
A Framework Independent Component Design: Keeping
it Simple

D. Holzworth1, N. Huth1 and P. de Voil2

1 CSIRO Sustainable Ecosystems / APSRU, P.O. Box 102 Toowoomba, Qld, 4350
2 Department of Primary Industries / APSRU, P.O. Box 102 Toowoomba, Qld 4350

Dean.Holzworth@csiro.au

Keywords: Model, framework, simulation, component, model interoperability, APSIM.

EXTENDED ABSTRACT

The bio-physical modelling world is awash with
models, modelling frameworks, components and
modules. While many were created for specific
purposes and have aspects that set them apart from
other solutions, there is still considerable overlap
between them in terms of functionality, design and
data requirements. Many of the models and
components aren’t compatible with each other and
at best, run within one of the major frameworks.
This diversity of models and components is
desirable though leading to many innovations and
new approaches. The downside is much
duplication, inefficiencies and wasted time through
writing from scratch.

Imagine, for a moment, a world where models and
frameworks for a given problem domain are
compatible with each other. Modellers could then
leverage off many other modellers work much
more efficiently and realise the benefits of reuse.
Modellers would have more time to focus on
science issues rather than writing “yet another
wheat model”.

There are several options for doing this. Model
developers could uniformly adopt one of the major

frameworks (there are plenty to choose from) and
develop components for that. However this is
neither feasible nor desirable. Another option,
favoured by the authors, is to develop standard
ways of writing a component such that it runs
within multiple frameworks and environments.

This paper begins by exploring several modelling
frameworks, discussing some sound programming
principles that should apply to all model
development projects. It then works through one
possible design for such a component
specification.

Almost as an aside, but much too important to be
discarded, is a plea for simplicity. Modellers,
model developers, software developers and indeed
man-kind tend to gravitate towards complexity.
Evidence exists everywhere. This paper reinforces
the principle that simple solutions should be
favoured over more complex ones wherever
possible.

1138

1. INTRODUCTION

There are a plethora of simulation frameworks and
models, most of which are incompatible with each
other, in terms of science, software and data. For
these and other reasons, reuse of models is rarely
achieved between frameworks. This then leads to a
great deal of wrapping for a target framework but
more usually “reinventing the wheel”. This
rewriting of models is then tightly coupled to a
particular framework, further exacerbating the
problem.

An option is for modellers the world over to all use
a common framework and realise the advantages
of model reuse. There are plenty to choose from.
The authors are involved in the development of the
Agricultural Production Systems Simulator
(APSIM), a large farming systems model (Keating
et. al. 2003). Others include TIME (Rahman et. al.
2003), OpenMI (Gijsbers et. al. 2005), AusFarm
(Moore, 2001) and MODCOM (Hillyer et. al.,
2003) to name but a few. However it is neither
feasible nor desirable to standardise on a single
framework. Diversity of frameworks is always a
good thing, providing flexibility and choice to
modellers.

The only other way to achieve reuse then is for
models to be written in such a way that they run
under different frameworks. With some careful
design, this is achievable. The modeller then has
the advantage of choice. Models and frameworks
can be mixed and matched to suite the problem
domain.

This paper works through some general software
process issues from the agile software foundation
and how applying them can help with any software
project. It then discusses some of the barriers to
developing inter-operable models and explores a
simple framework independent component design
in detail using some metadata and reflection
techniques.

2. AGILE SOFTWARE DEVELOPMENT

When developing any piece of software, for
example the component design in this paper, the
authors always follow Agile Software principles
(http://agilemanifesto.org). These principles
describe ways of constructing software to satisfy
customer demand. The key principles include
continual delivery of software through small
iterations, embracing requirements change and
building projects around motivated individuals. In
addition they promote simplicity – “the art of
maximising the amount of work not done”.

These principles can be applied to all levels of
model development and indeed modelling in
general. Model development is a software and
science development activity. Agile principles
clearly apply to the software development side but
can also be useful to science development
activities. Simpler science is easier to translate to
software and is easier to understand by the model
user.

The software team that constructs APSIM, of
which the authors are a part of, are continually
trying to simplify a very complex software and
science framework. This is being done in very
small, iterative steps. This process of
simplification has itself evolved over time. Many
critical tools are now being used (version control,
defect tracking etc.) and testing is playing an
increasing role in the software process. Huth and
Holzworth (2005) describe the many types of tests
that have been created and the overall testing
process used.

These processes have improved the development
of APSIM tremendously over the last several
years. Hand-in-hand with this process
development is a philosophical shift in thinking
among the development team. Simply described as
“use common sense”, it applies to all facets of
feature implementation, defect fixing and software
development in general. For example, a large
commercial version control system or the
development of an extensive suite of tests may not
be necessary in very small teams or when the
models are small. Time and again, overly complex
models and software are presented where a much
simpler solution exists. Finding simplicity can be
quite difficult given our propensity to gravitate
towards complexity.

In terms of the component design outlined below,
the authors would favour a collaborate approach
between organisations, an iterative process where
the design is built up over time and above all else
it needs to be kept simple. Indeed all the Agile
principles apply to this project.

3. MODEL INTEROPERABILITY

Components are the building blocks of most
frameworks. They are typically self contained
pieces of functionality that expose an external
interface of some kind. The component is then
usually compiled into a binary executable (e.g. a
dynamic link library .DLL on Windows) that
allows dynamic loading by the framework. At run-
time, components are instantiated and
communicate with each other, either directly or

1139

Figure 1: The OpenMI IlinkableComponent interface

«interface» ILinkableComponent
+ «property» ComponentID() : string
+ «property» ComponentDescription() : string
+ «property» ModelID() : string
+ «property» ModelDescription() : string
+ «property» InputExchangeItemCount() : int
+ «property» OutputExchangeItemCount() : int
+ «property» TimeHorizon() : ITimeSpan
+ «property» EarliestInputTime() : ITimeStamp
+ Initialize(properties :IArgument[]) : void
+ GetInputExchangeItem(inputExchangeItemIndex :int) : IInputExchangeItem
+ GetOutputExchangeItem(outputExchangeItemIndex :int) : IOutputExchangeItem
+ AddLink(link :ILink) : void
+ RemoveLink(linkID :string) : void
+ Validate() : string
+ Prepare() : void
+ GetValues(time :ITime, linkID :string) : IValueSet
+ Finish() : void
+ Dispose() : void

indirectly through some kind of engine, perhaps
via an interface.

This all works well and provides the model
developer with the advantages of being able to
reuse components from other model developers for
that framework. Framework interoperability is not
possible though. Components written for one
framework are rarely compatible with another
framework. APSIM and AusFarm are exceptions
to this rule. The first is a cropping systems
framework, the second a pasture/grazing
framework. The development teams of both
frameworks have collaborated on building a binary
level protocol that both implement. Components
can be interchanged and run along side of each
other in either framework.

The advantages of model or component
interoperability between frameworks are
considerable. Model developers gain access to a
much wider range of reusable components and
frameworks. Being able to mix and match
components and frameworks provides many new
possibilities to apply to the problem domain.
Modellers could choose many different component
configurations, comparing and contrasting
approaches.

There are several ways this could be achieved. One
approach is that framework builders agree on a
single framework and everyone uses that. This is

not practical – a single framework is not going to
satisfy all problems. A second approach is that a
binary ‘standard’ is adopted in all frameworks.
APSIM and AusFarm have adopted this approach.
A third approach is that wrappers are built around
the foreign component so that they appear to run
natively for a given framework. Many frameworks
have examples of this. A fourth option, favoured
by the authors, is that framework builders choose
an implementation platform like .NET and develop
a consistent and open component level “standard”
that all frameworks use. OpenMI and TIME both
specify a component interface using .NET.

Figure 1 shows the interface that all OpenMI
components must implement. While fairly
straightforward, it isn’t completely intuitive for the
model developer. For example ID’s for
components, models and links are not ‘natural’.
Likewise ‘ExchangeItem’ is not a problem domain
term. What is needed is a more natural way of
expressing the functionality of a component.

TIME on the other hand appears much simpler
through its extensive use of metadata tags. Figure
2, shows how tags have been inserted into the code
to specify inputs, outputs and parameters. There
are no references to ID’s or linkage mechanisms.
The APSIM .NET language binding looks very
similar.

1140

using System;
using TIME.Core;
public class ToyModel : Model {
 [Input,Minimum(0.0)] double rainfall;
 [Input,Minimum(0.0)] double actualET;
 [State] double netRainfall;
 [Parameter,Minimum(0.0),Maximum(1.0)]
 double coefficient;
 [Output] double runoff;
 public override void runTimeStep() {
 netRainfall =
 Math.Max(0.0, rainfall–actualET);
 runoff = coefficient * netRainfall;
 }
}

class ScienceAPI
 {
 public:
 virtual bool read(const string& name, const

string& units, float& data, float
lower, float upper) = 0;

 virtual bool get(const string& name, const
string& units, float& data, float
lower, float upper) = 0;

 virtual void set(const string& name, const
string& units, float& data) = 0;

 virtual void expose(const string& name,
const string& units, const string&
description, bool writable, float&
variable) = 0;

Figure 2: A TIME example component.

Other paradigms exist that don’t rely on reflection
and can be just as simple. An application
programming interface (API) style of
communication could be designed where
components directly call a ‘get’ method to retrieve
the value of a variable. This “pull” style of
communication is used extensively by APSIM for
the non .NET languages where reflection is not
possible. Figure 3 shows a portion of the C++ API
interface class.

Figure 3: An APSIM C++ API for inter-
component communication.

The API has methods for reading parameters
(equivalent to the [Parameter] in the TIME
example), getting the values of values ([Input]) and
exposing variables to the simulation ([Output]).
These methods can be called by a component at
any time. The FORTRAN code in APSIM uses a
very similar approach. The cumbersome part of an
API like this is the necessity of dealing with
different types of data, for example, single, double,
integer, strings etc. The APSIM development team
choose the simplest approach of just supporting all

common data types rather than using more
complex c++ templates or variant types. The
resultant API is quite large due to the overloading
on data type but auto-generation of the API
circumvents this to some extent.

Returning to the theme of this paper logically leads
to the suggestion of developing a standard for
component interoperability. Could a simple
standard be specified that deals with the
complexities of specifying component inputs and
outputs and some other simple entry points like
runTimeStep?. While such a software standard
would go some way towards inter-operable
components, inevitably the next issue would be
data compatibility.

4. DATA INTEROPERABILITY

Referring back to figure 2 highlights some issues
that will need addressing if a framework
independent component design is to be built. The
ToyModel specifies that rainfall and actualET are
inputs, that is, whatever instantiates this
component, must supply these two values every
timestep. In APSIM, rainfall is called rain and
means total daily rainfall in millimetres. Is this
what the author of ToyModel meant when they
coded the above example?

What is needed is a way of understanding
component data requirements and of matching
them with what is available in the target
framework. Ontologies are one way of attaching
meaning to data. Typically they describe the data,
storing the metadata in some kind of database. For
large problem domains perhaps a fully populated
ontology is necessary, however the authors remain
unconvinced of their value for most small to
medium modelling projects, preferring simpler
methods. In keeping with the theme of simple,
iterative style of development, our preference
would be to add extra metadata tags to the
interface. Data units and a description are probably
all that is initially needed. By incorporating this
information directly in the source code, close to
the implementation, the chances of a mismatch
between data meaning and implementation are
minimised. Indeed, extracting this information
from the source code, via reflection, to create
documentation is trivial.

Over time it may be the case that some
standardisation does occur on names and meaning
of variables in a particular problem domain. For
now, simple metadata tagging offers at least some
meaning to component inputs and outputs. These
could evolve over time, continually being
improved. While not a perfect solution, it will at

1141

<component name="soilwat2"
 executable = “soilwat2.dll">
 <initdata>
 <insoil>2.0</insoil>
 <diffus_const>88</diffus_const>
 <diffus_slope>35.4</diffus_slope>
 <cn2_bare>80</cn2_bare>
 <cn_red>20</cn_red>
 <cn_cov>.8</cn_cov>
 <salb>0.13</salb>
 <cona>2.5</cona>
…

least ease some of the pain of understanding and
reusing a foreign model.

Data interoperability can also be thought of as a
framework configuration issue. In the ToyModel
example, coefficient has been identified as a
parameter. From a component perspective, it
doesn’t matter how it gets a value for coefficient. It
is simply flagging that at some point it will need it.
From a modellers perspective though, it matters a
lot how these parameters are specified. Modellers
typically spend a lot of time creating these
parameter sets and reusing them in different
simulations. If model interoperability is to be
achieved, then some kind of parameter set reuse
across frameworks should ideally be supported.

In APSIM, parameters are stored in XML files as
in Figure 4. Like text files, this seems the simplest
possible mechanism. Of course, elements in the
XML file are APSIM specific and will not work in
other frameworks even if that framework also
reads parameters from XML files. To overcome
this issue, either some standardisation of parameter
names and XML structure is undertaken for a
given problem domain or metadata is added to the
XML, similar to the component metadata in figure
2. The authors favour the latter option. Framework
interoperability is then achieved by translating the
XML for different frameworks. There are many
tools and techniques for doing this.

Figure 4: A fragment of an APSIM XML
simulation file.

Like simulation inputs, data output from a
simulation is an important consideration. It would
be highly desirable if there was a standardised way
of storing simulation output, allowing modellers to
use different post-simulation tools. Some
frameworks write outputs to databases or

spreadsheets. While both these technologies offer
some advantages of querying and pivot like
summaries, both are vendor dependent. Using the
Agile principles of simplicity, text files or XML
offer the most transparent and simple storage
options. Text files can be viewed and modified
using virtually any tool, they can be imported into
a spreadsheet and database easily and other tools
can very quickly be written to manipulate them.
For some situations though, particularly when
large spatial datasets are created, text files are not
appropriate.

As an aside, the authors have repeatedly seen
examples were large databases have been
constructed to store observed, field experimental
data or other kinds of data. For many field
experiments though, a database is overkill. A
simple XML file or even a space delimited text file
will easily store the several hundred numbers that
make up a field experiment. Even a standardised
spreadsheet is lower in the complexity scale and
more flexible than a database. That’s not to say
there isn’t a role for databases. It’s just that simpler
solutions should be explored first before adopting
a more complex one.

5. TOWARDS A FRAMEWORK
INDEPENDENT COMPONENT DESIGN

While the example in Figure 2 is straight forward,
simplification is still possible. The example shows
inheritance from an interface class called Model.
This interface defines the public methods that need
to be implemented, for example, runTimeStep.
While design by interface is a good design
principle, indeed Java and .NET make extensive
use of it, it may not be necessary, particularly if the
interface is very small. Given that extensive use of
meta-data tags is already being used, then it
follows that the same pattern could be applied for
marking the timestep method; e.g. [Timestep].

The distinction between inputs and parameters
may also be unnecessary. We believe that a
component should simply have inputs. Parameters
are a specialised type of input that is read from
some type of parameter file. If a component needs
a value for coefficient then it is the responsibility
of the framework to provide that value either from
a user interface, a parameter file, another
component or someplace else. This provides more
flexibility in variable routing.

1142

Figure 5: One example of a framework independent component.

using System;
using Framework.Core;
[Model]
public class ToyModel {
 [Input,Minimum(0.0), Units(“mm”), Description(“Total daily rainfall”)] double rainfall;
 [Input,Minimum(0.0), Units(“mm”), Description(“Daily evapotranspiration”)] double actualET;
 [State] double netRainfall;
 [Input,Minimum(0.0),Maximum(1.0), Description(“Rainfall / runoff coefficient”)] double coefficient;
 [Output, Units(“mm”), Description(“Daily runoff”)] double runoff;
 [TimeStep] public void runTimeStep() {
 netRainfall =
 Math.Max(0.0, rainfall–actualET);
 runoff = coefficient * netRainfall;
 }
}

Tagging data members as states is only necessary
for frameworks that support checkpointing or
taking snapshots of a simulation during runtime.
Components should be treated as blackboxes and
exposing internal data members tends to cut across
the principle of encapsulation. Given that
checkpointing is a useful function to support,
perhaps this tagging needs to remain.

The result of the above refinements provides one
possible framework independent design as shown
in Figure 5. It’s worth noting that much of this
already exists in TIME.

The using statement has changed from TIME.Core
to a generic term like Framework.Core. This
assembly simply provides the metadata tags
Model, Input, Output, State and TimeStep.

A similar API style of interface where a
component calls methods of an interface class
could also be designed. Indeed, if multiple
languages are to be supported then this may be
necessary as well.

For this component design to truly facilitate reuse
there needs to be a set of principles developed to
support the design. Donatelli and Rizolli (2007)
explore some of these.

• Fine grained components are more likely
to be reused than larger ones. Care needs
to be taken when designing a component
that the system boundaries are optimal for
a range of frameworks. For example,
should a component calculate soil water
runoff or should it perform the entire
below ground water balance?

• Components depend on their data and so
describing the data through appropriate
meta-data on inputs and outputs is
essential.

• Components should be extensible via
inheritance. This needs to be designed
into the component to allow this to
happen.

• Dependencies should be kept to a
minimum. Framework specific API’s
should be avoided. If utility classes are
called, they should be distributed with the
component.

As always, an overriding principle applies: keep it
simple!

6. CONCLUSION

The authors believe there is a need for an alliance
of bio-physical model developers to develop a
framework independent component design outside
of organisational boundaries. Some documentation
and principles that accompany the design are also
needed. Applying Agile techniques to this project
is probably also important. The design should be
as simple as possible and evolve over time.

Perhaps a simple, small web site could be created
to develop and promote the standard. It shouldn’t
take more than several pages to describe the
standard and principles. If it does, then simplicity
hasn’t been achieved.

The design doesn’t need to be as described in this
paper. There could well be other ideas that offer
more advantages. In some ways it doesn’t really

1143

matter too much. The important issue is having
some agreement across various frameworks on
how to design a framework independent
component.

This project will only work if there is demand
from like-minded model developers. Are there
other model development teams that would like to
see something like this happen?

7. REFERENCES

Donatelli, M. and Rizolli A., (2007), A design for
framework-independent model components
of biophysical systems, Proc. Farming
Systems Design 2007, Sicily, Sept. 10-12
2007.

Gijsbers, P., Gregersen, J., Westen, S., Dirksen, F.,
Gavardinas, C., Blind, M., (2005), OpenMI
Document Series: Part B Guidelines for the
OpenMI (version 1.0), Edited by Isabella
Tindall, on web: http://www.OpenMI.org

Hillyer, C., Bolte, J., van Evert, F. and Lamaker,
A., (2003), The ModCom modular
simulation system, European Journal of
Agronomy, 18:333-343.

Huth, N. and Holzworth, D., (2005), Common
Sense in Model Testing, Proceedings of
MODSIM 2005, International Congress on
Modelling and Simulation, Melbourne,
Australia, December 2005. Modelling and
Simulation Society of Australia and New
Zealand Inc.

Keating, B.A., Carberry P.S., Hammer, G.L.,
Probert, M.E., Robertson, M.J., Holzworth,
D., Huth, N.I., Hargreaves, J.N.G., Meinke,
H., Hochman, Z., McLean, G., Verburg, K.,
Snow, V., Dimes, J.P., Silburn, M., Wang,
E., Brown, S., Bristow, K.L., Asseng, S.,
Chapman, S., McCown, R.L., Freebairn,
D.M., Smith, C.J., (2003) An overview of
APSIM, a model designed for farming
systems simulation, European Journal of
Agronomy, 18:3-4, 267-288.

Moore, A.D. (2001) FarmWi$e: a flexible decision
support tool for grazing systems
management. Proc. XIX International
Grassland Congress.

Rahman,J.M.,Seaton,S.P.,Perraud,J-M,
Hotham,H., Verrelli,D.I.and Coleman,J.R.
(2003) It's TIME for a New Environmental
Modelling Framework. Proceedings of
MODSIM 2004 International Congress on

Modelling and Simulation, Townsville,
Australia, 14-17 July 2003. Modelling and
Simulation Society of Australia and New
Zealand Inc., Vol 4, pp 1727-1732

1144

