CONTROL OF HELIOTHIS AND PHTHORIMAEA IN TOMATOES 141

QUEENSLAND DEPARTMENT OF PRIMARY INDUSTRIES

DIVISION OF PLANT INDUSTRY BULLETIN No. 804

INSECTICIDES FOR CONTROL OF TOMATO GRUB HELIOTHIS ARMIGERA (HÜBNER), AND POTATO MOTH, PHTHORIMAEA OPERCULELLA (ZELLER), IN TOMATOES

By J. R. HARGREAVES, B.Sc. and L. P. COOPER

SUMMARY

During 1976 to 1977, nine insecticides were tested at Ormiston. The most effective insecticide in reducing damage to tomato fruit by *Heliothis armigera* (Hübner) and *Phthorimaea operculella* (Zeller) was sulprophos at 0.072%. Other chemicals which gave satisfactory results were methamidophos at 0.11%, acephate at 0.075%, chlordimeform at 0.05%, chlordyrifos at 0.1%, endosulfan at 0.067%, monocrotophos at 0.1% and prothiofos at 0.15%.

I. INTRODUCTION

The tomato grub, *Heliothis armigera* (Hübner), and potato moth, *Phthorimaea operculella* (Zeller) are serious pests of tomatoes grown in south-east Queensland. Fruit damaged by the larvae either rot and fall from the plant or are rendered unmarketable. Early control measures were based on lead arsenate (Veitch 1935) and later DDT (Smith 1957). However, with changing attitudes towards DDT and the development of DDT resistance by *P. operculella* (Champ and Shepherd 1965) DDT has been increasingly replaced by other insecticides. Smith (1978) demonstrated that weekly applications of methamidophos, acephate or methomyl were required for control of infestations of both *H. armigera* and *P. operculella*.

The present investigations were designed to test further the relative efficacies of these and a range of alternative chemicals under conditions of severe infestation pressure.

II. MATERIALS AND METHODS

The insecticides used, percentages of active constituent and types of formulation were as follows:

acephate	75%	w/w	soluble powder
chlordimeform	97%	w/w	soluble powder
chlorpyrifos	50%	w/v	emulsifiable concentrate
endosulfan	35%	w/v	emulsifiable concentrate
methamidophos	58%	w/v	emulsifiable concentrate

Queensland Journal of Agricultural and Animal Sciences Vol. 36 (2) 1979

J. R. HARGREAVES & L. P. COOPER

methomyl 22	2.5%	w/v	emulsifiable	concentrate
monocrotophos	40%	w/v	emulsifiable	concentrate
prothiophos*	72%	w/v	emulsifiable	concentrate
(proposed name)				
sulprophos**	72%	w/v	emulsifiable	concentrate
(proposed name)				
* prothiophos			orophenyl O-	
	S-pro	pyl pł	nosphorodithi	oate
** sulprophos			4-methylthiop	
	S-pro	pyl pł	nosphorodithi	oate

Because of its wide usage in tomato growing areas 0.11% methamidophos was taken as the standard. A non-ionic wetting agent ("Agral 60") at 0.1% was used with all treatments.

Two trials each involving 700 m^2 were carried out at the Redlands Horticultural Research Station, Ormiston using the cultivar Strobelee. Both were undertaken in mid-summer (trial 1, September 1976 to January 1977; and trial 2, October 1976 to January 1977), to co-incide with expected high pest populations, although the usual growing seasons in the area are in spring and autumn.

Each trial included six treatments with five replications in completely randomised designs (details of treatment are given with the tabulated results). The plot size throughout was 28 plants grown on 14 m of trellised row, rows being 1.6 m apart.

All insecticides were applied by knapsack spray to run-off. Applications were made at weekly intervals, 13 applications being used in trial 1 and 12 in trial 2.

Fruit were harvested weekly from the first showing of colour and both yield and quality were recorded. Four quality grades were used of which the first three, Fancy, Standard and Plain (Queensland Tomato Grade Standards, Anon. 1967) relate progressively to fruit quality in terms of size and proportion of superficial blemish. The fourth grade, Rejects, comprised unmarketable fruit. Insect induced blemish was initially ignored in the grading but assessed later within the grade. Data from successive harvests were bulked and expressed as percentage of fruit damaged within each grade and treatment, the damage being ascribed to relevant pest species. *Heliothis* larvae were collected periodically and reared for species determination.

III. RESULTS AND DISCUSSION

H. armigera (Hübner) was the only species bred from larvae in the trials although Kirkpatrick (1961) also recorded *H. punctigera* Wallengren from tomatoes.

The results obtained are summarised in tables 1, 2 and 3. Both yield and quality were considerably better in all insecticide treatments than in the untreated controls in both trials. These marked differences are a reflection of efficacy standards and the large infestations experienced. Sulprophos at 0.072% outyielded and gave better control of both pests than 0.11% methamidophos. All other treatments, with the exception of 0.05% methomyl gave similar control to 0.11% methamidophos. Chlordimeform was withdrawn from sale in 1976, by the manufacturers.

TRIALS 1 AND 2: MEAN YIELDS OF TOMATO FRUIT EXPRESSED AS WEIGHT AND NUMBER PER PLOT										
Treatn				Total Y	lield	Fancy Grade	Standard Grade	Plain Grade	Reject Grade	
Teath	nent			-	kg per Plot	No. Fruits per Plot	No. Fruits per Plot	No. Fruits per Plot	No. Fruits per Plot	No. Fruits per Plot
TRIAL 1 untreated	 	 	 	· · · · · · · · ·	6.0a 66.5c 48.4bc 57.6c 37.4b 57.8c	120-8a 686-6c 531-6bc 556-2c 366-0b 649-6c	10-0 122-2 80-2 117-4 77-8 91-0	7·4 157·4 113·4 129·4 92·8 130·8	14·4 193·8 142·0 168·8 94·0 204·6	89-2 213-2 196-0 140-6 101-4 223-2
TRIAL 2 untreated	· · · · · · · · ·	 	 	 	15.8a 23.8c 22.1b 23.0b 30.8d 36.2e	185·4a 309·8b 360·0bc 295·0b 401·2c 547·0d	11-8 12-0 14-4 17-8 24-4 27-6	21.6 35.0 27.6 32.6 44.2 48.0	46·0 62·8 55·0 62·0 80·8 101·2	106-0 200-0 263-0 182-6 251-8 370-2

TABLE 1

Values followed by the same letter do not differ at the P = 0.05 level of probability.

143

Turkung	Fancy	Fancy Grade		Standard Grade		Plain Grade		Reject Grade		Total of all Grades	
Treatment	Trans* Mean	Equiv Mean	Trans* Mean	Equiv Mean	Trans* Mean	Equiv Mean	Trans* Mean	Equiv Mean	Trans* Mean	Equiv Mean	
Effects attributable to Heliothi armigera untreated	† 0·25a 0·12b 0·23a	52-0 6·1 1·4 5·3 7·5 4·4	† 0·32 0·28 0·27 0·39 0·30 n.s.	48-0 10-2 7-5 7-1 14-4 8-6	† 0·39 0·38 0·31 0·41 0·32 n.s.	19·8 14·4 13·8 9·3 16·0 9·3	0.68a 0.43bc 0.52b 0.47b 0.46ab 0.41bc	39·9 17·1 24·9 20·7 29·1 15·6	0.69a 0.36bc 0.39bc 0.33c 0.42b 0.34c	40·9 12·5 14·3 10·7 17·2 11·0	
Effects attributable to Phthorimaea operculella untreated	0·28 0·28 0·26 0·36	24·1 7·4 7·9 6·7 12·3 6·9	† 0·34 0·35 0·32 0·41 0·33 n.s.	28-9 10-9 11-6 10-1 15-6 10-4	† 0·39b 0·44ab 0·36b 0·53a 0·38b	53·3 14·7 18·3 12·7 25·5 13·7	0·50a 0·36b 0·41ab 0·40ab 0·50a 0·34b	22.8 12.5 15.7 14.9 22.6 11.2	0·54a 0·37c 0·42b 0·34c 0·45b 0·34c	26·5 12·9 16·6 11·3 18·9 11·1	

TABLE 2

TRIAL 1-PERCENTAGES OF TOMATO FRUIT DAMAGED BY H. armigera AND P. operculella PER PLOT

Values followed by the same letter do not differ at the P = 0.05 level of probability. Comparisons may only be made within columns.

* = Inverse sine transformation.

 \dagger = Significantly (P= 0.01) more of the fruit from the untreated plots were of the reject grade and this treatment was excluded from the analysis.

n.s. = No significant differences at P = 0.05 level of probability.

Trial 2	2—Percenta	GES OF TO	mato Fruit	Damaged	вү <i>H. armi</i> g	gera and P	. operculella	per Plot		
Treatment	Fancy Grade		Standard Grade		Plain Grade		Reject Grade		Total of all Grades	
	Trans* Mean	Equiv Mean	Trans* Mean	Equiv Mean	Trans* Mean	Equiv Mean	Trans* Mean	Equiv Mean	Trans* Mean	Equiv Mean
Effects attributable to <i>Heliothis</i> armigera untreated endosulfan 0.067% methamidophos 0.11% sulprophos 0.072%	0·48a 0·39a 0·29ab 0·30ab 0·28ab 0·15b	21.0 14.8 8.5 8.9 7.9 2.3	0.70a 0.34bc 0.41b 0.39bc 0.35bc 0.25c	41.9 11.4 16.3 14.7 12.8 5.9	0·73a 0·44b 0·47b 0·42b 0·39b 0·30c	44·7 18·9 20·7 17·0 14·4 8·9	0.81a 0.46bc 0.49b 0.51b 0.47b 0.38c	52.5 19.4 22.2 24.2 20.3 13.6	0·76a 0·44b 0·47b 0·47b 0·43bc 0·35c	47·1 17·9 20·7 20·8 17·4 11·8
Effects attributable to Phthorimaea operculella untreated	0.76a 0.38b 0.43b 0.25b 0.28b 0.32b	47·8 14·2 17·6 6·1 7·7 10·0	0·76a 0·42 0·51b 0·39bc 0·40bc 0·24c	47·8 16·4 24·0 14·4 15·3 5·8	0.66a 0.52b 0.59ab 0.50b 0.42bc 0.33c	38·0 24·7 30·9 23·4 16·6 10·7	0.53a 0.44bc 0.47ab 0.39cd 0.39cd 0.32d	25·5 17·9 20·7 14·4 14·5 10·2	0.60a 0.47b 0.49b 0.41c 0.39c 0.32d	32·3 19·9 22·6 15·7 14·6 10·0

TABLE 3

Values followed by the same letter do not differ at the P = 0.05 level of probability. Comparisons may be made only within columns.

* = Inverse sine transformation.

CONTROL OF HELIOTHIS AND PHTHORIMAEA IN TOMATOES

REFERENCES

ANON. (1967).—Tomato grade standards—Queensland Government Gazette, 18 March 1967: 1039.

CHAMP, B. R., and SHEPHERD, R. C. H. (1965).—Insecticide resistance in *Phthorimaea* operculella (Zeller) with particular reference to DDT. Queensland Journal of Agricultural Science 22:101-105.

KIRKPATRICK, T. H. (1961).—Queensland distribution and host records for *Heliothis* species (Lepiodoptera:Noctuidae). *Queensland Journal of Agricultural Science* 18:195-202.

SMITH, D. (1978).—Control of Heliothis armigera and Phthorimaea operculella in tomatoes in south-eastern Queensland 1971–1975. Queensland Journal of Agricultural & Animal Sciences 35:47-52.

SMITH, W. A. (1957).-Tomato pest control. Queensland Agricultural Journal 83:375-380.

VEITCH, R. (1938).- 'Insect Pests and Their Control'. (Government Printer, Brisbane).

(Received for publication 27 July 1978)

The authors are officers of Entomology Branch, Queensland Department of Primary Industries and are stationed at Ormiston, Q. 4163.