/j.pocean.2013.01.005
https://doi.org/10.1111/j.1467-2979.2008.00315.x
https://doi.org/10.1111/j.1467-2979.2008.00315.x
https://doi.org/10.1111/j.2007.0906-7590.05171.x
https://doi.org/10.1111/j.2007.0906-7590.05171.x


 Rev Fish Biol Fisheries

1 3
Vol:. (1234567890)

Ann Rev Ecol Evol Syst 40:677–697. https:// doi. org/ 10. 
1146/ annur ev. ecols ys. 110308. 120159

Erauskin-Extramiana M, Arrizabalaga H, Hobday AJ, Cabré A, 
Ibaibarriaga L, Arregui I et al (2019) Large-scale distribu-
tion of tuna species in a warming ocean. Glob Chang Biol 
25:2043–2060. https:// doi. org/ 10. 1111/ gcb. 14630

Fabri-Ruiz S, Danis B, David B, Saucède T (2019) Can we 
generate robust species distribution models at the scale of 
the Southern Ocean? Divers Distrib 25:21–37. https:// doi. 
org/ 10. 1038/ s41598- 020- 73262-2

Fernandez M, Yesson C, Gannier A, Miller P, Azevedo J 
(2018) A matter of timing: how temporal scale selection 
influences cetacean ecological niche modelling. Mar Ecol 
Prog Ser 595:217–231. https:// doi. org/ 10. 3354/ meps1 
2551

Ferrier S, Watson G, Pearce J, Drielsma M (2002) Extended 
statistical approaches to modelling spatial pattern in biodi-
versity in northeast New South Wales. I Spec Level Mod-
ell Biodivers Conserv 11:2275–2307. https:// doi. org/ 10. 
1023/A: 10213 02930 424

Fulton EA, Smith AD, Smith DC, Johnson P (2014) An inte-
grated approach is needed for ecosystem based fisheries 
management: insights from ecosystem-level management 
strategy evaluation. PLoS ONE 9:e84242. https:// doi. org/ 
10. 1371/ journ al. pone. 00842 42

Gillanders BM, McMillan MN, Reis-Santos P, Baumgartner 
LJ, Brown LR, Conallin J et  al (2022) Climate change 
and fishes in estuaries. In: Whitfield AK, Able KW, Ste-
phen JM, Elliott M (eds) Fish and fisheries in Estuaries: 
a global perspective. Wiley, New York. https:// doi. org/ 10. 
1002/ 97811 19705 345. ch7

González-Irusta J, Wright P (2016) Spawning grounds of had-
dock (Melanogrammus aeglefinus) in the North Sea and 
West of Scotland. Fish Res 183:180–191. https:// doi. org/ 
10. 1016/j. fishr es. 2016. 05. 028

Gray JS (1974) Animal-sediment relationships. Oceanogr Mar 
Biol Ann Rev 12:223–261

Guisan A, Thuiller W (2005) Predicting species distribu-
tion: offering more than simple habitat models. Ecol Lett 
8:993–1009. https:// doi. org/ 10. 1111/j. 1461- 0248. 2005. 
00792.x

Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ 
(2017) Package ‘dismo.’ Circles 9:1–68

Hoyle SD, Campbell RA, Ducharme-Barth ND, Grüss A, 
Moore BR, Thorson JT et al (2024) Catch per unit effort 
modelling for stock assessment: a summary of good prac-
tices. Fish Res 269:106860. https:// doi. org/ 10. 1016/j. fishr 
es. 2023. 106860

Jones CM (1988) The biology and behaviour of bay lobsters, 
Thenus spp.(Decapoda: Scyllaridae), in northern Queens-
land, Australia. Ph.D. Thesis, University of Queensland

Karp MA, Brodie S, Smith JA, Richerson K, Selden RL, Liu 
OR et al (2023) Projecting species distributions using fish-
ery-dependent data. Fish Fish 24:71–92. https:// doi. org/ 
10. 1111/ faf. 12711

Kempf A, Stelzenmüller V, Akimova A, Floeter J (2013) Spa-
tial assessment of predator–prey relationships in the North 
Sea: the influence of abiotic habitat properties on the spa-
tial overlap between 0-group cod and grey gurnard. Fish 
Oceanogr 22:174–192. https:// doi. org/ 10. 1111/ fog. 12013

Kingsford C, Salzberg SL (2008) What are decision trees? Nat 
Biotechnol 26:1011–1013. https:// doi. org/ 10. 1038/ nbt09 
08- 1011

Kohavi R (1995) A study of cross-validation and bootstrap for 
accuracy estimation and model selection. Paper presented 
at: international joint conference on artificial intelligence, 
August 20–25 1995, Montreal, Canada

Kostylev VE, Todd BJ, Fader GB, Courtney R, Cameron 
GD, Pickrill RA (2001) Benthic habitat mapping on the 
Scotian Shelf based on multibeam bathymetry, surficial 
geology and sea floor photographs. Mar Ecol Prog Ser 
219:121–137. https:// doi. org/ 10. 3354/ meps2 19121

Lenoir S, Beaugrand G, Lecuyer E (2011) Modelled spatial 
distribution of marine fish and projected modifications in 
the North Atlantic Ocean. Glob Chang Biol 17:115–129. 
https:// doi. org/ 10. 1111/j. 1365- 2486. 2010. 02229.x

Li J (2018) A new R package for spatial predictive modelling. 
SPM, Brisbane

Li J, Heap AD, Potter A, Daniell JJ (2011) Application of 
machine learning methods to spatial interpolation of envi-
ronmental variables. Environ Model Softw 26:1647–1659. 
https:// doi. org/ 10. 1016/j. envso ft. 2011. 07. 004

Li J, Siwabessy J, Tran M, Huang Z, Heap A (2013) Predict-
ing seabed hardness using random forest in R. In: Zhao Y, 
Cen Y (eds) Data mining applications with R. Academic 
Press, Cambridge

Li J (2013) Predictive modelling using random forest and its 
hybrid methods with geostatistical techniques in marine 
environmental geosciences. Paper presented at the The 
proceedings of the Eleventh Australasian Data Mining 
Conference (AusDM 2013), Canberra, Australia

Lloret-Lloret E, Navarro J, Giménez J, López N, Albo-Puig-
server M, Pennino MG, Coll M (2020) The seasonal 
distribution of a highly commercial fish is related to 
ontogenetic changes in its feeding strategy. Front Mar Sci 
7:566686. https:// doi. org/ 10. 3389/ fmars. 2020. 566686

Lopez J, Moreno G, Lennert-Cody C, Maunder M, Sancris-
tobal I, Caballero A, Dagorn L (2017) Environmental 
preferences of tuna and non-tuna species associated with 
drifting fish aggregating devices (DFADs) in the Atlantic 
Ocean, ascertained through fishers’ echo-sounder buoys. 
Deep Sea Res Part II Top Stud Oceanogr 140:127–138. 
https:// doi. org/ 10. 1016/j. dsr2. 2017. 02. 007

Louw N, McMillan MN, Daniell J, Gardiner N, Roberts E 
(2024) Habitat partitioning in Moreton Bay Bug species 
to inform fisheries management. Fish Res 273:106956. 
https:// doi. org/ 10. 1016/j. fishr es. 2024. 106956

MacCall AD (1990) Dynamic geography of marine fish popu-
lations. Washington University Press, Washington

Mannocci L, Boustany AM, Roberts JJ, Palacios DM, Dunn 
DC, Halpin PN et al (2017) Temporal resolutions in spe-
cies distribution models of highly mobile marine animals: 
recommendations for ecologists and managers. Divers 
Distrib 23:1098–1109. https:// doi. org/ 10. 1111/ ddi. 12609

Mathews EJ, Heap AD, Woods M (2007) Inter-reefal seabed 
sediments and geomorphology of the Great Barrier Reef: 
a spatial analysis. Geosci Aust Rec 2007(09):140

Maunder MN, Punt AE (2004) Standardizing catch and effort 
data: a review of recent approaches. Fish Res 70:141–159. 
https:// doi. org/ 10. 1016/j. fishr es. 2004. 08. 002

https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/gcb.14630
https://doi.org/10.1038/s41598-020-73262-2
https://doi.org/10.1038/s41598-020-73262-2
https://doi.org/10.3354/meps12551
https://doi.org/10.3354/meps12551
https://doi.org/10.1023/A:1021302930424
https://doi.org/10.1023/A:1021302930424
https://doi.org/10.1371/journal.pone.0084242
https://doi.org/10.1371/journal.pone.0084242
https://doi.org/10.1002/9781119705345.ch7
https://doi.org/10.1002/9781119705345.ch7
https://doi.org/10.1016/j.fishres.2016.05.028
https://doi.org/10.1016/j.fishres.2016.05.028
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1016/j.fishres.2023.106860
https://doi.org/10.1016/j.fishres.2023.106860
https://doi.org/10.1111/faf.12711
https://doi.org/10.1111/faf.12711
https://doi.org/10.1111/fog.12013
https://doi.org/10.1038/nbt0908-1011
https://doi.org/10.1038/nbt0908-1011
https://doi.org/10.3354/meps219121
https://doi.org/10.1111/j.1365-2486.2010.02229.x
https://doi.org/10.1016/j.envsoft.2011.07.004
https://doi.org/10.3389/fmars.2020.566686
https://doi.org/10.1016/j.dsr2.2017.02.007
https://doi.org/10.1016/j.fishres.2024.106956
https://doi.org/10.1111/ddi.12609
https://doi.org/10.1016/j.fishres.2004.08.002


Rev Fish Biol Fisheries 

1 3
Vol.: (0123456789)

Maxwell D, Stelzenmüller V, Eastwood P, Rogers S (2009) 
Modelling the spatial distribution of plaice (Pleuronectes 
platessa), sole (Solea solea) and thornback ray (Raja clav-
ata) in UK waters for marine management and planning. 
J Sea Res 61:258–267. https:// doi. org/ 10. 1016/j. seares. 
2008. 11. 008

McMillan MN, Leahy SM, Daniell JJ, Louw N, Roberts EM, 
Wickens M et al (2023) Determining the spatial distribu-
tion and abundance indices for Moreton Bay Bugs, The-
nus parindicus and Thenus australiensis in Queensland 
to improve stock assessment and management. Fisheries 
Research and Development Corporation (FRDC) Final 
Report Project No. 2020/020

Melo-Merino SM, Reyes-Bonilla H, Lira-Noriega A (2020) 
Ecological niche models and species distribution models 
in marine environments: a literature review and spatial 
analysis of evidence. Ecol Model 415:108837. https:// doi. 
org/ 10. 1016/j. ecolm odel. 2019. 108837

Mikami S, Greenwood JG (1997) Complete development and 
comparative morphology of larval Thenus orientalis and 
Thenus Sp. (Decapoda: Scyllaridae) reared in the labora-
tory. J Crustac Biol 17:289–308. https:// doi. org/ 10. 1163/ 
19372 4097X 00332

Monk J, Ierodiaconou D, Harvey E, Rattray A, Versace VL 
(2012) Are we predicting the actual or apparent distribu-
tion of temperate marine fishes? PLoS ONE 7:e34558. 
https:// doi. org/ 10. 1371/ journ al. pone. 00345 58

Moore CH, Harvey ES, Van Niel K (2010) The application of 
predicted habitat models to investigate the spatial ecology 
of demersal fish assemblages. Mar Biol 157:2717–2729. 
https:// doi. org/ 10. 1007/ s00227- 010- 1531-4

Moore CH, Drazen JC, Radford BT, Kelley C, Newman SJ 
(2016) Improving essential fish habitat designation to sup-
port sustainable ecosystem-based fisheries management. 
Mar Pol 69:32–41. https:// doi. org/ 10. 1016/j. marpol. 2016. 
03. 021

Morfin M, Fromentin JM, Jadaud A, Bez N (2012) Spatio-
temporal patterns of key exploited marine species in the 
Northwestern Mediterranean Sea. PLoS ONE 7:e37907. 
https:// doi. org/ 10. 1371/ journ al. pone. 00379 07

Nakano H, Clarke S (2006) Filtering method for obtaining 
stock indices by shark species from species-combined log-
book data in tuna longline fisheries. Fish Sci 72:322–332. 
https:// doi. org/ 10. 1111/j. 1444- 2906. 2006. 01153.x

Nephin J, Thompson PL, Anderson SC, Park AE, Rooper CN, 
Aulthouse B, Watson J (2023) Integrating disparate sur-
vey data in species distribution models demonstrate the 
need for robust model evaluation. Can J Fish Aquat Sci 
80:1869–1889. https:// doi. org/ 10. 1139/ cjfas- 2022- 0279

O’Neill MF, Yang W, Wortmann J, Courtney AJ, Leigh GM, 
Campbell MJ, Filar J (2020) Stock predictions and popu-
lation indicators for Australia’s east coast saucer scallop 
fishery. Fisheries Research and Development Corporation 
(FRDC) Final Report Project No. 2017/057, p 114

Palacios DM, Baumgartner MF, Laidre KL, Gregr EJ (2013) 
Beyond correlation: integrating environmentally and 
behaviourally mediated processes in models of marine 
mammal distributions. Endanger Spec Res 22:191–203. 
https:// doi. org/ 10. 3354/ esr00 558

Peterson AT (2003) Predicting the geography of species’ inva-
sions via ecological niche modeling. Q Rev Biol 78:419–
433. https:// doi. org/ 10. 1086/ 378926

Pinsky ML, Fogarty M (2012) Lagged social-ecologi-
cal responses to climate and range shifts in fisheries. 
Clim Change 115:883–891. https:// doi. org/ 10. 1007/ 
s10584- 012- 0599-x

Pitcher CR, Lawton P, Ellis N, Smith SJ, Incze LS, Wei CL 
et al (2012) Exploring the role of environmental variables 
in shaping patterns of seabed biodiversity composition 
in regional-scale ecosystems. J Appl Ecol 49:670–679. 
https:// doi. org/ 10. 1111/j. 1365- 2664. 2012. 02148.x

Pittman S, Christensen J, Caldow C, Menza C, Monaco M 
(2007) Predictive mapping of fish species richness across 
shallow-water seascapes in the Caribbean. Ecol Model 
204:921. https:// doi. org/ 10. 1016/j. ecolm odel. 2006. 12. 017

Ridgeway G (2006) Gbm: generalized boosted regression mod-
els. R Package Vers 1(3):55

Robertson MP, Villet MH, Palmer AR (2004) A fuzzy clas-
sification technique for predicting species’ distributions: 
applications using invasive alien plants and indigenous 
insects. Divers Distrib 10:461–474. https:// doi. org/ 10. 
1111/j. 1366- 9516. 2004. 00108.x

Robinson L, Elith J, Hobday A, Pearson R, Kendall B, Possing-
ham H, Richardson A (2011) Pushing the limits in marine 
species distribution modelling: lessons from the land pre-
sent challenges and opportunities. Glob Ecol Biogeogr 
20:789–802. https:// doi. org/ 10. 1111/j. 1466- 8238. 2010. 
00636.x

Rogers LA, Griffin R, Young T, Fuller E, St. Martin K, Pin-
sky ML (2019) Shifting habitats expose fishing com-
munities to risk under climate change. Nat Clim Change 
9:512–516. https:// doi. org/ 10. 1038/ s41558- 019- 0503- zz

Sala E, Aburto-Oropeza O, Reza M, Paredes G, López-
Lemus LG (2004) Fishing down coastal food webs in 
the Gulf of California. Fisheries 29:19–25. https:// doi. 
org/ 10. 1577/ 1548- 8446(2004) 29[19: FDCFWI] 2.0. CO;2

Saldaña-Ruiz LE, Sosa-Nishizaki O, Cartamil D (2017) His-
torical reconstruction of Gulf of California shark fishery 
landings and species composition, 1939–2014, in a data-
poor fishery context. Fish Res 195:116–129. https:// doi. 
org/ 10. 1016/j. fishr es. 2017. 07. 011

Saupe EE, Barve V, Myers CE, Soberón J, Barve N, Hensz 
CM et  al (2012) Variation in niche and distribution 
model performance: the need for a priori assessment of 
key causal factors. Ecol Model 237:11–22. https:// doi. 
org/ 10. 1016/j. ecolm odel. 2012. 04. 001

Simpson MR, Walsh SJ (2004) Changes in the spatial struc-
ture of Grand Bank yellowtail flounder: testing MacCa-
ll’s basin hypothesis. J Sea Res 51:199–210. https:// doi. 
org/ 10. 1016/j. seares. 2003. 08. 007

Stephens A, MacCall A (2004) A multispecies approach 
to subsetting logbook data for purposes of estimating 
CPUE. Fish Res 70:299–310. https:// doi. org/ 10. 1016/j. 
fishr es. 2004. 08. 009

Steven AD, Baird ME, Brinkman R, Car NJ, Cox SJ, Her-
zfeld M et al (2019) eReefs: an operational information 
system for managing the Great Barrier Reef. J Oper 
Oceanogr 12:12–28. https:// doi. org/ 10. 1080/ 17558 76X. 
2019. 16505 89

https://doi.org/10.1016/j.seares.2008.11.008
https://doi.org/10.1016/j.seares.2008.11.008
https://doi.org/10.1016/j.ecolmodel.2019.108837
https://doi.org/10.1016/j.ecolmodel.2019.108837
https://doi.org/10.1163/193724097X00332
https://doi.org/10.1163/193724097X00332
https://doi.org/10.1371/journal.pone.0034558
https://doi.org/10.1007/s00227-010-1531-4
https://doi.org/10.1016/j.marpol.2016.03.021
https://doi.org/10.1016/j.marpol.2016.03.021
https://doi.org/10.1371/journal.pone.0037907
https://doi.org/10.1111/j.1444-2906.2006.01153.x
https://doi.org/10.1139/cjfas-2022-0279
https://doi.org/10.3354/esr00558
https://doi.org/10.1086/378926
https://doi.org/10.1007/s10584-012-0599-x
https://doi.org/10.1007/s10584-012-0599-x
https://doi.org/10.1111/j.1365-2664.2012.02148.x
https://doi.org/10.1016/j.ecolmodel.2006.12.017
https://doi.org/10.1111/j.1366-9516.2004.00108.x
https://doi.org/10.1111/j.1366-9516.2004.00108.x
https://doi.org/10.1111/j.1466-8238.2010.00636.x
https://doi.org/10.1111/j.1466-8238.2010.00636.x
https://doi.org/10.1038/s41558-019-0503-zz
https://doi.org/10.1577/1548-8446(2004)29[19:FDCFWI]2.0.CO;2
https://doi.org/10.1577/1548-8446(2004)29[19:FDCFWI]2.0.CO;2
https://doi.org/10.1016/j.fishres.2017.07.011
https://doi.org/10.1016/j.fishres.2017.07.011
https://doi.org/10.1016/j.ecolmodel.2012.04.001
https://doi.org/10.1016/j.ecolmodel.2012.04.001
https://doi.org/10.1016/j.seares.2003.08.007
https://doi.org/10.1016/j.seares.2003.08.007
https://doi.org/10.1016/j.fishres.2004.08.009
https://doi.org/10.1016/j.fishres.2004.08.009
https://doi.org/10.1080/1755876X.2019.1650589
https://doi.org/10.1080/1755876X.2019.1650589


 Rev Fish Biol Fisheries

1 3
Vol:. (1234567890)

Stock BC, Ward EJ, Eguchi T, Jannot JE, Thorson JT, Feist 
BE, Semmens BX (2020) Comparing predictions of 
fisheries bycatch using multiple spatiotemporal species 
distribution model frameworks. Can J Fish Aquat Sci 
77:146–163. https:// doi. org/ 10. 1139/ cjfas- 2018- 0281

Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont 
LJ, Collingham YC et  al (2004) Extinction risk from 
climate change. Nature 427:145–148. https:// doi. org/ 10. 
1038/ natur e02121

Thorson JT, Maunder MN, Punt E (2020) The development 
of spatio-temporal models of fishery catch-per-unit-
effort data to derive indices of relative abundance. Fish 
Res 230:105611. https:// doi. org/ 10. 1016/j. fishr es. 2020. 
105611

Venables WN, Dichmont CM (2004) A generalised linear 
model for catch allocation: an example from Australia’s 
Northern Prawn Fishery. Fish Res 70:409–426. https:// doi. 
org/ 10. 1016/j. fishr es. 2004. 08. 017

Walters C (2003) Folly and fantasy in the analysis of spatial 
catch rate data. Can J Fish Aquat Sci 60:1433–1436. 
https:// doi. org/ 10. 1139/ f03- 152

Wickens ME, Hillcoat KB, Lovett RA, Fox, AR, McMillan 
MN (2023) Stock assessment of Moreton Bay Bugs (The-
nus australiensis and Thenus parindicus) in Queensland, 
Australia with data to December 2021. Technical Report. 
State of Queensland, Brisbane

Zagaglia CR, Lorenzzetti JA, Stech JL (2004) Remote sens-
ing data and longline catches of yellowfin tuna (Thunnus 
albacares) in the equatorial Atlantic. Remote Sens Envi-
ron 93:267–281. https:// doi. org/ 10. 1016/j. rse. 2004. 07. 015

Publisher’s Note Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

https://doi.org/10.1139/cjfas-2018-0281
https://doi.org/10.1038/nature02121
https://doi.org/10.1038/nature02121
https://doi.org/10.1016/j.fishres.2020.105611
https://doi.org/10.1016/j.fishres.2020.105611
https://doi.org/10.1016/j.fishres.2004.08.017
https://doi.org/10.1016/j.fishres.2004.08.017
https://doi.org/10.1139/f03-152
https://doi.org/10.1016/j.rse.2004.07.015

	Untangling multi-species fisheries data with species distribution models
	Abstract 
	Introduction
	Methods
	Model spatial domain and training data
	Variable selection and habitat data
	Selecting an appropriate response variable
	Model spatial resolution
	Model design and application

	Results
	Discussion
	Availability of species composition data
	Spatio-temporal differences in species distributions improve model performance
	Incorporating movement and behaviour into SDM design
	Population status considerations
	Sources of explanatory data to model species distributions
	Ecological relationships as predictors of species distributions
	Addressing edge effects

	Conclusions
	Acknowledgements 
	References


