
Introduction
The traditional view of biology describes the flow of

genetic information from DNA through RNA to protein
where genes generally code for proteins that fulfil
structural, catalytic and regulatory functions in all living
cells. However, due to the large extent of non-protein-
coding RNA (ncRNA) transcription in higher eukaryotes
(97–98% of the human genome) and the range of genetic
phenomena that are RNA-directed, this traditional view of
the structure of genetic regulatory systems in animals and
plants is now being challenged (Jasinska and Krzyzosiak
2004; Mattick 2003; Morey and Avner 2004). ncRNA
dominates the genomic output of higher organisms, and has
been shown to control chromosome architecture, messenger
RNA (mRNA) turnover and the developmental timing of
protein expression, and it may also regulate transcription
and alternative splicing (Mattick 2003; Morey and Avner
2004; Munroe 2004).

Several classes of ncRNA molecules have been identified
and have been shown to be involved in crucial functional
roles in eukaryotic cells. For instance, a large class of small
microRNAs (miRNAs), 21–25 nucleotides (nt) in length, are
involved in 2 separate but overlapping pathways that regulate
gene expression. The first is a degradative mechanism that
destroys RNA corresponding to duplicated or foreign gene
sequences, in a process mediated by small interfering RNAs
(siRNAs) (Caplen et al. 2001). This mechanism was termed
RNA interference (RNAi) and has been widely exploited by
biologists as a gene knockdown tool since it was first
demonstrated that effective gene silencing could be achieved
using double stranded RNA (dsRNA) in the nematode
Caenorhabditis elegans (Fire et al. 1998). The second
regulatory pathway, called translation repression, was also
first identified in the nematode and utilises endogenous
miRNAs to inhibit translation of their target mRNAs
(Pasquinelli et al. 2000). It is now evident that siRNAs
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interact with DNA to induce heterochromatin formation and
DNA methylation extending their role in the regulation of
gene expression to include transcriptional gene silencing
(Volpe et al. 2002). The abundance of ncRNA transcripts
detected in genomes indicates that there are RNA regulatory
pathways yet to be uncovered (Cerutti 2003; Frazer et al.
2004). Thus, ncRNA molecules have a fundamental role both
in regulating gene expression and in protecting the genome
from mobile genetic elements. The exploitation of siRNA
pathways is providing biologists with powerful new
functional genomic tools (Kawasaki and Taira 2004;
Lippman and Martienssen 2004; Silva et al. 2004).

The major goal of livestock genomics is to map and
identify genes involved with economically important traits
and disease susceptibility and resistance. Mammalian
comparative genomic analyses of conserved ncRNAs are
uncovering potential regulatory sequences. Very few RNAi
approaches have been applied to study ncRNA transcription
or the activity of specific bovine genes (Goodwin et al.
2004; Paradis et al. 2005). Bovine coding DNA microarrays
have been used to identify candidate genes associated with
particular phenotypic traits and if combined with RNAi, and
such studies could determine the downstream effects of
specific gene knockdown on the expression of other genes
(Lewin 2003). Methods such as microarray tiling could also
be applied to identify up-regulated RNA transcripts
involved in specific bovine gene pathways (Johnson et al.
2005). Selective breeding in the beef industry now also
relies on DNA testing to detect variation (or single
nucleotide polymorphisms, SNPs) in particular genes. Thus,
candidate genes and gene regulatory pathways can be
validated in RNAi knockdown experiments to confirm their
suitability as new targets for genetic testing and phenotype
selection.

Disease pathogenesis studies in mammalian species have
concentrated on elucidating receptor signalling to improve
the understanding of the immune pathways associated with
host susceptibility and resistance (Werling and Jungi 2003;
White et al. 2003a). RNAi tools have been exploited in
in vitro gene knockdown experiments to determine the
molecular basis of these pathways (Oshiumi et al. 2003;
Uehara et al. 2005). Although this research has applications
in bovine immunology, the use of RNAi to study differential
cattle breed susceptibility to bacterial or parasite infection
has yet to be undertaken. RNAi is an effective anti-RNA-
virus knockdown method in human and bovine cells (Chen
et al. 2004; Gitlin et al. 2002). Additionally, RNAi has been
used as a tool to determine protozoal, tick, nematode and
insect gene function (Aljamali et al. 2003; Boutros et al.
2004; Kamath and Ahringer 2003; McRobert and
McConkey 2002). Bioinformatics and RNAi tools,
combined with available genome sequence data
(Plasmodium and Theileria protozoan species, Drosophila
fruitfly, C. elegans nematode), will enable the identification

of novel gene targets to develop new interventions to control
important agricultural parasites such as ticks and worms
(Adams et al. 2000; Chalfie 1998; Gardner et al. 2002;
Knox 2004). RNAi also has the potential to elucidate both
host and parasite gene pathways thereby improving our
current understanding of the interaction between host and
parasite.

This review will describe: (i) the current understanding of
mammalian RNAi pathways and a summary of RNAi
experimental approaches; (ii) the processes used for the
identification of ncRNAs and the application of RNAi tools
in mammalian functional genomic studies; (iii) the analysis
of mammalian disease pathogenicity and host immunity
including: anti-viral RNAi, bacterial and parasite host
pathogenicity, and the application of RNAi to target
infectious parasitic organisms; and (iv) the experimental
methods currently used for the effective delivery of RNAi to
mammalian systems.

Within the last 3 sections outlined above, this review will
examine the relevant mammalian RNAi research approaches
and discuss how these can be further exploited for the benefit
of beef cattle research programs.

Molecular basis of RNAi
Background of RNAi

RNAi is an evolutionary ancient method of genome
defence in many organisms. It is a way to protect the genome
against invasion by viruses, mobile genetic elements such as
transposable elements and repetitive genes, which produce
aberrant RNA or dsRNA in the host cell when they become
active (Zamore 2002). The initial observations of a gene
silencing mechanism were first made in plants in the 1980s,
when attempts to deepen the violet hue of petunias led to the
appearance of white flowers (van der Krol et al. 1990).
Table 1 provides a description of RNA molecules and terms
used to describe silencing pathways discussed here. It was
not until 1998 that the term RNAi was used to describe this
phenomenon in the nematode worm C. elegans, when it was
demonstrated that dsRNA was able to direct the degradation
of mRNA in a sequence specific manner (Fire et al. 1998).
This mechanism was then linked to the phenomena
previously described in plants and fungi, initially thought to
be mediated by sense or anti-sense mechanisms (Romano
and Macino 1992; van der Krol et al. 1990). Similar dsRNA
silencing experiments were simultaneously demonstrated in
trypanosome parasites and flies (Kennerdell and Carthew
1998; Ngo et al. 1998). Crucial to this process is the
RNA-directed nuclease, Dicer, which recognises and digests
dsRNA into short dsRNAs (21–25 nt), and which was
initially discovered in Drosophila (Hammond et al. 2000).
Dicer was thus shown to be the mediator of dsRNA cleavage
and mammalian homologues were subsequently described
(Nicholson and Nicholson 2002).
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Mammalian RNAi pathways
The mammalian RNAi pathway differs from that of

C. elegans, plants and fungi, which employ RNA dependent
RNA polymerases to amplify the RNAi response and which
can also elicit specific RNAi effects following the
introduction of long dsRNAs (Fire et al. 1998; Schwarz et al.
2002; Stein et al. 2003). In contrast, the silencing of specific
genes by RNAi has proven difficult in mammalian systems.
This is because of the dsRNA induction of the cellular
interferon pathway, which leads to non-specific inhibition of
protein synthesis and the degradation of RNA by RNase L
(Elbashir et al. 2001a). It was subsequently demonstrated
that short (21–25 nt) siRNAs can induce gene silencing
without non-specific inhibition of gene expression in
cultured mammalian cells (Elbashir et al. 2001a). In the
RNAi pathway, exogenous or endogenous siRNAs (produced
by Dicer) are incorporated into a multi-protein RNA-
induced-silencing complex (RISC) that unwinds the duplex
siRNA, leaving the antisense strand to guide the RISC
to its homologous target mRNA for cleavage (Fig. 1)
(Elbashir et al. 2001a; Schwarz et al. 2002).

Small endogenous miRNAs were also initially discovered
in C. elegans where the small temporal (st) RNAs were found
to be essential regulators of the timing of development of
C. elegans (Pasquinelli et al. 2000). Potential homologues of
several miRNA genes were identified in the Drosophila and
human genomes and their evolutionary conservation implied
that this class of ncRNAs has regulatory functions that are
broader than temporal regulation (Lau et al. 2001). The
miRNAs originate from long precursors (pri-miRNA) that, in
animals, are cleaved by the Drosha nuclease in the nucleus to

give pre-miRNAs that are about 70 nucleotides long, with a
characteristic hairpin structure (Lee et al. 2003) (Fig. 1).
Following export to the cytoplasm, these long precursors are
cleaved by Dicer and the miRNA is incorporated into RISC
which either leads to translation repression or triggers mRNA
degradation via the RNAi pathway (Fig. 1) (Doench and Sharp
2004). The number of miRNAs that bind to the target mRNA
is also thought to determine the degree of translational
repression (John et al. 2004). Comparative genome analyses
have described intronic and exonic miRNAs in human and
mouse genomes (Rodriguez et al. 2004; Weber 2005). Weber
(2005) has suggested that the criteria for defining miRNAs
include the evidence of a cluster of miRNAs, in the same
orientation, and not separated by a transcription unit or a
miRNA in the opposite orientation.

In summary, the RNAi pathway induced by the
introduction of dsRNAs was described before endogenous
miRNA/siRNAs were discovered. The proteins and
associated functions involved in RNA silencing pathways
continue to be elucidated and defined across both plant and
animal taxa, which will in turn improve the understanding of
these pathways. The current putative processes involved in
both miRNA and siRNA endogenous post-transcriptional
silencing pathways as well as a putative pathway for nuclear
or transcriptional silencing (see nuclear-RISC) are
summarised in Figure 1.

Gene knockdown RNAi experiments
While research into the identification and function of

conserved regulatory miRNAs with comparative genomics
approaches will continue, gene silencing experiments can be

Application of RNA interference to beef cattle

Table 1. Description of RNA molecules and terms used in this review

RNA molecules Enzymes and processes

siRNA: small interfering RNAs. dsRNA fragments 21–25 nucleotides
in length. siRNAs are products of Dicer cleavage and are the
mediators of mRNA degradation in RNAi. siRNAs can result from
endogenous pathways or can be synthesised and introduced in gene
knockdown studies.

miRNA: micro RNAs. miRNAs are products of Dicer cleavage of
nuclear exported hairpin structure pre-miRNAs. miRNAs are the
mediators of translational repression and can also be synthetically
introduced.

stRNAs: small temporal RNAs are miRNAs that regulate the timing of
gene expression during development.

Pri-miRNA: primary miRNAs are transcribed from DNA in the
nucleus and are digested by Drosha to produce pre-miRNAs.

Pre-miRNA: precursor miRNA have a shRNA structure of about
70 nucleotides, are exported from the nucleus into the cytoplasm
and are digested by Dicer to produce mature miRNAs or siRNAs.

shRNA: short hairpin RNA. Either synthetically produced or
expressed by vectors or pre-miRNAs produced by endogenous
pathways which are recognised and digested by Dicer to produce
siRNAs.

ncRNA: non-coding RNA. Transcriptional products that do not code
for proteins. miRNAs are a class of ncRNAs.

Dicer: belongs to the RNase III family of dsRNA specific nucleases.
Dicer is responsible for the processing of long dsRNA, shRNAs
and pre-miRNAs into siRNAs and miRNAs.

Drosha: nuclear RNase III enzyme that processes primary miRNAs to
produce precursor miRNAs which are exported into the cytoplasm.

RISC: RNA-induced silencing complex. A nuclease complex
composed of proteins thought to mediate both mRNA degradation
and translational repression.

mRNA: degradation/RNA interference pathway. One of the siRNA
strands is incorporated into RISC and this strand guides RISC to
perfectly complementary mRNAs and cleaves them resulting in
their degradation (post-transcriptional gene silencing).

Translational repression: the RISC incorporating a mature miRNA
strand with imperfect complementarity binds to several sites in
3′ untranslated regions of coding genes which leads to a decrease in
protein without a decrease in mRNA levels. The number of
miRNA-RISC complexes bound to target mRNAs may determine
the level of translational repression.

NRISC: nuclear-RISC — a putative RISC that via siRNA and/or
miRNAs can interact with DNA to induce heterochromatin
formation and DNA methylation via a transcriptional gene-
silencing pathway.
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undertaken by creating small inhibitory RNA molecules to
suppress the expression of specific genes. Inhibitory
siRNAs/miRNAs can be introduced into cells either as short
duplex RNA oligonucleotides or as the expressed products
originating from plasmid or viral vectors. Short
oligonucleotides in the form of siRNAs or short hairpin
RNAs (shRNAs) can be produced synthetically or
transcribed from PCR products and/or digested by
recombinant Dicer and are introduced into cells using lipid
based delivery transfection reagents (Dykxhoorn et al. 2003;
Elbashir et al. 2001a). shRNAs are recognised by cellular
Dicer and processed into siRNAs. Plasmids or viral vectors
engineered to express siRNAs or shRNAs transcribed from
specific RNA polymerase promoters are introduced into the
cells using standard transfection and transduction processes
(Brummelkamp et al. 2002; Xia et al. 2002). Vectors

expressing a shRNA consist of a sense sequence about
21 bases long followed by a 6–8 base non-complementary
(antisense) sequence (Dykxhoorn et al. 2003; Rice et al.
2005). In most instances the above approaches are used to
investigate gene function. Considerable research effort
towards the use of RNAi as a therapeutic treatment for viral
infection, cancer and inherited genetic disorders is also
underway (see review by Gong et al. 2005). The delivery of
RNAi is further discussed in the last section of this review.

Previous approaches for gene-specific inhibition relied
upon difficult and expensive procedures such as homologous
recombination, or targeted mutagenesis with limited
applicability across different species (Nagy and Rossant
1996). In comparison with these traditional approaches as
well as anti-sense and ribozyme methods, RNAi technology
has been shown to be more specific, more sensitive, easier to
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pre-miRNA

shRNA

RISC

Translational 
repression

mRNA 
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Figure 1. Model of current mammalian endogenous RNAi pathways. MicroRNAs (miRNA) are produced from long precursors (pri-miRNA)
which are cleaved by Drosha to generate about 70 nucleotide-long pre-miRNAs with a characteristic hairpin structure. Following export into the
cytoplasm, the long precursors are cleaved by Dicer and the short RNAs (21–25 nt) are incorporated into the RNA-induced-silencing-complex
(RISC), which unwinds the duplex RNA. For mRNA degradation, the antisense strand guides the RISC to its homologous target mRNA for cleavage
and degradation of the mRNA. For translational repression, the mature miRNA-RISC complex binds to the 3′ regions with incomplete
complimentarity (represented by the ‘bump’ on the miRNAs in the diagram) to inhibit translation elongation of relevant mRNAs. The number of
miRNAs that bind to the target mRNA determine the degree of translational inhibition. siRNA and/or miRNAs can also interact with DNA via a
putative nuclear-RISC (NRISC) to induce heterochromatin formation and DNA methylation via a transcriptional gene silencing pathway. See also
a detailed list of terms in Table 1.
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apply and capable of eliciting a stronger inhibitory effect
(Aoki et al. 2003; Brantl 2002; Miyagishi et al. 2003). In
addition, siRNA libraries and siRNA/shRNA expression
libraries have been generated for whole genome screens in
fungi, Drosophila and mammalian cell lines which have
identified the activity of novel genes in functional genetic
pathways (Boutros et al. 2004; Miyagishi et al. 2004; Sachse
et al. 2005). Thus, the ability to manipulate RNAi as a high
throughput functional genomic method in a number of
different eukaryotic species further validates the usefulness
of this distinctive experimental approach.

Non-coding RNAs, RNAi genome screens and gene
knockdown applications
Background — bovine genome studies

Traditionally, linkage maps based on polymorphic
markers covering all bovine chromosomes laid the
foundations for mapping loci affecting these quantitative
trait loci (QTL) (see review by Lewin 2003). Expressed
sequence tags (EST) and genome sequence data has enabled
the specific linkage of SNPs to these QTLs and the
identification of causative genes and mutations (Casas et al.
2005; Krininger et al. 2003). A constructed second
generation human:bovine radiation hybrid map will
contribute towards the analysis of mammalian chromosome
evolution whereas the bovine genome sequence will provide
the basis for high resolution genome comparisons (Everts-
van der Wind et al. 2004; Murphy et al. 2004). It is now
acknowledged that more genomic sequence is transcribed
than accounted for by predicted exons and over 200000
conserved non-coding sequences have been discovered in
human:mouse genome comparisons (Frazer et al. 2004;
Johnson et al. 2005). Similar screens of livestock genomes
are yet to be reported.

Genomic non-coding regions
Conserved non-coding regulatory elements can be

identified in sequence alignments of multi-species
comparative maps (Dubchak et al. 2000; Murphy et al.
2003). Studies including the bovine genome sequence have
contributed to defining potential regulatory elements within
5′ and 3′ untranslated regions in human, bovine, porcine and
rodent orthologueous genes (Larizza et al. 2002; Williams
et al. 2003). Microarray tiling methods have recently been
developed for genome wide screens to identify RNA
modifications in human and fly genomes (Hiley et al. 2005;
Mockler and Ecker 2005). A newly released mammalian
ncRNA database reportedly contains over 800 unique
experimentally studied ncRNAs with limited bovine specific
entries at this stage (Pang et al. 2005). Identifying conserved
non-coding regions in livestock genomes could identify
novel regulatory elements associated with particular traits.
This will lead to an improved understanding of gene
expression and genetic pathways of different animal

phenotypes and may establish the foundation for the
development of predictive tests for relevant traits.

Mammalian miRNAs
To date, miRNA identification in mammals has

concentrated on human:mouse genome comparisons (Lagos-
Quintana et al. 2003; Weber 2005). The specific function of
most miRNAs is unknown and currently there are about
220 known mammalian miRNAs (John et al. 2004).
Microarray and bioinformatics tools have been developed to
characterise tissue specific expression and the functional roles
of mammalian miRNAs, which are co-transcribed with a
particular coding gene (Rodriguez et al. 2004; Sun et al.
2004). For instance, Barad et al. (2004) developed a
microarray that enabled the quantification of matching
miRNAs expression profiles in labelled RNA originating from
human thymus, testes and placental tissues. In addition,
sequence analysis has revealed that an RNAi mechanism may
be responsible for gene regulation of the Callipyge trait in
sheep (Bidwell et al. 2004). Thus, by undertaking miRNA
genome screens and by analysing untranslated regions of
specific genes/alleles in bovine tissues, functional miRNAs
associated with the gene regulation of particular phenotypes
can be identified. As described for ncRNAs, where applicable,
gene tests based on specific miRNAs may be developed to
predict the regulation of expressed favourable traits.

Functional genomics — RNAi genome screens
The functional analysis of predicted genes to date has

been undertaken using microarrays to identify the
transcriptional profiles associated with bovine production,
nutrition, reproduction, lactation and immunity (Byrne et al.
2005; Ishiwata et al. 2003; Suchyta et al. 2003; Tao et al.
2004; Ushizawa et al. 2005; Yao et al. 2004). By combining
microarrays with high throughput RNAi library screens, the
effect of specific gene knockdown can provide a quantitative
analysis of the contribution of potentially every gene to a
particular process involved in controlling development and
disease. Figure 2 summarises the main approaches used for
RNAi genome screens in other mammalian systems. For
example, a high throughput RNAi screen of 19470 dsRNAs
in cultured cells characterised 91% of the Drosophila genes
involved in cell growth and viability (Boutros et al. 2004).
Genome-wide siRNA or shRNA screens targeting about
15000 mouse/human genes identified new aspects of cell
division and proteosome function (Kittler et al. 2004;
Paddison et al. 2004b). These functional analyses by RNAi
revealed previously unknown and evolutionarily conserved
gene functions and similar applications to bovine or other
livestock genomes will be equally beneficial in describing
particular production traits or immune pathways.

Functional genomics — RNAi gene knockdown
The standard technique for studying gene function is to

disrupt a gene by homologous recombination; however, this

Application of RNA interference to beef cattle
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is difficult and expensive, especially in livestock species
where embryonic stem cells have not been isolated (Silva
et al. 2004). As described earlier, RNAi is relatively simple
to apply to a wide variety of species in cell culture systems
as a gene specific knockdown tool. Examples of specific
RNAi experiments in bovine cells are summarised in Table 2.
Most of the cell culture examples described are not ‘bovine
specific’ RNAi studies per se, but are model systems
investigating the associated functions of a particular gene
involved in immune function, inflammation or mitosis.
Indeed, a number of cell lines used in bovine expression
studies could be further exploited in RNAi knockdown
experiments, for example a bovine trophoblast cell line has
been used for gene expression profiling of trophoblasts
(Ushizawa et al. 2004). RNAi knockdown experiments in
ovine cells have studied vascular smooth muscle cell
migration in response to growth factors thought to be
relevant in disease processes (Leung et al. 2004). Following
the success of RNAi in human and mouse oocytes,
applications of RNAi in bovine oocytes provides progress
towards understanding follicular growth and development as
well as early embryogenesis, see Table 2 (Donnison and

Pfeffer 2004; Paradis et al. 2005; Yao et al. 2004).
Furthermore, RNAi has also been successfully applied to
study nuclear trafficking pathways in porcine embryos and
the functional analysis of genes in porcine granulosa cells
(Cabot and Prather 2003; Hirano et al. 2004). An example of
a successful in vivo RNAi study silencing endogenous genes
has been demonstrated in rat muscle using plasmid delivered
shRNAs (Kong et al. 2004).

Potential applications of gene knockdown
Although there are currently limited RNAi applications to

livestock, recent studies have suggested the use of specific
applications of RNAi to improve bovine reproduction and to
diminish calf mortality and morbidity. Joerg et al. (2003)
suggest that RNAi could disrupt endogenous
spermatogenesis to allow successful germ cell
transplantation in bulls. RNAi could assist in determining
the mechanism of genome activation in early developing
bovine embryos, the genes involved in embryo-maternal
cross-talk, and could also be applied to reduce abnormal
fetal–maternal interactions and fetal loss in nuclear transfer
embryos (Meirelles et al. 2004; Pfister-Genskow et al. 2005;

shRNA or siRNA library 
targeting all genes

shRNA specific DNA bar 
code (60 nt sequence) 
linked to shRNAs
targeting all genes in viral 
vector 

Transfection mixes 
containing DNA reporter 
vectors plus
shRNAs/siRNAs printed 
onto glass slides

Individual transfection of 
single genes in cell lines 
in multi-well format using 
each dsRNA

Transduce cell lines with 
pools of shRNAs

One spotted array placed 
into cell culture in tissue 
culture dish and 
incubated

REVERSE TRANSFECTIONINDIVIDUAL dsRNA SCREENS ShRNAs and DNA barcodes

Screen for activity of a 
reporter or activity in a 
cell-based or biochemical 
assay 

Identify relative changes in
shRNA representation 
using barcode microarray
compared with non-
infected controls 

Screen for expression  
and compare with 
expression reporter 
vectors without dsRNAs; 
observe cell phenotypes

Figure 2. Summary of the current RNAi approaches used for genome functional screens. These approaches use large, genome wide siRNA
or shRNA libraries to study gene expression in cell cultures for screening genes involved in particular processes or comparative phenotypes
(Boutros et al. 2004; Paddison et al. 2004b; Silva et al. 2004).
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Wolf et al. 2003). Calf mortality and morbidity can be
affected by the failure of maternal immunoglobulin transfer
thus RNAi may be useful towards managing the associated
genetic risk factors involved (Clawson et al. 2004).

Most RNAi investigations in mammalian systems are
targeting genes involved in cancer, autoimmune diseases,
neuro-degenerative diseases and against viral replication
(Gong et al. 2005; Tan and Yin 2004). Allele-specific
silencing aims to suppress the disease gene without affecting
the normal gene. The specificity of siRNAs makes this
possible even for disease alleles that differ from the normal
allele by only one nucleotide. Allele-specific silencing has
been achieved for several neurodegenerative disease genes
in vitro (Davidson and Paulson 2004; Miller et al. 2003).
Therefore, RNAi technologies could be utilised to silence
specific SNPs in bovine cells to further explore phenotype
associated gene pathways.

Bovine pathogen interactions and RNAi in
immune function

The approaches in the above section describing the
identification of regulatory ncRNAs and miRNAs are also
applicable in the analysis of mammalian immune pathways
and disease pathogenesis. This section will further explore
specific applications of RNAi to study host disease and
immune susceptibility, as well as the application of RNAi as
a gene function tool in the identification of novel anti-
parasitic treatment candidates.

Background — host–pathogen interactions
Understanding the complex cross-talk between host and

pathogen is essential to improve our understanding of
infectious disease (Walduck et al. 2004). A number of
comparative genome studies have identified SNPs or gene
orthologueues associated with udder health and mastitis in
cattle, bovine toll-like receptors (TLRs), bovine subspecies
health and production differences (Bos indicus v. Bos
taurus), and the susceptibility to parasites (da Mota et al.

2004; Goldammer et al. 2004; Hanotte et al. 2003; Park et al.
2004; Sonstegard et al. 2002; White et al. 2003a). In silico
human and bovine genome comparative analysis enabled the
development of diagnostic tuberculosis assays to
discriminate vaccinated and infected individuals
(Vordermeier et al. 1999). Comparative microarray gene
expression studies have been undertaken to determine
mycobacterium survival in bovine macrophages and to
analyse major histocompatibility complex (MHC)
haplotypes involved with susceptibility in a range of bovine
diseases (Park et al. 2004; Tao et al. 2004; Weiss et al. 2004).
These bioinformatics and microarray approaches studied
host differences in response to pathogen invasion and the
following section will describe how RNAi tools can be
applied to further dissect the mechanisms of host immunity
and disease pathogenesis.

Host immunity and RNAi
Table 2 summarises bovine cell culture studies that have

used siRNAs to specifically study the gene functions
involved in triggering immune pathways. These studies
target specific genes in order to elucidate endothelial
dysfunction relevant to conditions such as hypertension,
diabetes mellitus and atherosclerosis and to unravel the
molecular basis of tumour necrosis factor (TNF) signalling
with a view to developing novel disease therapies (Goodwin
et al. 2004; Mawji et al. 2004; Zhang et al. 2003). The bovine
cell cultures in these studies were used to model conserved
mammalian immune pathways.

Cell surface or endothelial TLRs are responsible for the
recognition of antigens and the subsequent initiation of
appropriate immune pathways (Werling and Jungi 2003).
RNAi knockdown has been used to elucidate TLR pathways
in human cell lines, for example siRNAs were used to target
specific genes to confirm TLR signalling and the activation
of host cells in response to the stimulation by bacterial
lipopolysaccharides (Oshiumi et al. 2003; Sasai et al. 2005;
Uehara et al. 2005) In addition, Toll pathway components

Application of RNA interference to beef cattle

Table 2. Summary of RNAi applications undertaken in bovine cells

Cells Target gene Significance Reference

Bovine oocytes Cyclin B1 Oocyte development Paradis et al. (2005)
Bovine Aortic Endothelial Argininosuccinate synthase Nitric oxide production — immune function Goodwin et al. (2004)
Cells (BAEC)

BAEC Endothelin-1 Cellular heat shock response — immune function Mawji et al. (2004)
BAEC ASK1-interacting protein Apoptosis signal regulating kinase 1 (ASK1) Zhang et al. (2003)

(AIP1) and TNFα — immune function
BAEC Integrin-linked kinase Regulator of the endothelial phenotype and Vouret-Craviari et al. (2004)

vascular — immune function
BAEC Cyclooxygenase (COX) II Cox II gene function in inflammation — Xiuzhu et al. (2003)

immune function 
Bovine kidney cells (MDBK) Nestin Assembly of filaments in mitosis Chou et al. (2003)
Bovine hamster kidney-21 Foot and mouth disease virus Inhibition of virus replication Chen et al. (2004)

cells; suckling mice — viral structural protein 1
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have been silenced by the injection of dsRNA directly into
Drosophila adult flies in vivo to study responses to fungal
and Gram-positive bacterial infections (Goto et al. 2003).
Microarray expression analysis combined with specific
RNAi knockdown could assist to delineate the TLR
pathways and other immune pathways associated with the
differential Bos indicus and Bos taurus responses to
ectoparasite infections (Turni et al. 2002, 2004). Although
bovine TLR homologues have been identified, research into
the specific pathways induced by bovine pathogens is yet to
be conducted (White et al. 2003a, 2003b).

Host pathogenesis and virus RNAi knockdown
As RNAi can target endogenous and exogenous mRNAs

in mammalian cells, the effect of these molecules against
exogenous RNA viruses in human cells was successfully
demonstrated (Gitlin et al. 2002). siRNAs have since been
applied to protect against viral infection (e.g. insect
baculovirus), inhibit the expression of viral antigens
(e.g. SARS associated coronavirus), suppress the
transcription of viral genomes (e.g. retroviruses), block viral
replication (e.g. Dengue virus), silence viral host accessory
genes (e.g. host receptors for HIV), and hinder the assembly
of viral particles (e.g. rotavirus) (reviewed by Tan and Yin
2004). Most of these studies aim to develop therapeutic
approaches either through gene silencing or by identifying
potential new drug targets (Tan and Yin 2004). In vivo mouse
studies have demonstrated that silencing of the host’s Fas
receptor prevented liver injury caused by hepatitis virus
(Song et al. 2003). Anti-viral RNAi has been applied to
knockdown the replication of pestivirus (bovine viral
diarrhoea virus) in bovine cell cultures and foot and mouth
disease virus in vitro and in vivo in suckling mice (Chen et al.
2004; Isken et al. 2003). It is feasible that a RNAi therapy
could be developed for the treatment of foot and mouth
disease (Chen et al. 2004).

Host pathogenesis, bacteria and RNAi
RNAi technology is applicable to high-throughput

methods permitting the investigation of the mechanisms
responsible for bacterial pathogenesis. Most RNAi studies
dealing with bacterial infections have targeted host epithelial
binding pathways such as Toll receptors as described above.
RNAi has also been used to identify host proteins such as the
receptors for the internalised pneumonia–meningitis
pathogen, Streptococcus pneumoniae and, apoptosis pathway
mediators of gastric ulceration caused by Helicobacter pylori
(Nagasako et al. 2003; Opitz et al. 2004). In addition, the in
vivo administration of siRNAs inhibiting TNFα delayed the
onset of bacterial lipopolysaccharide-induced sepsis in adult
mice (Sørensen et al. 2003). Similar studies could be applied
to study pathways associated with the establishment of
bacterial mastitis and other important livestock bacterial
diseases such as Johne’s disease.

Parasites, insects and RNAi
Unlike viral and bacterial pathogens, eukaryotic pathogens

essentially possess RNAi pathways that provide new avenues
for the investigation of potential pathogen targeted drugs or
treatments (Cottrell and Doering 2003). For many parasites,
previous methods for gene disruption were inefficient and/or
lacking (Cottrell and Doering 2003). The RNAi pathways of a
number of protozoan parasites have been researched and it is
apparent that as well as being distinct from mammalian and
plant pathways, they also differ somewhat among related
parasite species (Ullu et al. 2004). RNAi has been most
judiciously applied to study Trypanosoma brucei (human
sleeping sickness), and reports of other parasite species studied
using RNAi as a reverse genetic tool include: T. congolense
(bovine trypanosomosis), Entamoeba histolytica (human
amoebiasis), Plasmodium spp. (malaria) and Babesia bovis
(bovine tick fever) (Inoue et al. 2002; Lew et al. 2004;
McRobert and McConkey 2002; Ngo et al. 1998; Vayssie et al.
2004). In vivo gene silencing has also been achieved using
siRNAs to inhibit Plasmodium berghei specific proteases in a
malaria mouse model (Mohmmed et al. 2003).

The advent of RNAi in C. elegans provides an excellent
model for the study of gene function in metazoan parasites
(Aboobaker and Blaxter 2003; Knox et al. 2003). RNAi
screens of about 85% of the 19427 predicted genes in
C. elegans have been reported (Kamath and Ahringer 2003).
RNAi gene function studies have been undertaken in human
filarial nematodes, blood flukes and helminths (Aboobaker
and Blaxter 2003; Boyle et al. 2003; Hussein et al. 2002).
Grazing ruminants are continuously exposed to nematode
infection that, if uncontrolled, would restrict agricultural
production and be a serious threat to animal welfare (Knox
et al. 2003). Control is largely achieved using antihelmintics.
However, producers are facing increasing problems with
antihelmintic resistance and consumers are demanding
better food safety with regard to drug residues in food
products. RNAi tools could be applied to identify potential
gene targets for the development of alternative control
strategies. Reproducible RNAi effects can be produced in the
free-living stages of Haemonchus contortus but not, as yet in
parasitic stages (Knox 2004).

The fruit fly Drosophila melanogaster has been the
traditional genetic model system for mammalian research for
many years and discoveries in Drosophila have also
contributed towards our current knowledge of animal RNAi
pathways (Boutros et al. 2004; Clemens et al. 2000; Okamura
et al. 2004). Specifically, Drosophila research has provided
the basis for genomic and RNAi applications in other
arthropod species (Sanchez-Vargas et al. 2004; Shaw et al.
2001; Tabunoki et al. 2004). RNAi has been applied to
disrupt feeding and anticoagulation at the tick–host interface
(Aljamali et al. 2003; Narasimhan et al. 2004). The control of
cattle ticks (Boophilus microplus) is required to ensure
compliance with regulatory protocols for interstate and
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international livestock movement and to enhance animal
welfare by reducing stress and debilitation. Historically,
acaricides have been applied for tick control, however there is
a need to develop less toxic treatments and perhaps target
specific molecules involved in parasite pathogenicity and/or
survival (Gutteridge 1997). Tick control is becoming more
difficult in northern Australia due to acaricide resistance and
meat quality issues resulting as a consequence of increased
Bos indicus content in an effort to improve tick resistance. To
date, there are no reports of the application of RNAi to study
bovine tick–host pathogenesis. Similarly there are currently
no published RNAi studies targeting other agriculturally
important pests.

The genomes of number of well-researched organisms
(Plasmodium spp. trypanosomes, C. elegans,
D. melanogaster) are available for comparative analyses
(Adams et al. 2000; Chalfie 1998; El-Sayed et al. 2000;
Gardner et al. 2002). Comparative genomic analyses of
bovine parasites with these related well-characterised
species will provide insights into parasite–insect functional
genomics and associated non-coding regulatory genetic
elements important in host parasitism (Gunasekera et al.
2004; Uliel et al. 2004). Combined with available genome
data for agricultural parasites, appropriate bioinformatic and
experimental tools such as RNAi, novel targets for the
treatment and prevention of bovine diseases will be
identified (Ellis et al. 2003; Knox 2004; McCarter 2004).

RNAi delivery and therapy
Mammalian RNAi delivery systems

Figure 3 summarises the RNAi delivery options currently
used for gene knockdown experiments. Recommended
parameters for the design of inhibitory siRNA sequences
include: selection of a target cDNA region 50–100
nucleotides downstream of the start codon, selection of a
5′AA(N19)UU target mRNA sequence, where N is any
nucleotide, 50% G–C content in the target sequence,
avoidance of 5′ or 3′ untranslated regions and high G–C rich
areas, and confirmation of exclusive target specific
sequences (i.e. <15 bases of homology with non-target
cDNAs) (Elbashir et al. 2002). Presently custom siRNA
synthesis is available online through a number of companies,
including Dharmacon, QIAGEN and Ambion.

The intracellular concentration of the target RNA, the half-
life of the target protein, and the intracellular concentration of
the siRNA all play a part in determining the extent and
duration of suppression. Excessive intracellular pools of
siRNA should be avoided as a means to prolong RNAi
because of the risk of targeting non-specific mRNAs. The
sustained clinical benefit from the direct delivery of siRNAs
would likely require continuous re-administration (Davidson
and Paulson 2004). Recently Siolas et al. (2005) demonstrated
that synthetic 29-mer shRNAs were more potent inhibitors
than synthetic siRNAs (Siolas et al. 2005). The delivery of

siRNAs is probably the fastest and easiest method currently
available for producing knockdown of gene expression in cell
culture by means of RNAi (Hannon and Rossi 2004).

Unlike the expensive production of chemically or
enzymatically synthesised siRNAs, large amounts of plasmid
DNA vectors expressing siRNAs or shRNAs can be grown in
bacteria (Dykxhoorn et al. 2003). DNA-directed RNAi has
several advantages over the use of siRNAs and this approach
has been widely adopted for potential human therapy (Rice et
al. 2005; Zhang et al. 2004). Viruses possess the machinery
to allow nuclear entry and access to important nuclear
resident polymerases for expression. Thus, long-term gene
silencing has been achieved using viral vectors to express
shRNAs. For example, recombinant lentiviral vectors have
been derived from HIV, FIV and equine infectious anaemia
virus where the disease promoting genes have been deleted
(Xia et al. 2002). Lentiviruses are attractive because of their
ability to transduce terminally differentiated cells, and to
express transgenes for a long period (Rubinson et al. 2003).
Adeno-associated viral vectors are normally
extrachromosomal (episomal) in cells after gene transfer and
have also shown promise as RNAi delivery vectors. Several
different serotypes of adeno-associated virus have been tested
for use in different mammalian tissues and show desired
properties, such as specific tropism, long-term expression,
and limited immune response to the viral capsid (Lois et al.
2002; Shen et al. 2003). Comparatively, plasmid vectors are
easier to construct than viral vectors; however, viral vectors
are perhaps more effective for long-term silencing strategies
(Zhao et al. 2004).

The therapeutic potential of RNAi in vivo has been
demonstrated in mouse models using naked siRNAs,
cholesterol delivered siRNAs, plasmids expressing shRNAs,
and lentiviral vector delivered shRNAs (McCaffrey et al.
2002, 2003; Rubinson et al. 2003; Soutschek et al. 2004;
Zhao et al. 2004). Some of the challenges in RNAi delivery
include the design of conserved siRNA target sequences
(particularly for viral targets), off-target–non-specific effects
of the siRNAs and the delivery of siRNA/shRNAs to the
appropriate cell type target and sustained expression of the
introduced transcript (Downward 2004; Dykxhoorn et al.
2003; Jackson and Linsley 2004). RNAi relies on sequence
identity between the siRNA and the target and RISC-
mediated degradation of target transcripts is abolished if
siRNAs carry a single base difference (Elbashir et al.
2001b). As this may have an impact on viral gene targets with
high mutation rates, the stability of antiviral RNAi can be
enhanced by targeting several different regions of the
pathogen’s genome or by targeting host genes (Gitlin et al.
2002; Song et al. 2003).

Bovine RNAi delivery systems
The delivery of siRNAs to bovine cell cultures in gene

knockdown studies has been achieved with both synthetic

Application of RNA interference to beef cattle
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siRNA/shRNAs and siRNA/shRNA expression systems,
Table 2 (Kaykas and Moon 2004; Paddison et al. 2004a).
A number of bovine cell lines from various tissues are
commercially available allowing tissue specific RNAi gene
function screens. Despite the identified challenges, there are
a number of researchers and commercial companies
investing in the development of RNAi-based therapies
(Acuity Pharmaceuticals, Alnylam Pharmaceuticals,
Atugen, Benitec, CytRx, Intradigm, Nucleonics, Sirna
Therapeutics). Many commercially available mammalian
RNAi delivery systems will be applicable to the bovine host
(Nencioni et al. 2004). There are also bovine specific retro-
or lentiviruses which could be exploited as viral vectors in
bovine RNAi studies in vitro and potentially in vivo (Li and
Rossi 2005; Schmidt et al. 2004).

The current research investment in developing human
RNAi based therapies will greatly benefit livestock
researchers. Livestock that produce human therapeutic

proteins in their milk, have organs suitable for
xenotransplantation, or could provide resistance to diseases
have been developed using nuclear transfer technologies
(Denning and Priddle 2003). This can be an inefficient
process, whereas lentivirus vectors expressing siRNAs to
mediate gene silencing have been shown to be heritable and
stable and thus provides an alternative approach for the
development of transgenic animals (Dykxhoorn et al. 2003;
Sato et al. 2005; Uprichard et al. 2005). Whether transgenic
animals will be accepted by the public and by human
medicine is highly debatable. This may also have an impact
on the feasibility of developing DNA or virus based bovine
RNAi therapies.

Conclusions
This review provides an overview of the range of RNAi

methodologies widely applicable to eukaryotic and
mammalian species as a potent gene knockdown tool. Given
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Figure 3. Summary of the delivery options for synthetic dsRNAs with cellular endogenous RNAi pathways to mediate transient and prolonged
RNAi effects. Synthetic or enzyme generated shRNA and siRNAs can be transfected directly into cells for transient RNAi of targeted mRNA
transcripts. Plasmids are shown to express hairpin structures via pol II or pol III promoters (arrow indicated on plasmid) and can either integrate
and/or express cytoplasmic shRNAs. Virally produced shRNAs are shown to integrate into the nuclear DNA (such as lentivirus vectors). However,
there are viruses which also produce shRNAs episomally (e.g. adenoviruses). The shRNAs and siRNAs are incorporated into the cellular RNAi
pathways as described in Figure 2. Not shown are similar approaches used to deliver synthetic miRNAs that may induce translational repression
described in Figure 1. See also the list of terms in Table 1.
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the forthcoming availability of the bovine genome sequence
and the accessibility of established mouse and human RNAi
approaches, the basis for the wider application of RNAi in
livestock studies is apparent. The next few years lead to new
knowledge emanating from large scale RNAi analyses
connecting the pathways that associate the bovine genome
with the phenotype. It will then be possible to integrate this
new knowledge with other relevant functional genomic
studies to explore the dynamic nature of these interactions.
Several RNAi approaches are outlined in this review. These
include: the comparative analysis of functional miRNAs
involved with beef quality traits and immune pathways;
siRNA genome screens to isolate genes in these pathways;
specific knockdown experiments in both pathogens and
bovine host cells; and the development of bovine specific
RNAi vectors. Research in this area will not only provide
beef producers with new breeding strategies and disease
therapies but also will benefit other livestock production
systems and provide researchers with new insights into
physiology and disease that impact on human health.
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