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Genetic diversity and candidate
genes for transient waterlogging
tolerance in mungbean at the
germination and seedling stages
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Kadambot H. M. Siddique2 and William Erskine1,2*

1Centre for Plant Genetics and Breeding (PGB), UWA School of Agriculture and Environment, The
University of Western Australia, Perth, WA, Australia, 2The UWA Institute of Agriculture, The University
of Western Australia, Crawley, WA, Australia, 3CSIRO Agriculture and Food, Floreat, WA, Australia,
4Department of Agriculture and Fisheries, Gatton Research Facility, Gatton, QLD, Australia, 5International
Center for Tropical Agriculture (CIAT-Asia), Lao PDR Office, Vientiane, Lao People’s Democratic Republic
Mungbean [Vigna radiata var. radiata (L.) Wilczek] production in Asia is detrimentally

affected by transient soil waterlogging caused by unseasonal and increasingly

frequent extreme precipitation events. While mungbean exhibits sensitivity to

waterlogging, there has been insufficient exploration of germplasm for

waterlogging tolerance, as well as limited investigation into the genetic basis for

tolerance to identify valuable loci. This research investigated the diversity of transient

waterlogging tolerance in a mini−core germplasm collection of mungbean and

identified candidate genes for adaptive traits of interest using genome−wide

association studies (GWAS) at two critical stages of growth: germination and

seedling stage (i.e., once the first trifoliate leaf had fully−expanded). In a

temperature−controlled glasshouse, 292 genotypes were screened for tolerance

after (i) 4 days of waterlogging followed by 7 days of recovery at the germination

stage and (ii) 8 days of waterlogging followed by 7 days of recovery at the seedling

stage. Tolerance was measured against drained controls. GWAS was conducted

using 3,522 high−quality DArTseq−derived SNPs, revealing five significant

associations with five phenotypic traits indicating improved tolerance.

Waterlogging tolerance was positively correlated with the formation of

adventitious roots and higher dry masses. FGGY carbohydrate kinase domain

−containing protein was identified as a candidate gene for adventitious rooting

and mRNA-uncharacterized LOC111241851, Caffeoyl-CoA O-methyltransferase

At4g26220 and MORC family CW-type zinc finger protein 3 and zinc finger

protein 2B genes for shoot, root, and total dry matter production. Moderate to

high broad−sense heritability was exhibited for all phenotypic traits, including seed

emergence (81%), adventitious rooting (56%), shoot dry mass (81%), root dry mass

(79%) and SPAD chlorophyll content (70%). The heritability estimates, marker−trait

associations, and identification of sources of waterlogging tolerant germplasm from

this study demonstrate high potential for marker−assisted selection of tolerance

traits to accelerate breeding of climate−resilient mungbean varieties.
KEYWORDS

mungbean mini-core collection, waterlogging, GWAS, tolerance traits, candidate
genes, heritability
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Introduction

Mungbean (Vigna radiata (L.) R. Wilczek var. radiata) is a major

subtropical short−season pulse crop in Asia and other parts of the

world. The species is native to the Indo−Burma region (Jain and

Mehra, 1978) where it is widely cultivated, with India and Myanmar

each supplying about 30% of annual global production, followed by

China (16%) and Indonesia (5%) (Nair and Schreinemachers, 2020).

Within these countries, mungbean is a vital source of nutritional food

for poor and anaemic women and children (Nair et al., 2012).

Additionally, the crop is of tremendous importance to smallholder

farming families due to the income it provides as a cash crop and the

agronomic value it provides to cropping systems. For example,

mungbean can increase the productivity of subsequent rice crops by

up to 8% because it fixes soil nitrogen through symbiosis and helps to

break pest and disease cycles (Weinberger, 2003). Due to these

combined benefits, mungbean is widely grown in both upland and

lowland farming systems in Asia (Islam et al., 1993; Herridge et al.,

2019). In upland ecosystems of Southeast and South Asia, mungbean is

grown as an intercrop with other legumes, such as pigeonpea (Cajanus

cajan L.), oilseeds [sesame (Sesamum indicum L.) or groundnut

(Arachis hypogaea L.)] or cereal crops [sorghum (Sorghum bicolor L.)

and maize (Zea mays L.)] in pre-monsoon and monsoon seasons

(Islam et al., 1993; Herridge et al., 2019). In lowland ecosystems,

mungbean is adopted as a relay crop, broadcast onto the standing rice

crop 7–10 days before harvest or dibbled manually after harvest (Gupta

et al., 2016).

The global area sown to mungbean has increased from 4.6 to 7.3

million ha, with production and productivity increasing from 2.3 to

5.3 million tonnes and 500 to 721 kg ha–1 (Hartman et al., 1993;

Nair and Schreinemachers, 2020). However, it is yet to reach its

genetic yield potential (Douglas et al., 2020), with abiotic stresses

caused by extreme weather events challenging crop productivity

(Oshunsanya et al., 2019). Increased waterlogging has devastated

crop production in some parts of the world and is becoming

increasingly problematic due to a high frequency of unseasonal

rainfall events (IPCC, 2021). For example, 69−year average annual

weather data from Barisal, Bangladesh, indicates that the

cumulative frequency of heavy rainfall is challenging farmers to

find an optimum sowing time for mungbean after a T-Aman rice

crop (unpublished ACIAR annual finding, June 2018). The Food

and Agricultural Organisation estimates that waterlogging, as a

result of high frequency of unseasonal rainfall, has been found to be

destructive to agricultural production, based on the findings of 78

natural disasters in 48 regions (Food and Agriculture Organization

of the United Nations, 2015). Floods and soil waterlogging

significantly contributed to a reduction of $21 billion in crop and

livestock losses between 2008 and 2018 (FAO, 2021). Thus,

increased occurrences of soil waterlogging have become a major

abiotic stress associated with global climate change.

Waterlogging can occur at any stage of plant development in

rainfed and irrigated cropping systems due to irregular rainfall

patterns (Setter and Waters, 2003). However, excess soil water

immediately before or after rice harvest makes germination a

particularly vulnerable developmental stage for the succeeding

relay crops, and poor crop establishment is documented in both
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field and glasshouse experiments for different legumes in such

conditions (Zaman et al., 2018). For examples, this type of

waterlogging stress has been observed in the following legume

relay crops grown after rice, including field pea (Pisum sativum

L.), lentil (Lens culinaris L.), grass pea (Lathyrus sativus L.), and

soybean (Glycine max L.), in countries in South, Southeast and East

Asia, including Bangladesh, India, Nepal, Pakistan and Japan

(Araki, 2006; Malik et al., 2015; Zaman et al., 2018). Established

crops also face critical challenges. Islam et al. (2008) reported that

waterlogging of mungbean crops damages roots, reduces leaf

chlorophyll content, and ultimately decreases grain yield. In

addition, the oxygen deprivation in the rhizosphere due to

transient soil waterlogging reduces the N2 fixation activity of root

nodules in mungbean (Singh and Singh, 2011; Kyu et al., 2021) and

soybean (Suematsu et al., 2017), which limits the capacity of the

crops to provide soil improvement benefits. This ultimately

compromises one of the important sustainable agricultural

benefits of growing mungbean and other legume crops.

Unfortunately, the increased frequency and severity of extreme

weather events, such as flooding, due to climate change mean that

mungbean crops will be more likely to experience transient

waterlogging in lowland systems in future, which will greatly

reduce production (Rötter et al., 2012; Rötter et al., 2013).

One solution tomitigate the detrimental impacts of excessive soil

moisture in Asia is to breed new varieties of mungbean with genetic

tolerance to transient waterlogging stress. Successfully

accomplishing this, however, firstly requires a solid understanding

of (i) how much phenotypic variation exists for transient

waterlogging stress tolerance, (ii) the strategies tolerant mungbean

plants use in response to stress, and (iii) the genetic control of these

adaptive responses. The degree of tolerance to waterlogging in plants

depends on the stage of growth (VanToai et al., 1994), plant growth

habit, and the duration of stress (Greenway et al., 1994). Mungbean

is susceptible to transient soil waterlogging throughout its life cycle

(Nair et al., 2012), but is especially vulnerable during early growth

(Tickoo et al., 2006; Douglas et al., 2020). Some varietal differences in

mungbean response to transient waterlogging at the late vegetative

stage have been reported (Bagga et al., 1984; Ahmed et al., 2002;

Islam et al., 2007, 2008). However, characterisation of broader

phenotypic diversity in transient waterlogging tolerance in

mungbean has not been conducted, nor has exploration of the

genetic basis for tolerance. Systematic screening of a wide range of

germplasm is therefore needed to identify genetic diversity and

genetic loci, particularly during early development when crops are

most susceptible.

Genetic variation for waterlogging tolerance has been studied in

other legume crops, including soybean (Shannon et al., 2005; Suematsu

et al., 2017), common bean (Phaseolus vulgaris L.) (Soltani et al., 2017)

and pigeonpea (Krishnamurthy et al., 2012; Sultana et al., 2012) using

large sets of germplasm from different origins, including core and mini

−core collections. Such collections contain genetically diverse

germplasm that can be used for comprehensive studies of

intraspecific variation using genome−wide association studies

(GWAS) and can be subsequently exploited to develop climate

−resilient genotypes with biotic and abiotic stress tolerance

(Upadhyaya et al., 2008). GWAS has superior resolution mapping
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power, using mass recombination events from numerous meiotic

events throughout the germplasm’s evolutionary history to

characterise several alleles concurrently in diploid (Zhao et al., 2007)

and polyploid (Breseghello and Sorrells, 2006) crops.

Mungbean is an orphan crop; however, recent efforts have

developed genetic and genomic resources for whole−genome scan

studies, such as GWAS. Kang et al. (2014) constructed the first draft

genome sequence of mungbean to facilitate genomic research. In

addition, the World Vegetable Center (WorldVeg) has created a

mungbean mini−core germplasm collection representing genetic

resources from more than 6,700 accessions based on genotypic and

phenotypic traits (Schafleitner et al., 2015). From this mini−core

collection, useful lines and candidate genes have been identified for

numerous traits, such as hypocotyl pigmentation and maturation

under abnormally hot weather and different photoperiods

(Sokolkova et al., 2020), seed coat lustre (Breria et al., 2019),

salinity tolerance at germination (Breria et al., 2020), seed size

(Akhtar et al., 2021) and favourable root traits for heat and drought

stress resistance (Aski et al., 2021). However, transient waterlogging

tolerance is notably absent from this list.

We hypothesised that the mungbean mini−core collection

contains functional genetic variation for transient waterlogging

tolerance. To this end, we conducted the first screen of the

WorldVeg mungbean mini−core collection for genotypic

variation in response to transient waterlogging stress at the

germination and seedling stages with the aim of identifying

sources of tolerant germplasm and as a precursor to better

understanding the genetic regulation of tolerance in this legume.
Materials and methods

Plant material

A set of 292 mini−core collection mungbean genotypes from nine

regions was assayed separately for transient waterlogging response at

two critical stages of growth: germination and seedling stages. Themini

−core collection was developed by WorldVeg (Schafleitner et al., 2015)

(Supplementary Table 1) and seed was obtained from The Department

of Agriculture and Fisheries, Queensland. For practicality, the

genotypes were randomly assigned to two cohorts for germination

screening and three cohorts for seedling stage screening. Eight check

genotypes (BARIM−3, BARIM−6, Celera II−AU, Jade−AU, VI 2173,

VI 2537, VI 4069, VI 4954) were replicated five times in each cohort at

the germination stage, and once in each cohort at the seedling stage due

to limited space. The selection of these check genotypes was based on

criteria focusing on emergence, adventitious root formation, and the

maintenance of shoot and root growth during and after

waterlogging treatment.
Methods

Experimental conditions
The experiments were conducted in a temperature−controlled

glasshouse at The University of Western Australia (UWA),
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Crawley, Western Australia (31° 59’ S, 115° 49’ E) from May to

June 2019 (germination stage) and September to December 2019

(seedling stage). The temperature in the glasshouse ranged from 21

± 4°C (night) to 32 ± 3°C (day) with 10 h 45 min of daylight (1,150–

1,627 µmol m–2 s–1) on average. The seeds were sown in the same

red−brown sandy clay loam (Calcic Haploxeralf) used for

waterlogging studies in pea (Pisum sativum L.) (Zaman et al.,

2018), grass pea (Lathyrus sativus L.) (Wiraguna et al., 2020) and

mungbean and blackgram (Vigna mungo L.) (Kyu et al., 2021),

which was oven−dried before sieving in a 2 mm soil

sieving machine.
Experimental design
All experiments were in a split−plot design with three

replications. Within replicates a spatial row–column blocking

design was used to control variation to improve the precision of

treatment comparisons. Stress treatment (waterlogging vs. drained

control) was the main plot factor with genotype in the sub−plots. A

pot was considered an experimental unit. The optimal transient soil

waterlogging duration to identify variation in waterlogging

response for the main factor was four days at the germination

stage and eight days at the seedling stage (Kyu et al., 2021).

Germination stage screening
The screening procedures for waterlogging and data recording

were consistent with our previous findings (Kyu et al., 2021).

Briefly, before sowing, seeds were surface−sterilised with 1%

commercial bleach for 1 min and rinsed with deionised water

four times. P−Pickel T liquid fungicide [Thiram (360 g L–1) +

Thiabendazole (200 g L–1)] was applied at 300 mL 100 kg–1 seed.

Twenty seeds of each genotype were sown per pot at 10 mm depth

and covered with soil. Pots were 0.8 L (90 × 90 × 180 mm) with

drainage holes (~10 mm) in the base, covered with filter paper to

avoid soil loss prior to filling the pots with 100 g gravel, followed by

1 kg soil. Following potting, all pots were placed in 60 L plastic tanks

and kept at 80% field capacity for 2 days before sowing. Twelve

platinum electrodes—six each for drained and waterlogged pots—

were placed at 100 mm depth to monitor soil redox potential

(Zaman et al., 2018).

Immediately after sowing, the waterlogging treatment was

imposed by adding deionised (DI) water to fill the 60 L tanks up

to the level of the soil surface. The soil water table was retained at

the soil surface level throughout the waterlogging treatment by

adding additional DI water to the tanks as required. Drained control

pots were kept at 80% field capacity by adding DI water directly to

the pots as required. After 4 days of waterlogging, treated pots were

relocated into free−draining plastic tanks to record emergence and

seedling growth during recovery. The 80% field capacity was

maintained in the recovery pots by adding additional DI water

as required.

Soil redox potential was measured daily with platinum

electrodes (Pt) and an Ag–AgCl reference electrode using a

handheld Digital Multimeter (Fluke 114, Everett, Washington,

USA). Redox values were calculated according to the method by

Patrick et al. (1996). After 7 days of recovery, germinated seedlings
frontiersin.org
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were gently washed from the soil with tap water for measurements.

Waterlogged and drained control pots were harvested on the

same day.

At harvest, seedlings with at least one trifoliate leaf were

counted as fully grown emerged plants. After plant washing,

harvested plants were separated into shoots and roots and oven

−dried at 60 °C for 3 days to measure dry mass.
Seedling stage screening
For seedling screening, the experimental pots were free

−draining 4 L plastic pots (145 × 145 × 220 mm). Drainage holes

(15 mm) were covered with filter paper before filling with 500 g

gravel followed by 4 kg sieved dry soil. The pots were placed in 60 L

plastic tanks (10 per tank) and retained at 80% field capacity two

days prior to sowing. Each pot received 40 mg kg–1 dihydrogen

ammonium phosphate [(NH4) (H2PO4)] based on the soil analysis

(Supplementary Table 2). The sterilised seeds were placed on

55 mm diameter Grade 1 Whatman filter paper in a 55 mm

diameter Petri dish and incubated overnight in a temperature

−controlled room (25°C). The next day, six germinated seeds

were placed at 30 mm depth. The seeds were inoculated with

Group I mungbean Rhizobium strain CB 1015 (New Edge

Microbial, New South Wales, Australia) and then covered with

2 mm sieved dry soil. Each pot was thinned to two seedlings with

similar vigour 4 days after emergence. Waterlogging was imposed

15 days after sowing (DAS), when the first trifoliate leaf had opened

fully, maintaining the soil water table 10 mm above the topsoil

surface. The drained controlled pots were maintained at 80% field

water capacity. Twelve Pt electrodes—six in waterlogged and six in

drained control pots—were placed at 100 mm depth in randomly

selected pots of each waterlogged and drained soil to measure soil

redox potential. After 8 days of waterlogging, the waterlogged pots

were drained to observe plant growth during 7 days of recovery,

with the experiment terminating at 30 DAS.

SPAD chlorophyll content was measured immediately after the

waterlogging period on the first trifoliate leaves (23 DAS) of

waterlogged and drained control plants with a handheld Minolta

SPAD 502 (Konica−Minolta, Japan). At harvest, the soil was

removed from the roots of each plant with tap water before

phenotyping for four agronomic traits: shoot, root and total dry

mass and adventitious root formation. The number of adventitious

roots was counted. Shoots and roots were separated, oven−dried at

60°C for 3 days and then weighed.
Statistical analysis of phenotypic data

Analyses of variance (ANOVA) of check genotypes and mini

−core collection genotypes were undertaken in a split−split plot

design to understand the homogeneity among cohorts and the effect

of different cohorts on check genotypes, treatments, and their

interactions. Further, best linear unbiased predictors were

determined for block effects using Genstat 21st edition (VSN

International, UK). Tables were constructed using spatial analysis

of row–column design according to linear mixed models (REML:
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means of REML were analysed to estimate genetic diversity

parameters: mean, minimum, maximum, standard deviation,

skewness, and kurtosis. Variance components due to genotype

(s2g), error (s2e) and broad−sense heritability (H2) for each trait

were estimated with RStudio 4.1 (Falconer and Mackay, 2005;

Schmidt et al., 2019). A frequency distribution of variation for the

traits of interest (expressed as % of control) was undertaken. A one

−way ANOVA was performed to assess the relationship between

geographic region of origin and phenotypic responses. Pearson’s

correlation, regression, and principal component analyses (PCA) of

quantitative trait data were carried out in GENSTAT 21st edition to

explore the relationships between variables under waterlogging and

control conditions.
Genomic by sequencing

Identification of Single nucleotide polymorphism (SNP)

markers for the mungbean mini-core collection was done by

Diversity Array Technology (DArT) P/L, Australia (http://

www.diversityarrays.com) using the mungbean genome sequence,

Vardi_ver6 (Kang et al., 2014) as a reference, resulting in 24,870

raw SNPs.
SNP marker filtering and genome-wide
linkage decay

The raw SNP dataset was subjected to stringent quality filtering

using the dartR v2.7.2 package (Gruber et al., 2018; Mijangos et al.,

2022) in R v4.2.2 software (R Core Team, 2022). Loci that did not

map to physical locations on chromosomes within the mungbean

reference genome (6,330 SNPs) were excluded from further

analyses. In addition, 15,018 SNPs with monomorphic loci, call

rates of <0.95 and minor allele frequency (MAF) of <0.05 were

removed. A total of 3,522 high−quality SNPs remained for genetic

analyses after filtering (Supplementary Table 3). The filtered SNPs

were distributed unevenly across the 11 mungbean chromosomes

(Supplementary Table 4), with an average density per chromosome

of one SNP per 91.5 Kb. The filtered SNPs had an average

heterozygosity proportion of 0.22. The pairwise linkage

disequilibrium (LD) between the 3,522 high-quality SNPs was

estimated by allele frequency correlations (r2) using TASSEL

software (V5.1.0) (Bradbury et al., 2007; Tao et al., 2013). LD

decay was estimated by fitting a smooth spline of averaged r2 over

physical distance in R software. The LD decay distance was

calculated at the distance where the average r2 decreased to half

its maximum value (Hill and Weir, 1988; Remington et al., 2001).
Population structure analysis

The population structure of the mini−core genotypes was

analysed using the filtered SNP set in STRUCTURE 2.3.4

(Pritchard et al., 2010). STRUCTURE performs a Bayesian model
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−based clustering approach applying Markov Chain Monte Carlo

(MCMC) estimation (Porras-Hurtado et al., 2013). Nine K values

(K=2:10) with five replicated runs each were analysed. The burn−in

period was set at 5,000 with 10,000 MCMC replications. The

admixture model was chosen as the ancestry model assumption.

The subpopulation (K) values obtained from STRUCTURE were

mined by STRUCTURE Harvester (Earl and von Holdt, 2011). The

most likely structure value was determined using the non

−parametric Wilcoxon test. A threshold of non−admixed

individuals was set at a Q matrix value ≥70%. Admixed

individuals were classified as having Q matrix values <70%.

Principal Component Analysis (PCA) was conducted using the

dartR package in R software. PCs that individually accounted for

>10% of the total observed variation were plotted to reveal

population structure.

Finally, the evolutionary history of the mini−core was inferred

using the neighbour−joining method (Saitou and Nei, 1987). A

bootstrap consensus phylogenetic tree inferred from 100 replicates

(Felsenstein, 1985a) was chosen to best represent the evolutionary

history of the taxa analysed (Felsenstein, 1985b).The optimal tree is

drawn to scale, with branch lengths in the same units as those of the

evolutionary distances used to infer the phylogenetic tree. The

evolutionary distances were computed using the Maximum

Composite Likelihood method (Tamura et al., 2004), with the

number of base substitutions per site as units. The analysis

involved 292 nucleotide sequences. All ambiguous positions were

removed for each sequence pair (pairwise deletion option) of the

final data. Evolutionary analyses were conducted in MEGA11

(Stecher et al., 2020; Tamura et al., 2021).
Genome-wide association studies and
candidate gene prediction

GWAS analyses were undertaken with the R package Genomic

Association and Prediction Integrated Tool, GAPIT version 3

(Lipka et al., 2012; Wang and Zhang, 2021). The analyses were

performed using 3,522 high−quality filtered SNP markers and

phenotypic data expressed as a reduction rate (i.e. % of control)

for emergence, shoot, root, and total dry mass, and SPAD

chlorophyll content. The reduction rate transformation of

phenotype data was necessary so that genetic responses to

transient waterlogging stress could be analysed, rather than

genetic variation underlying inherent agronomic performance,

which would be detected using the original phenotypes under

waterlogged and controlled conditions. Unadjusted phenotype

data were used for adventitious root formation, however, as there

were no adventitious roots in their drained−controlled pots.

Multiple statistical models were tested per trait, including: (i)

general linear model (GLM, Price et al., 2006), (ii) mixed linear

model (MLM, Yu et al., 2006), (iii) compression MLM (CMLM,

Zhang et al., 2010), (iv) fixed and random model circulating

probability unification (FarmCPU; Liu et al., 2016) and (v)

Bayesian−information and Linkage−disequilibrium Iteratively

Nested Keyway (BLINK; Huang et al., 2019). The most

appropriate GWAS statistical model was identified by inspecting
Frontiers in Plant Science 05
the quantile−quantile (Q−Q plots) and Manhattan plots. BLINK

was deemed the most reliable of the five statistical models tested as

it had the least evidence of P−value inflation and was therefore

selected for use in the final analyses.

Significant marker−trait associations were identified using three

different criteria, including: (i) a GWAS threshold P−value equal to 1/

m, where m represents the number of genotype markers analysed

(Wang et al., 2012; Borrego-Benjumea et al., 2021); (ii) an FDR (false

discovery rate) threshold; and (iii) a Bonferroni threshold, equal to 0.01/

n, where n represents the number of genotype markers analysed.

Manhattan plots illustrated the significance of markers associated

with the measured traits (Figures 1, 2). All annotated genes in the

Vradiata_ver6 reference genome assembly (Kang et al., 2014) that were

within average genome−wide LD decay distance of significantly

associated SNP markers were identified as candidate genes for the

corresponding putative transient waterlogging tolerance loci.

Information on candidate gene ontology was sourced from Ensembl

(plants.ensembl.org), AmiGO gene Ontology (amigo.geneontology.org)

and UniProtKB (www.uniprot.org).
Results

Effect of transient waterlogging on soil
redox potential

Soil redox potential was greatly reduced in the waterlogged

treatments, indicating that oxygen had been depleted from the soil.

Such hypoxic/anoxic conditions are experienced in the field as a

result of waterlogging and affect crop growth by preventing aerobic

cellular respiration in root tissues, which is required to generate

sufficient energy for root growth and functioning (i.e. absorption and

transport of water and nutrients to the shoot). At the germination

stage, drained pots had a stable soil redox potential (400 ± 32 mV)

throughout the experimental period. In contrast, in the waterlogged

pots, the soil redox potential declined gradually to 208 ± 10 mV after

4 days of waterlogging, where it remained for 3 days before gradually

increasing during the recovery period, reaching the drained control

value at 10 DAS (Supplementary Figure 1A).

At the seedling stage, the drained pots had a stable soil redox

potential (440 ± 19 mV) from the first day of waterlogging (15 DAS)

to harvest (30 DAS). In contrast, the soil redox potential of the

waterlogged pots gradually decreased, reaching its lowest point 220

± 15 mV after 3 days of waterlogging (18 DAS) before gradually

increasing to 250 ± 35 mV by the end of the waterlogging treatment

(23 DAS) and reaching the control level after 6 days of recovery

(Supplementary Figure 1B).
Germination stage screening

Check genotypes
Check genotypes in the two cohorts [Cohort I (C−I) and Cohort

II (C−II)] were analysed to understand the impact of phenotyping

the mini−core collection in two separate cohorts for practicality

reasons. Significant effects were detected for check genotypes (Gen),
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the transient waterlogging treatment (Treat) and their interaction

(Treat × Gen and Treat × Gen × Cohort) for all traits, including

emergence (%) and shoot, root, and total dry mass (all P ≤ 0.01;

Supplementary Table 5). As the genotypic response to transient

waterlogging was significantly greater than the cohort effect for the

Treat x Gen x Cohort interactions (all P ≤ 0.01; Supplementary

Table 5), data from the two cohorts were combined for analysis of

all traits. Among the check genotypes, VI 4069 had the highest

emergence (62%), followed by Celera II−AU (46%), VI 2537 (46%),

VI 4954 (45%), and VI 2173 (38%), while BARIM−3, BARIM−6

and Jade−AU were the most susceptible (~20%) to waterlogging

(Supplementary Figure 2).

Mini-core collection genotypes
Emergence and dry mass accumulation traits were significantly

affected by Gen, Treat, and Treat × Gen interaction effects (P <

0.001 for all traits; Table 1). Transient waterlogging treatment had

the greatest impact amongst the variables and reduced emergence

by an average of 52% relative to the drained control. However,

genetic effects were also prominent and a wide range of genetic

variation was observed in the mini-core collection (Supplementary

Table 6; Figure 1A), particularly for emergence (ranging from 0 –
Frontiers in Plant Science 06
90% under stress conditions) and root and total dry mass (ranging

from 0 – 0.4 g and 0 – 1.1 g under stress conditions, respectively). As

expected, seedling emergence under transient waterlogging was

moderately correlated with the shoot dry mass (0.58), root dry

mass (0.56) and total dry mass (0.61) (Figure 2A). All traits

exhibited high broad-sense heritability: 81% for emergence, 83%

for shoot dry mass, and 71% for root dry mass (Supplementary

Table 6). Similarly, principal component loadings of seedling

emergence under transient waterlogging correlated highly with

shoot, root, and total dry mass (Supplementary Table 7). The

three principal components had Eigenvalues of 3.14 (PC1), 1.05

(PC2) and 0.57 (PC3), accounting for 63% (PC1), 21% (PC2) and

11% (PC3) of total variability at germination.

This study revealed that the tolerance of germplasm to transient

waterlogging stress, as reflected by all traits except for root dry mass,

significantly varied amongst contrasting geographic regions of

origin (all P ≤ 0.01; Supplementary Table 8). However, this

analysis was highly unbalanced, with 64% of genotypes from

South Asia, 20% from Southwest Asia and 6.8% from Southeast

Asia (Supplementary Table 1). Nonetheless, genotypes from South

Asia and Oceanic Pacific had the highest emergence (51%, 50%)

compared with those from Europe (29%) and Africa (35%).
FIGURE 1

Frequency distribution for the variation in six traits in 292 mungbean mini−core collection genotypes. Data represent the per cent reduction
compared with its control. Unadjusted phenotype data were used for adventitious root formation as there were no adventitious roots in their
drained-controlled pots. At the germination stage: (A) seedling emergence, and at the seedling stage: (B) shoot dry mass, (C) root dry mass, (D) total
dry mass, (E) adventitious root number, and (F) SPAD chlorophyll content on the first trifoliate leaves. Data for seedling emergence were recorded
for seeds exposed to 4 days of soil waterlogging followed by 7 days of recovery. Shoot, root and total dry mass, and adventitious root number were
recorded for seedlings (15 DAS) exposed to waterlogging for 8 days followed by 7 days of recovery. SPAD chlorophyll content was measured at the
end of waterlogging treatment (23 DAS).
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Seedling stage screening

Check genotypes
As with the previous germination growth stage, check

genotypes were analysed to gauge homogeneity between the three

phenotyping cohorts [cohort I (C−I), cohort II (C−II) and cohort III

(C−III)]. Significant differences occurred between Gen, Treat, and

Cohort variables, plus the Treat × Gen and Treat × Cohort

interactions for all traits, but not for the Gen × Cohort or Treat ×
Frontiers in Plant Science 07
Gen × Cohort interactions (Supplementary Table 9). As the

genotypic response to waterlogging was considerably greater than

the cohort effect in the Gen × Cohort interaction, data from the

three cohorts were once again combined for further analysis.

Transient waterlogging at the seedling stage caused notable

reductions in shoot and root growth (P < 0.001) amongst the check

genotypes. The extent of this biomass reduction varied substantially

between genotypes (Supplementary Figures 3A, B). For example,

smaller (yet statically significant, P< 0.001) reductions in root and
TABLE 1 Analysis of restricted maximum likelihood (REML) of the mungbean mini-core population screened at the germination stage for emergence
(%) and shoot, root, and total dry mass.

Variable Source of variation Genotype Treatment Treatment × Genotype

n.d.f* 291 1 291

d.d.f** 1384 1384 1384

Emergence (%) Wald statistic 2760.63 9671.48 1803.99

F statistic 9.49 9671.48 6.2

F pr <0.001 <0.001 <0.001

Total dry mass (g) Wald statistic 3710.12 8570.59 2463.24

F statistic 12.75 8570.59 8.46

F pr <0.001 <0.001 <0.001

Shoot dry mass (g) Wald statistic 2757.35 9565.41 1826.80

F statistic 9.48 9565.41 6.28

F pr <0.001 <0.001 <0.001

Root dry mass (g) Wald statistic 1659.37 3497.50 1330.06

F statistic 5.7 3497.5 4.57

F pr <0.001 <0.001 <0.001
*numerator degrees of freedom.
**denominator degrees of freedom.
The screening was undertaken in two cohorts, with the data combined and analysed to explore genetic variation in mungbean.
A B

FIGURE 2

Correlation heatmaps for traits of interest. (A) germination stage: evaluated after 4 days of waterlogging and 7 days of recovery, (B) seedling stage:
evaluated after 8 days of waterlogging from 15 days and 7 days of recovery. Evaluated traits: emergence (EM), shoot dry mass (SDM), root dry mass
(RDM), total dry mass (TDM), number of adventitious roots (AR), SPAD chlorophyll content on the first trifoliate leaves (SPAD) at 23 DAS. Values
within each cell are Pearson’s correlation coefficient. Significant correlations are indicated by orange and red cells. The blue and green cells indicate
significant negative correlations.
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shoot dry masses were observed in VI 2173, VI 2537, Jade−AU, and

VI 4954, in contrast to genotypes such as Celera II−AU and BARIM

−3, which experienced reduction up to three−fold for these traits. In

terms of adventitious root development under transient

waterlogging stress, Jade−AU and VI 4954 produced the largest

number of new adventitious roots (20 roots on average), including

surface roots, while BARIM−3 produced the least (8 roots on

average) (Supplementary Figure 3C).

Mini−core collection genotypes
Effects of Gen, Treat, and the interaction of these two variables

(i.e. Gen × Treat) significantly differed for all traits examined during

the seedling growth stage, including dry mass (shoot, root, and

total), adventitious root number, and SPAD chlorophyll content (all

P < 0.001). Interestingly, Gen effects were stronger than the Treat or

Treat × Gen effects for shoot, root, and total dry mass traits, whereas

Treat had greater impact on adventitious root formation and SPAD

chlorophyll content (refer to Wald statistics in Table 2).

A wide range of phenotypic responses were observed in

response to transient waterlogging during this growth stage,

indicating substantial variation in genetic stress tolerance within

the mini−core collection. On average, transient soil waterlogging

decreased shoot, root, and total dry mass by 50% after 8 days of

stress compared to the drained controls (Supplementary Table 6).

However, the overall ranges for dry mass were quite extensive. For

example, reductions in root dry mass as small as 7−8% were

observed in 2 genotypes (AGG325698 and AGG325738) while 22

genotypes reported reductions as large as 70−93% (Figure 1).

Similarly, a wide range of phenotypic variation existed for SPAD

chlorophyll content in the first trifoliate leaves by the end of the

recovery period (i.e. 23 DAS; Supplementary Table 6; Figure 1F),

although the average reduction was quite substantial (70%) relative

to the drained controls (Supplementary Table 6). All four traits (dry

masses and SPAD chlorophyll content) were highly heritable with

values ranging from 70% to 81% (Supplementary Table 6). Strong

positive correlations were present as expected between the dry mass

traits under transient waterlogging stress (ranging from 0.77 –

0.97), but SPAD chlorophyll content was very weakly negatively

correlated with all other traits (Figure 2B).

The majority (140 out of 292) of mini-core collection rapidly

produced adventitious roots in the hypocotyl region near the soil

surface. No adventitious rooting was observed in any of the drained

control pots. The number of adventitious roots produced was

somewhat consistent amongst those genotypes producing these

root structures, with 133 genotypes producing 11–15 adventitious

roots, which was similar to the overall average of 12 adventitious

roots per genotype (Supplementary Table 6; Figure 1E). However,

seven genotypes produced >20 adventitious roots (AGG325560,

AGG325593, AGG325634, AGG325733, AGG32514, AGG325718,

AGG325726). Overall, the formation of these root structures

appeared to be moderately correlated with shoot dry mass (0.57),

root dry mass (0.58) and total dry mass (0.61) (Figure 2B).

Additionally, the trait of adventitious root formation appeared

to have moderate heritability of 56% (Supplementary Table 6),

although this was the lowest reported for all traits at either growth
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stage. Some adventitious roots grew along the surface of the soil and

visual observation identified nodules on some of these, but they

were not measured.

In the PCA analysis, the first three components accounted for

87% of the total variation in the data (39% PC1, 30% PC2 and 17%

PC3) (Supplementary Table 7). The individual contributions to

total variance were highest for adventitious root numbers in PC1

and PC2 (0.62 and 0.76). However, for PC1, SPAD chlorophyll

content had a negative contribution (–0.68), while it had a positive

contribution in PC3 (0.57).
Genetic diversity, population structure and
LD analysis

The STRUCTURE analysis revealed the presence of three

distinct subpopulations (Figure 3A) comprising 97 genotypes, 46

genotypes and 149 genotypes, respectively. These subpopulations

neatly resolved into distinct groups in the PCA, in which the first

two PCs explained 28.36% of the total observed variation

(Figure 3B). Furthermore, the phylogenetic tree also identified

three major clusters. The three clusters did not correspond to the

geographic regions of origin: South Asian genotypes were found

across the entire population but predominantly in subpopulation 1.

Genotypes from Africa, East Asia, Europe, Mexico, Oceanic Pacific,

Southeast Asia, and Southwest Asia were in subpopulation

3 (Figure 4).

Using a threshold r2 value of 0.1, genome−wide LD was found

to decay at 328,518 bp (Figure 5). This distance exceeded the

average distance between SNPs on al l chromosomes

(Supplementary Table 4), indicating that the 3,522 filtered SNPs

(MAF ≤ 0.05) were adequate for GWAS in the current study.
GWAS and candidate gene discovery

A total of five SNPs on chromosomes 1, 7, 8, and 11 (Table 3)

were associated with transient waterlogging tolerance at the

seedling stage. Adventitious root formation was associated with a

SNP (SNP_1424) located on chromosome 7 within an exon of an

FGGY carbohydrate kinase domain-containing protein gene

(Figure 6A; Table 3). Furthermore, several plausible candidate

genes were identified within the LD decay distance of significant

SNP associations for the traits of adventitious root formation

(Supplementary Table 10).

The shoot dry mass trait was associated with a genomic region

on chromosome 1 (SNP_1721) containing mRNA-uncharacterised

protein LOC111241851 (Figure 6B; Table 3). The root dry mass

trait was associated with the coding sequence of Caffeoyl-CoA O-

methyltransferase At4g26220, also referred to as AtCCoAOMT

(Figure 6C; Table 3). Meanwhile the total dry mass of mungbean

plants under waterlogged condition was associated with the MORC

family CW-type zinc finger protein 3 and zinc finger protein 2B

(Figure 6D; Table 3). Finally, the SPAD chlorophyll content on the

first trifoliate leaves was associated with a SNP (SNP_2963) located
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on chromosome 8 (Figure 6E; Table 3) within an exon of an 3

−oxoacyl−[acyl-carrier-protein] synthase, mitochondrial, gene.

FAR1−RELATED SEQUENCE 5−like and alcohol dehydrogenase

class−3 were among other candidate genes observed within LD

decay distance of the SNP (Supplementary Table 11). The current

study did not identify the significant association between DArT-seq

markers and the phenotypic traits of emergence.
Discussion

This study represents the first report of genomic variation for

transient soil waterlogging tolerance in a diverse collection of

mungbean germplasm and contributes to a broader understanding

of transient waterlogging tolerance in pulses. The pot−based

screening methodology (Kyu et al., 2021) was adopted to create

uniform hypoxic conditions, identifying variation in waterlogging

tolerance within the mungbean mini−core germplasm collection at

the germination and seedling growth stages. All traits of interest

related to waterlogging stress tolerance and recovery (including

emergence; adventitious root formation; shoot, root, and total dry

mass; and SPAD chlorophyll content of leaves) exhibited a wide

range of phenotypes. The high broad-sense heritability estimates for

each of these traits indicates that this variation is largely due to

genetic effects and demonstrates the possibility of selecting for
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waterlogging tolerance during breeding of climate−resilient

mungbean cultivars. Furthermore, we identified multiple genotypes

within the mini−core collection that may be used as parental donors

for transient waterlogging stress tolerance loci in breeding due to

their high emergence (AGG325612, AGG325667, AGG325523),

production of root dry mass (AGG325758, AGG325732,

AGG325695, AGG325734, AGG325761), and development of large

numbers of adaptative adventitious roots (AGG325560, AGG325593,

AGG325733, AGG325634, AGG325718, AGG325514, AGG325726)

during transient waterlogging. While the majority of these valuable

genotypes are of South Asian origin, the discovery of two genotypes

from African and Oceanic Pacific origins demonstrates the potential

of discovering adaptive genetics (including potentially unique loci)

from multiple regions and reinforces the value of broad germplasm

screening in pre−breeding research.

Understanding the strategies used by a species to cope with

transient waterlogging stress and identifying genetic variation

associated with transient waterlogging tolerance traits are

prerequisites to breed for tolerance. Considerable variation in

waterlogging tolerance exists within and between grain legume

species. For example, faba bean (Vicia faba L.) produces

adventitious roots and aerenchyma (increasing root porosity by

9%); thus, it is more tolerant to short-term waterlogging than yellow

lupin (Lupinus luteus L.), grass pea, narrow-leaf lupin (Lupinus

angustifolius L.), chickpea (Cicer arietinum L.) and lentil (Lens
TABLE 2 Analysis of restricted maximum likelihood (REML) of the mini-core collection genotypes screened in three cohorts at the seedling stage for
shoot, root and total dry mass, adventitious root number and SPAD chlorophyll content.

Variable Source of variation Genotype Treatment Treatment × Genotype

Total dry mass (g) n.d.f* 291 1 291

d.d.f** 1258 1258 1258

Wald statistic 1409.1 1302.8 296.3

F statistic 4.8 1302.8 1.0

F pr <0.001 <0.001 <0.001

Shoot dry mass (g) Wald statistic 1211.26 1032.57 270.72

F statistic 4.1 1032.6 0.9

F pr <0.001 <0.001 <0.001

Root dry mass (g) Wald statistic 1651.04 1320.04 354.3

F statistic 5.7 1320.0 1.2

F pr <0.001 <0.001 <0.001

Adventitious root number Wald statistic 662.06 6513.08 664.34

F statistic 2.3 6513.1 2.3

F pr <0.001 <0.001 <0.001

SPAD chlorophyll content Wald statistic 942.58 4532.3 538.6

F statistic 3.2 4532.3 538.6

F pr <0.001 <0.001 <0.001
*numerator degrees of freedom.
**denominator degrees of freedom.
The cohort data were combined and analysed to explore the genetic variation.
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culinaris Med. subsp. culinaris) (Solaiman et al., 2007). Limited

research has explored the mechanisms for tolerance in mungbean to

date, and studies that have been conducted have largely explored

coping strategies during reproductive development (Van Haeften
Frontiers in Plant Science 10
et al., 2023). Here, we have examined how the species responds to

stress during earlier stages of growth.

We confirmed that mungbean seeds do not germinate during

transient waterlogging, and that variation in transient waterlogging

tolerance was related to maintaining seed viability under hypoxia

and subsequent emergence on the release of hypoxia. Tolerant

genotypes (i.e. AGG325523, AGG325612, AGG325667) had similar

emergence percentages to the drained controls after removing the

stress, but sensitive genotypes (i.e. AGG325528, AGG325569,

AGG325491) failed to emerge and died (Supplementary

Table 12), similar to barley germplasm screened for waterlogging

tolerance (Takeda and Fukuyama, 1987). In other legumes, such as
A

B

FIGURE 3

Population structure of 292 mungbean mini-core genotypes: (A)
Classification of three populations using structure 2.3.4. The optimal
number of clusters (k=3) is estimated based on the absolute value of
the second-order rate of change in the likelihood distribution. Each
vertical bar represents a single accession, and the length of each bar
represents the proportion contributed by each population. The
colour code indicates the distribution of mini-core genotypes to
different populations: subpopulation 1 (red), subpopulation 2 (green)
and subpopulation 3 (blue). (B) Genetic association of three
subpopulations of mini-core collection genotypes based on 3,522
markers developed from DArT sequencing, revealed by a principal
component analysis (PCA).
FIGURE 4

Diversity of mungbean mini-core collection genotypes. Neighbour-joining tree analysis of 292 mungbean mini core genotypes: 186 from South Asia,
57 from Southwest Asia, 20 from Southeast Asia, seven from Ocean Pacific, five from East Asia, two from Europe, two from Africa, two from South
America and 11 of unknown origin. The analysis was based on a bootstrap consensus phylogenetic tree inferred from 100 replicates to represent the
evolutionary history of the taxa analysed.
FIGURE 5

The LD decay was estimated from single-nucleotide polymorphism
(SNP) genotypes of 292 mungbean mini-core collection genotypes.
The curve represents the average LD of 11 chromosomes of the
mini core population. The LD decay at r2 = 0.1 with ~328 Kb.
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soybean, waterlogging tolerance is related to the thickness of the

seed aleurone layer, with tolerant genotypes absorbing water more

slowly than sensitive genotypes (Tian et al., 2005; Sato et al., 2019).

Moreover, Powell and Matthews (1979) reported that pea seeds

rapidly absorbed water under soil waterlogging, but the inhibited

respiration rate decreased the formation of adenosine triphosphate

(ATP) (Johnson et al., 1989), resulting in poor seed viability

and germination.

At the seedling stage, transient waterlogging stress reduced

shoot and root relative growth (% of control) and SPAD

chlorophyll content in mungbean. In response to the stress,

tolerant germplasm produced adventitious roots primarily in the

hypocotyl region (Figure 7), as rapidly as 2–4 days after the onset of

transient waterlogging, including some of which grew along the

surface of the soil. As a result, genotypes that formed adventitious

roots in response to transient waterlogging had higher root and

shoot dry mass and SPAD chlorophyll content than genotypes that

did not form such new roots (Supplementary Table 13).

Adventitious root formation is a significant trait in many

waterlogging− and flood−tolerant plant species (Jackson and

Armstrong, 1999), including soybean (Valliyodan et al., 2014;

Kim et al., 2015), common bean (Soltani et al., 2018), cotton

(Zhang et al., 2021), barley (Borrego-Benjumea et al., 2021) and

wild maize (teosinte) (Mano et al., 2005). In contrast to the primary

root system that has limited capacity for gas exchange at depth

under waterlogged conditions, newly formed adventitious roots

avoid hypoxia/anoxia due to their location above the soil, at the

soil surface, and/or at shallow soil depths, and thereby enhance the

overall uptake of oxygen into the root system (Gonin et al., 2019).

Additionally, they contain aerenchyma (i.e. spongy tissues that act

as internal channels for oxygen transport) and may also have

specialised structures called radial oxygen loss (ROL) barriers that

minimize the loss of oxygen to the rhizosphere and efficiently direct

it across and along the roots to the meristematic tissues (Yamauchi

et al., 2018). Consequently, adventitious roots are able to

compensate, at least to some extent, for the impaired function of

the primary root system and enable plants to continue acquiring

water and nutrients (Colmer and Greenway, 2011; Voesenek and

Bailey-Serres, 2013; Steffens and Rasmussen, 2016), which

contributes to plant survival under stress. In addition to

differences in adventitious roots, a range of phenotypic variation

was observed more generally for root systems; some genotypes had

short taproots and a limited number of lateral roots (i.e.

AGG325470, AGG325474, AGG325479).

Several studies have recently identified genetic loci and

candidate genes associated with waterlogging tolerance in model

pulses. In common bean, GWAS analysis using ~150 K SNPs

identified candidate genomic regions at Pv08/1.6 Mb and Pv02/41

Mb relating to physiological responses of germination rate and root

weight under waterlogging (Soltani et al., 2017). These two regions

were also identified in soybean QTLs for waterlogging tolerance,

indicating that they might control the evolutionary pathway for

stress tolerance in pulses. Ye et al. (2018) reported that dominant

alleles at qWT_Gm03 controlled waterlogging tolerance at the

vegetative stage in soybean. However, beyond these findings, it is
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unclear which genetic pathways contribute to waterlogging

tolerance in pulses (Soltani et al., 2017).

The inheritance of waterlogging tolerance in mungbean was

dissected in this study by marker−trait associations for the first

time. This was made possible by the recent development of new
Frontiers in Plant Science 12
genetic and genomic resources for mungbean, including a reference

genome assembly (Kang et al., 2014) and DArTseq markers for a

mini−core germplasm collection (Schafleitner et al., 2015). One of

the main advantages of GWAS is that it can assess greater genetic/

allelic diversity for a species using a natural population than is
A

B

D

E

C

FIGURE 6

Manhattan diagrams of genome−wide association mapping results for mungbean mini-core collection at the seedling stage: (A) adventitious root
formation, (B) shoot dry mass, (C) root dry mass, (D) total dry mass and (E) SPAD chlorophyll content. The x-axis indicates the SNP location along the 11
mungbean chromosomes, while the y-axis represents –log10(p) for the p-value of the marker-trait association. The red horizontal line represents the
genome-wide significant SNPs threshold of p-values = 5 × 10-8. The blue horizontal line denotes the 5% Bonferroni-corrected threshold for
3,522 markers.
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possible using bi−parental populations for linkage mapping (Korte

and Farlow, 2013). In addition, historical recombination events

within natural populations can provide greater mapping resolution

than achieved using genetic populations in linkage mapping,

provided that low levels of linkage disequilibrium (i.e., small LD

decay distances) exist in the GWAS mapping population and a large

number of genetic markers (saturating the entire genome) are used

(Korte and Farlow, 2013).

At the germination stage, we unfortunately did not identify any

genomic regions associated with emergence after four days of

transient waterlogging, despite this trait having strong heritability.

The reason for this is very likely to be the small number of SNPs

used in our analysis due to stringent quality filtering. Given the

strong heritability we observed (H2 = 0.81), we suspect it very likely

that strong associations would be found in the mini-core collection

of mungbean germplasm in future studies that are able to utilise

higher densities of markers, for example, derived through whole

genome resequencing.

At the seedling stage, a number of candidate genes were identified

within five associated genomic regions. Although more genetic

associations are very likely to be found in future studies employing

higher densities of molecular markers, the identified genomic regions

and associated markers identified in this study will be valuable as an

initial foundation for isolating transient waterlogging tolerance genes

to improve mungbean breeding. Additionally, the corresponding

candidate genes may enhance our understanding of potential

strategies and genetic pathways that provide waterlogging tolerance

in mungbean (Supplementary Tables 10, 11).

The GWAS analysis revealed that adventitious root formation

under waterlogging stress was possibly associated with FGGY

carbohydrate kinase domain−containing. Interestingly, this
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suggests a link between carbohydrate metabolism and

adventitious root development during transient waterlogging, in

addition to the shift in metabolism from aerobic to anaerobic

pathways and the availability of soluble sugars during low oxygen

stress (Bailey-Serres and Voesenek, 2010). In sorghum seedlings,

the FGGY carbohydrate kinase family shares the same phylogenetic

nodes with plant−growth−promoting rhizobacteria (PGPR),

including several phytobeneficial and desired traits such as

increased production during biotic or abiotic stress (Etesami and

Maheshwari, 2018). Further investigations of the biological function

(s) in plants of FGGY are needed (Singh et al., 2017) and, as

highlighted here, should include the potential link to adventitious

rooting during waterlogging stress in mungbean. Several other

plausible candidate genes related to abiotic stress were also

identified for this trait, however, and should similarly be explored

further (Supplementary Table 10). For example, AAA−ATP

At5g57480 has novel ATPase activity that is associated with the

formation of hypocotyl-derived adventitious roots in cucumber (Xu

et al., 2018).

We identified that Caffeoyl-CoA O-methyltransferase

At4g26220, also referred to as AtCCoAOMT, is associated with the

root dry mass for the waterlogging tolerance in mungbean. GO

annotations indicate that AtCCoAOMT enables O-methyltransferase

activity (Burge et al., 2012) and S-adenosylmethionine-dependent

methyltransferase activity (Tang et al., 2019). The AtCCoAOMT

protein is an enzyme active in the phenylpropanoid pathway within

plants, which is integral to the production of various secondary

metabolites, including lignin, flavonoids, and phytoalexins, all of

which serve vital functions in plant defense, structural integrity, and

response to environmental stressors. Lignin, in particular, is essential

for maintaining cell structure and enhancing resistance to both biotic

and abiotic stresses (Bhuiyan et al., 2009; Weng et al., 2010; Srivastava

et al., 2015). O-Methylation plays a key role in lignin biosynthesis,

stress tolerance, and disease resistance in plants (Lam et al., 2007). The

O-methyltransferase genes exhibit diverse responses to environmental

stresses and developmental processes, including salt stress and fibre

development in cotton (Hafeez et al., 2021), lodging resistance and

feedstock quality associated with lignin content in wheat (Nguyen et al.,

2016), and putative roles in development and stress tolerance such as

low temperature, hormone, and drought stress in peanut (Cai

et al., 2023).

Our GWAS analysis revealed that the total dry mass of

mungbean plants under waterlogged condition is associated with

the genes encoding MORC family CW-type zinc finger protein 3 and

zinc finger protein 2B (Table 3). Recent studies reported that

microrchidia (MORC) proteins are a family of evolutionarily

conserved GHKL-type ATPases involved in chromatin compaction

and gene silencing. Furthermore, the MORC-mediated repression of

gene expression is particularly important under conditions of stress

(Zhong et al., 2023). The ORC proteins also act downstream of DNA

methylation to suppress gene expression and are also involved in

plant immunity — protecting plants against potential pathogens by

interacting with plant resistance proteins (Kang et al., 2008; Moissiard

et al., 2012). Additionally, GO annotations indicate that MORC

family CW-type zinc finger protein 3 and zinc finger protein 2B

proteins are located in the nucleus and enable ATP hydrolysis (Tang
FIGURE 7

Mungbean (cv. Jade−AU) root development under waterlogged and
drained control conditions: (A) formation of adventitious roots in
mungbean seedlings in response to 8 days of transient soil
waterlogging, and (B) root development under drained control
conditions. Note the presence of new white adventitious roots on
the waterlogged plants.
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et al., 2019) and zinc ion binding activities (Burge et al., 2012).

Enabling of ATP hydrolysis and zinc ion binding activities in plants

under waterlogged stress involved complex molecular mechanisms

that help plants cope with adverse environmental conditions. ATP

hydrolysis activity and zinc ion binding play crucial roles in plant

adaptation to abiotic stress by providing energy for cellular processes,

maintaining ion homeostasis, regulating enzyme activity, and

enhancing antioxidant defense mechanisms (Li et al., 2022).

Understanding the interplay between ATP hydrolysis and zinc ion

binding could provide insights into the molecular mechanisms

underlying plant responses to waterlogging stress and inform

strategies for improving plant resilience and productivity in

waterlogged conditions.

In the current study, an OXSM gene that encodes a 3−oxoacyl

−[acyl−carrier−protein] synthase mitochondrial protein and beta-

ketoacyl synthetase (Table 3) was identified as a possible candidate

gene related to leaf chlorophyll content during transient

waterlogging. There are three isoforms of ketoacyl−[acp]

synthase, namely KASI, KASII, and KASIII. In Arabidopsis, a T

−DNA insertion mutant, KASI showed multiple morphological

defects, including chlorotic and curly leaves, reduced fertility, and

semi−dwarfism, demonstrating pleiotropic effects of FA synthesis

on plant growth (Wu and Xue, 2010). The current study observed

chlorotic, curly leaves and semi−dwarf plants in the waterlogging

treatment. However, further studies are needed to confirm what

type of ketoacyl−[acp] synthase is involved in the tolerance of

mungbean to transient waterlogging stress, especially in the

chlorophyll content and photosynthesis pathway. Other proteins

within the estimated LD length include regulating plant immunity

(Supplementary Table 11).

In summary, this study has identified useful phenotypic variation

for transient waterlogging-tolerance traits within the mungbean mini

−core germplasm collection and has contributed to an improved

understanding of the genetic control of waterlogging tolerance

during germination and seedling development. Together, these

findings provide new insights into the significance of transient

waterlogging tolerance traits in mungbean, such as adventitious root

formation, and genomic regions and candidate genes associated with

transient waterlogging tolerance. Further studies are required to

validate these results and to determine the correlation between the

temperature−controlled glass house condition in this study and

field conditions.
Conclusion

The genetic diversity for transient waterlogging tolerance in the

mungbean mini−core collection was explored under controlled

conditions during germination and seedling growth stages using

GWAS. Efficient screening methodology helped discriminate between

susceptible and tolerant germplasm and identify key traits related to

tolerance, such as the formation of adventitious roots in response to

experiencing transient waterlogging. Thirty−seven genotypes were

identified as being tolerant at both developmental stages, with 20

(7%) genotypes being tolerant at germination and 17 (6%) genotypes at
Frontiers in Plant Science
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the seedling stage. These genotypes could be used as donors for

waterlogging tolerance in breeding programs and enable the

development of new varieties with favourable combinations of alleles

at both stages of plant development. Nevertheless, the genomic

associations and corresponding candidate genes identified through

GWAS in this study strengthen our understanding of the genetic

mechanisms underlying transient waterlogging tolerance in mungbean.

Furthermore, the significantly associated SNPs may be used to design

robust molecular markers for future marker-assisted breeding of

climate−resilient cultivars that can withstand waterlogging. This will

be imperative for mitigating the detrimental effects of waterlogging

stress on crops and reducing losses for mungbean growers.
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SUPPLEMENTARY FIGURE 1

Soil redox potential during (A) germination stage, (B) seedling stage in the
mini-core collection genotypes under waterlogged (WL) and drained

(Control) conditions. At germination, WL was imposed immediately after

sowing for 4 days, followed by 7 days of recovery, with the experiment
terminating at 11 DAS. At the seedling stage, WL was imposed at 15 DAS,

followed by 7 days of recovery, with the experiment terminating at 30 DAS.
The arrows indicate the first day of waterlogging and the first day of recovery

after the end of the WL treatment. The data are means of six soil redox
potential for each treatment in each cohort. Vertical bars represent standard

errors ( ± SE) of the mean.

SUPPLEMENTARY FIGURE 2

Effect of transient waterlogging (WL) at the germination stage on the
emergence (%) of eight check genotypes from the mungbean mini-core

collection screened in two cohorts [Cohort I (C-I) and Cohort II (C-II)]. The
check genotypes were replicated five times in each cohort. WL was imposed

immediately after sowing for 4 days, followed by 7 days of recovery, with the

experiment terminating at 11 DAS. The data are means for each genotype in
each treatment; vertical bars represent standard errors ( ± SE) and least

significant differences (LSD) at P = 0.05 for genotype.

SUPPLEMENTARY FIGURE 3

Effect of transient waterlogging (WL) on (A) shoot dry mass, (B) root dry mass,

and (C) adventitious root formation of eight check genotypes from the

mungbean mini-core collection screened under transient waterlogging in
three cohorts [C-I, C-II, C-III] at the seedling stage. WL was imposed at 15

DAS, followed by 7 days of recovery, with the experiment terminating at 30
DAS. The data are means for each genotype in each treatment; vertical bars

represent standard errors ( ± SE) and LSD at P = 0.05 for genotype.
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