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Influence of concentration, temperature
and humidity on the toxicity of phosphine
to the strongly phosphine-resistant psocid
Liposcelis bostrychophila Badonnel
(Psocoptera: Liposcelididae)
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Abstract

BACKGROUND: The psocid Liposcelis bostrychophila Badonnel, is a widespread, significant pest of stored
commodities, has developed strong resistance to phosphine, the major grain disinfestant. The aim was to develop
effective fumigation protocols to control this resistant pest.

RESULTS: Time to population extinction of all life stages (TPE) in days was evaluated at a series of phosphine
concentrations and temperatures at two relative humidities. Regression analysis showed that temperature,
concentration and relative humidity all contributed significantly to describing TPE (P < 0.001, R2 = 0.95), with
temperature being the dominant variable, accounting for 74.4% of the variation. Irrespective of phosphine
concentration, TPE was longer at lower temperatures and high humidity (70% RH) and shorter at higher
temperatures and low humidity (55% RH). At any concentration of phosphine, a combination of higher temperature
and lower humidity provides the shortest fumigation period to control resistant L. bostrychophila. For example,
19 and 11 days of fumigation are required at 15 ◦C and 70% RH at 0.1 and 1.0 mg L−1 of phosphine respectively,
whereas only 4 and 2 days are required at 35 ◦C and 55% RH for the same respective concentrations.

CONCLUSIONS: The developed fumigation protocols will provide industry with flexibility in application of
phosphine.
Copyright  The State of Queensland (through the Department of Primary Industries and Fisheries) 2008.
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1 INTRODUCTION
Over the last decade, the importance of phosphine
fumigation in the management of stored-product
pests has risen significantly worldwide owing mainly
to the gradual phasing out of methyl bromide, a
lack of suitable alternatives and increasing consumer
sensitivity towards insecticide residues. The foremost
advantage of phosphine over other fumigants has been
its global acceptance by most markets as a residue-free
commodity treatment. Moreover, phosphine is cheap,
easy to apply and can be used in a wide range of storage
types and commodities. However, the development of
resistance in a range of storage pests has emerged
as a major threat to the sustainability of this unique
material.1–6

Resistance to phosphine has been documented in
a range of coleopterous and lepidopterous pests.1–9

In addition, phosphine resistance has been reported
in several species of wingless psocids belonging to the

genus Liposcelis.10–13 These insects have emerged as
widespread, significant pests of stored commodities
internationally in the past 15 years.10,11,14–20 Resis-
tance to phosphine has been reported in L. ento-
mophila (Enderlein) from Indonesia10 and China,11

in L. bostrychophila Badonnel from India12 and in
three Liposcelis spp. from Australia.13 In Australia,
although resistance has developed in L. entomophila,
L. decolor and L. bostrychophila, it is strongest in L.
bostrychophila.13 Effective control of these insects is
problematic, as current fumigation recommendations
are based on responses of the major coleopterous pests
and are inadequate to control these highly resistant
psocid strains.13 There is a strong need to establish
effective fumigation protocols to control these insects
in grain in order to ensure continued market access,
grain quality and food security.

Phosphine concentration, exposure period and grain
temperature are major variables that determine the
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toxicity of phosphine. It had been demonstrated in
several pest species that a change in any one of these
factors independently or in combination would result
in a change in efficacy against a target pest,7,21–25

and these variables have been considered in this
work. Psocids are highly dependent on environmental
moisture and thrive at higher humidities.26,27 Optimal
environmental relative humidity for L. bostrychophila
is 70% at 30 ◦C.15 Therefore, the additional variable
of humidity was also included in the study.

The aim of the present research was to quantify the
influence of concentration, temperature and humidity
on phosphine toxicity and to use these data to establish
practical fumigation protocols for use by industry. The
range of each variable examined in this work reflects
the application of phosphine by industry and the range
of storage conditions experienced.

2 MATERIALS AND METHODS
2.1 Test insects
Experiments were conducted on a strain of L.
bostrychophila (SLB3) collected from a central storage
at Karkoo, South Australia, in 1997. With a 67-
fold resistance compared with a reference susceptible
strain, SLB3 has the strongest level of resistance to
phosphine yet detected in Australia in this species.13

This resistance factor was calculated by dividing 0.03
by 2.0 mg L−1, the lowest concentrations that achieved
complete mortality of all life stages of susceptible
and resistant insects, respectively, in 6 days. SLB3
has maintained its original level of resistance in spite
of not having been selected in the laboratory. The
resistance genotype may have been already fixed in
the original population sample of this parthenogenetic
species. Cultures were maintained on a medium
comprised of whole wheat, kibbled wheat, whole
wheat flour and brewer’s yeast (10 + 10 + 10 + 0.1 by
weight) in constant conditions of 30 ± 1 ◦C, 70 ± 2%
relative humidity (RH) and photoperiod of 12:12 h
light:dark.28

2.2 Time to population extinction (TPE) assays
Response to phosphine was measured by exposing
mixed-age cultures of psocids to fixed concentrations
of phosphine in gas-tight desiccators (6 L capacity).
Cultures of L. bostrychophila were specially generated
over a 6 week period so that they contained all life
stages living in the culture medium described in
Section 2.1. About 25 g of culture medium containing
a mixed-age sample of psocids (approximately 2000
individual nymphs and adults, with an unknown
number of eggs) was placed in a plastic soufflé
cup (30 mL capacity) and sealed with a perforated
lid. Three cups were arranged in a desiccator for
each treatment and each treatment was replicated.
Controls were exactly the same as treatments
except that they were not dosed with phosphine.
Phosphine concentrations of 0.1, 0.17, 0.3, 0.5,
0.7 and 1.0 mg L−1 were tested at 15, 20, 25,

30 and 35 ◦C, and at 55 and 70% RH. All
experiments were undertaken in constant conditions
at specified temperatures ±1 ◦C and RH ±2%. The
range of phosphine concentrations tested represents
those likely to be used in practice, and, similarly,
the environmental conditions chosen reflect those
encountered by industry and in which phosphine may
be applied. Experimental cups containing mixed-age
psocid colonies were arranged in open desiccators and
left in each test environmental regime for at least
a week before fumigation to ensure equilibration to
the specified conditions and to rule out any pre-
or post-fumigation temperature effects on phosphine
toxicity.23

The experimental fumigation procedure was the
same as described previously.16 Phosphine was gen-
erated from a commercial aluminium phosphide
formulation and captured over acidified water. Its
concentration was measured using a gas density bal-
ance chromatograph (Aerograph model 90-P; Varian,
Mount Waverley, Victoria, Australia). Phosphine was
collected from this source using a gas-tight syringe
and was injected through a rubber septum in the lid of
the experimental desiccator to give the required con-
centration. Insects were removed from the fumigation
after a predetermined exposure period and left in the
same temperature/humidity regime for up to 4 weeks.
This period was intended to overcome the potential
problem of any delay in hatching of psocid eggs that
may have occurred owing to the fumigation.29 At the
end of the 4 week recovery period, each test cup was
sieved and inspected for the presence of live insects.
The criterion of response was population extinction
(i.e. no live psocids in any of the three cups). In this
way, the time taken, in days, to control all life stages
completely was determined for each phosphine con-
centration under each temperature/humidity regime.
Results were recorded simply as the least number of
whole days taken to achieve population extinction.
Phosphine concentration was monitored randomly
throughout the experiments using a gas chromato-
graph (Varian Star 3600X) fitted with a pulsed-flame
photometric detector to confirm that there was no loss
of the gas during exposure periods.

2.3 Statistical analysis
The relationship between time to population extinc-
tion and the variables concentration, temperature and
relative humidity was examined using multiple linear
regression analysis in GenStat 8.30 A full model was
fitted, including all possible two-way and the three-
way interactions. Using backwards selection, terms
that were not significant at the 5% level were excluded
from the final model.

3 RESULTS
Throughout the experiments, even in the most
extreme conditions (55% RH and 35 ◦C), psocid
populations in control treatments survived as expected
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and continued to grow. Overall, there was a steady
decrease in time to population extinction from the
regimes of low concentration and low temperature
towards the regimes of high concentration and high
temperature (Figs 1a to e). At each temperature,
except 35 ◦C, time to population extinction took
longer at 70% than at 55% RH, although relative
humidity had less effect on response to phosphine
as temperature increased. At 35 ◦C, TPE was equal
for the two humidities at 0.3 and 1 mg L−1, and
an additional day was required at concentrations of
less than 0.3 mg L−1 to achieve population extinction

at 55% RH compared with 70% RH, reversing
the general trend (Fig. 1e). There was also an
overall trend for concentration to have less effect
on response to phosphine as temperature increased
(Fig. 1), demonstrated by the flattening of response
lines with each increase in temperature. Regression
analysis revealed that concentration, temperature
and relative humidity all contributed significantly
to describing the time to population extinction
(P < 0.001, R2 = 0.95), with temperature being the
dominant variable and accounting for 74.4% of the
variation. The three-way interaction (P = 0.6740) and

(e)

(d)(c)

(b)(a)

Figure 1. Time to population extinction (in days) of strongly resistant Liposcelis bostrychophila at a range of phosphine concentrations and
temperatures [(a) 15 ◦C, (b) 20 ◦C, (c) 25 ◦C, (d) 30 ◦C and (e) 35 ◦C] and at two humidities (55 and 70% RH); observed data (� 55%, � 70%) and
fitted regressions (dashed line 55%, solid line 70%).
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the concentration × RH interaction (P = 0.745) did
not contribute significantly to the model and so were
omitted.

The regression equation is as follows:

Time to Extinction = −8.65(±4.69)

+ 0.279 (±0.18)(temperature)

− 15.31 (±1.75)(concentration)

+ 0.6389 (±0.0734)(relative humidity)

+ 0.4257 (±0.0675)(temperature

× concentration)

− 0.01756(±0.00282)(temperature

× relative Humidity)

This equation reflects the fact that an increase
in temperature or concentration decreases the time
to extinction, while an increase in relative humidity
increases the time to extinction (Figs 1a to e).

In general, TPE decreased as temperature and rel-
ative humidity increased (Fig. 1). However, increases
in phosphine concentration did not always result in
concomitant decreases in TPE. At lower tempera-
tures, 15, 20 and 25 ◦C, there was no change in TPE
with increases in phosphine concentration from 0.1 to
0.3 mg L−1, and there were only limited decreases in
TPE with increasing phosphine concentration at 30
and 35 ◦C (Fig. 1). At the higher concentrations, there
was a general trend of decreasing TPE with increas-
ing concentration across all temperatures. Shortest
TPEs were recorded against highest concentrations of
phosphine at the highest temperature. In almost every
case, insects fumigated at 70% RH were more tolerant
than those fumigated at 55% RH. The maximum time
recorded for population extinction of strongly resistant
L. bostrychophila was 19 days at 15 ◦C and 70% RH
fumigated with phosphine at 0.1, 0.17 or 0.3 mg L−1,
whereas the minimum TPE was 2 days for concentra-
tions of 0.5, 0.7 and 1.0 mg L−1 at 35 ◦C and 70%
RH (Fig. 1). This minimum time was also recorded
for 1.0 mg L−1 at 30 and 35 ◦C at 55% RH. At 35 ◦C,
the difference between the longest and shortest times
to population extinction was only 2 days across all
concentrations and two humidities.

4 DISCUSSION
The aim of the present work was twofold: to
quantify the influence of concentration, temperature
and humidity on phosphine toxicity to the psocid L.
bostrychophila, and to employ these data to establish
practical fumigation protocols for use by industry.
Of the three variables tested in relation to time
to population extinction, temperature exerted the
most effect, accounting for almost three-quarters of
the variation in response. Irrespective of phosphine
concentration, time to population extinction in
psocids was longer at lower temperatures and shorter

at higher temperatures. Higher relative humidity
increased survival of psocids at lower temperatures,
but the influence of relative humidity on toxicity
was reduced markedly as temperature increased. It
is evident that, at any concentration of phosphine,
a combination of higher temperature and lower
humidity will provide the most effective control of
strongly resistant L. bostrychophila populations. The
observation that phosphine toxicity increases with
increasing temperature in L. bostrychophila is consistent
with data from studies of a range of beetle21–23,25

and moth7,24 species. Hole et al.22 suggested that
this phenomenon may be due to slowing down of
several physiological processes such as metabolic rate
and oxygen consumption, which in turn prolong the
development of tolerant stages into more susceptible
stages. More recently, Chaudhry et al.25 demonstrated
a progressive increase in uptake of phosphine in both
susceptible and resistant strains of the cigarette beetle,
Lasioderma serricorne (F.), with increase in temperature
from 5 to 25 ◦C, eventuating in higher mortalities.

Psocids are soft-bodied animals dependent on
atmospheric moisture,26,27 so it is not surprising that
relative humidity should influence their survival under
the stress of fumigation. In this case, L. bostrychophila
were more tolerant to phosphine at their optimum
relative humidity, 70%,15 than at a suboptimal 55%
RH. This effect was severe at low temperatures but
became less so as temperature increased. A likely
explanation for this observation is that air at higher
temperatures contains more water vapour than air at
lower temperatures. For example, at 35 ◦C, air at 70%
RH contains about 25 g kg−1 of water vapour, while
air at 55% RH contains about 20 g kg−1 of water
vapour. In contrast, at 20 ◦C, air at 70% and 55%
RH contains only about 12 and 9 g kg−1 water vapour
respectively.31

An unexpected result was the plateau of survival at
lower phosphine concentrations (0.1, 0.17 and 0.3 mg
L−1). Based on previous responses of beetle species,
progressively longer times to population extinction as
concentration decreased would have been expected.5,9

This phenomenon was independent of temperature or
relative humidity, as it occurred in all treatments and
was not due to a delayed egg hatching effect,29 as
this was accounted for in the experimental design.
The authors believe that this result is due to the
significantly higher tolerance to phosphine shown by
eggs compared with adults and nymphal stages.13,32

It appears that existing adults and nymphs and any
nymphs emerging from eggs are quickly killed at even
the lowest concentration of phosphine. However, at
these concentrations, eggs are apparently not affected,
and time to population extinction is only reached once
all eggs have hatched and nymphs are exposed to the
toxin. At somewhere between 0.3 and 0.5 mg L−1, a
threshold is reached where phosphine begins to have
a toxic effect on eggs, and, as concentration increases,
times to population extinction progressively shorten.
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Industry experience in Australia is that, although
always present in low numbers, outbreaks of
L. bostrichophila generally occur in rainy periods during
summer, when the relative humidity reaches 70–80%,
or in situations where grain moisture content is greater
than 13%, which is equivalent to about 70% equi-
librium relative humidity in wheat.31 In addition,
infestations are more prevalent at maritime export ter-
minals, where atmospheric relative humidity remains
high throughout the year. The authors suspect that
the cases where current label rates of phosphine have
been failing to control the resistant psocid populations
may be due to the survival of populations longer than
the recommended exposure periods in areas within
the storages with equilibrium relative humidity higher
than 55%.

The present experiments used the range of
minimum concentrations registered in Australia for
use with cylinderised phosphine.33 There are several
practical implications from the present study. Firstly,
these recommendations, based essentially on the
response of strongly resistant Rhyzopertha dominica
(F.),5 will be sufficient to control the strongly resistant
L. bostrychophila, provided that the relative humidity
of the storage environment remains at 55%. However,
if fumigations are to be carried out at 70% RH at
temperatures of 30 ◦C or less, then longer exposure
periods will be needed at several concentrations. For
example, at 0.3 mg L−1, exposure periods would have
to be increased by 5, 6 and 4 days at temperatures
of 15, 20 and 25 ◦C respectively. Similarly, at the
highest registered minimum concentration of 1 mg
L−1, fumigation periods would have to be increased
by 1, 2, 3 and 3 days at temperatures of 15, 20 and
25 and 30 ◦C respectively. At 35 ◦C, however, the
effect of high humidity on phosphine was found to
be overshadowed by the temperature effect, and the
current recommendations for 30 ◦C at 55% RH should
be able to control the strongly resistant psocids at both
humidities.

In these experiments, the toxicity of a range of
phosphine concentrations under various environmen-
tal conditions was explored. The aim was to rec-
ommend robust protocols that could be used in a
range of practical situations. The concentrations and
exposure periods shown in Fig. 1 are the minimum
requirements to achieve complete control under the
conditions of relative humidity and temperature spec-
ified. These protocols provide industry with some
flexibility in application of phosphine, depending on
conditions. For example, the temperature of the freshly
harvested grain in storages sometimes reaches 35 ◦C
in Australia, and a fumigation period of only 2 days
will be required at 1.0 mg L−1 to control resistant
psocid infestations, irrespective of relative humidity.
This type of flexibility allows pest managers to oper-
ate more effectively within the logistical constraints
of a dynamic grain marketing environment. To take
advantage of this potential flexibility, however, grain
managers must be equipped to sample and measure

grain temperature and moisture content and to mon-
itor phosphine concentrations during fumigations to
ensure that the minimum requirements for effective
fumigation are met.
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