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Abstract

Concerns of reduced productivity and land degradation in the Mitchell grasslands of central western
Queensland were addressed through a range monitoring program to interpret condition and trend. Botanical
and edaphic parameters were recorded along piosphere and grazing gradients, and across fenceline impact
areas, to maximise changes resulting from grazing. The Degradation Gradient Method was used in
conjunction with State and Transition Models to develop models of rangeland dynamics and condition.
States were found to be ordered along a degradation gradient, indicator species developed according to
rainfall trends and transitions determined from field data and available literature. Astrebla spp. abundance
declined with declining range condition and increasing grazing pressure, while annual grasses and forbs
increased in dominance under poor range condition. Soil erosion increased and litter decreased with
decreasing range condition. An approach to quantitatively define states within a variable rainfall
environment based upon a time-series ordination analysis is described.

The derived model could provide the interpretive framework necessary to integrate on-ground monitoring,
remote sensing and geographic information systems to trace states and transitions at the paddock scale.
However, further work is needed to determine the full catalogue of states and transitions and to refine the
model for application at the paddock scale.

Key words: Astrebla;, State and Transition Models; Degradation Gradient Method; range condition;
Mitchell grasslands; grazing impacts, central western Queensland

Introduction

The Mitchell grasslands are the most extensive and productive native pastures of semi-arid
western Queensland (Lee et al. 1980). They cover 33 million ha within Queensland, supporting
45% of the State’s sheep and 10% of the cattle. The Northern Territory, Western Australia, New
South Wales and South Australia share a further 11.8 million ha of Mitchell grasslands (Orr
1975).

The grasslands are dominated by the long-lived perennial Astrebla spp. (Mitchell grasses). The
basal cover of these tussock grasslands is low (1 to 6%), and rainfall is highly variable, leading
to fluctuations in both pasture yield and composition (Orr 1975, 1981). A change from summer
to winter rainfall dominance, moving from the north to the south of Queensland.also affects
pasture yield and composition, particularly of inter-tussock annual and ephemeral species (Orr
and Holmes 1984). This creates spatial and temporal differences when assessing rangeland
condition within the Mitchell grasslands and led Everist and Webb (1975) to conclude that “the
extrapolation from [vegetation] observations made at any one time can be misleading and
inaccurate”.

State and Transition Models (Westoby et al. 1989) have recently supplanted Clementsian
successional theory (e.g. Clements 1916, 1936, Dyksterhuis 1949) in explaining vegetation
based changes in rangeland condition. Reasons for this paradigm shift are given in recent
publications (e.g. Whalley 1994, Brown 1994) and generally relate to the inability of succession
to explain vegetational instability in the absence of disturbance.
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Clementsian successional theory, however, formed the foundation of many modern techniques
for interpreting changes in rangeland condition. The Degradation Gradient Method (DGM,
Bosch and Gauch 1991) is Clementsian based, with thresholds and domains of attraction ordered
along a singular gradient. Domains can be equated with major states in State and Transition
Models (Bosch and Kellner 1991) and irreversible changes occur when domains of attraction are
separated by a threshold. Models based on the DGM have been used in the New Zealand high
country to help agency staff, graziers and funding bodies interpret vegetation monitoring results
and serve as the basis for natural resource decision making within an adaptive management
process (Bosch ez al. 1996).

Successful implementation of sustainable best management practices ultimately rests with land
managers. Watson et al. (1996) argue that the “mental models held by managers must
acknowledge the value of continuous change. This provides the best opportunity for acquiring
knowledge through experience”. In this, they acknowledge the benefits of perceiving changes as
a continuum, even if State and Transition event driven models provide a deeper ecological
understanding.

This paper describes an approach by which both Clementsian and State and Transition theories
were applied concurrently to develop models of the dynamics of the Mitchell grasslands in
central western Queensland. Data were obtained from a pasture monitoring program established
in 1989 in response to concerns by the pastoral industry and the scientific community about
perceived declining productivity and rangeland degradation (e.g. Roberts and Crouch ca.1989,
Tothill and Gillies 1992).

Materials and Methods
Data collection
Vegetation surveys

Fifty-seven sites of 30 by 30. m square were permanently marked to represent different
conditional states (e.g. within existing grazing trials, fence line effects, piosphere and stock
camp transects and sheepwalks) within a relatively homogeneous grazing area (RHGA, Bosch
and Kellner 1991) of the central Mitchell grasslands (Fig. 1a). The RHGA study area was
representative of the slightly concave flats dominant on the Undulating downs Land Zone of the
central Mitchell grasslands (Fig. 1b, Turner et al. 1993). Further RHGA study areas (data not
presented) were located within the northern Mitchell grasslands (Julia Creek — Richmond
district) and southern Mitchell grasslands (Blackall district). These areas were deliberately
separated to avoid broad differences in vegetation patterns along both north-south and east-west
rainfall gradients (Fensham et al. 2000) unduly influencing potential grazing impacts.

The sites were initially surveyed in August 1989 and re-surveyed in January 1990, May 1991,
May 1993 and May 1994. Site botanical composition was assessed using a modification of the
nearest plant method (Evans and Love 1957), with the nearest plant within a 200 mm radius
(instead of the nearest plant irrespective of distance) recorded at 200 points within each survey
site. Similar methods capture at least 95% of the total mix of plant species in African rangelands
(Hardy and Walker 1991, Stalmans and Mentis 1993).

Site descriptions

All sites were initially described (Table 1) based on Land Systems within the Undulating downs
Land Zone (Turner et al. 1993), greater soil group (Northcote 1979, Northcote et al. 1975),
general edaphic properties (e.g. soil depth, topography, and slope position) and evidence of
disturbance (e.g. erosion activity). Bulked surface samples (0 - 10 cm) were analysed according
to methods detailed by Bruce and Rayment (1982) to provide soil chemistry and particle size
distribution (data not presented).
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Fig. 1. The location of: a) the study area in relation to Longreach and the
Mitchell grasslands of Queensland; and b) monitoring sites in relation to
Land Zones (Turner et al. 1993) of the study area.
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Above ground biomass (kg/ha) and grazing pressure (utilisation level, %) were estimated from
photostandards (Phelps and Bates 1994, Orr 1978) at each site on each survey. Ground cover
(%) was estimated in May 1991 from photographic slides of three random ! m” quadrats within
each site using a point intercept method on a projection screen (Day and Philp 1997). Rainfall
data were interpolated from site positions (longitude and latitude) by the Climate Impacts and
Natural Resource Systems Group (Natural Resource Sciences, Department of Natural Resources
and Mines) from Bureau of Meteorology data (McKeon et a/. 1998). This suite of habitat data
was used for assessing the major factors influencing variation in vegetation composition.

Data analysis
Identifying vegetation states

Firstly, each recording date was ordinated independently in a time-series approach to avoid
seasonal rainfall patterns unduly influencing the proportional plant abundance data. Outliers due
to site habitat differences (e.g. extremes of pH, differences in Land System classifications) and
species that occurred at less than 15% of the survey sites were removed prior to ordination to
minimise noise in the data set (Gauch 1982). The software packages ISPD (an Integrated System
for Plant Dynamics, Bosch e al. 1992) and PATN (Belbin 1987) were used to explore the best fit
of data (through the analytical component of ISPD and by eye) within a range of ordination
techniques (Gauch 1982). For each recording, an adapted PCA (Principal Components Analysis)
centred ordination (Bosch and Gauch 1991) proved to be the most suitable, following initial
clustering with DCA (Detrended Correspondence Analysis, Hill and Gauch 1980). Different
vegetation groups were identified by eye in ISPD (Bosch er al. 1992) and these groups then
defined as vegetation states (e.g. State A (1989) in Fig. 2) relative to the first ordination axis of
PCA (a possible degradation gradient), with the second axis defined as a residual score (Bosch
and Kellner 1991, Bosch and Gauch 1991).

Secondly, individual sites within each state were identified and their movement in ordination
space from one state to another traced over time. This process provided evidence of generalised
vegetation states, directions of change (or transitions) and the possible reversibility of the
changes. The movement of groups of sites between similar vegetation states across sampling
dates was taken as evidence of the presence of a single stable vegetation state (the solid arrows
of Fig. 2). The movement of individual sites against a general trend was taken as evidence of
transitions between vegetation states (the dashed arrows of Fig. 2). The combined evidence of
stable vegetation states and the existence of transitions was utilised in defining a generalised,
time independent, State and Transition Model (STM). For example, the same sites grouped
together in ordination space on the basis of high proportions of Malvastrum americanum’ and
Sida spp. over the “average summer, wet winter” between August 1989 and January 1990,
whilst another group of sites grouped on the basis of high proportions of Astrebla spp. and
Dichanthium sericeum (Fig. 2). Details of site movements and vegetation states are provided in
the results and discussion section.

Defining a degradation gradient and identifying indicator species

Edaphic factors and known management histories (e.g. protected sites, sites of known utilisation
levels within grazing trials, sites close to watering points and stock camps) were plotted on the
ordination diagrams at each date. This allowed the main ecological factor(s) responsible for the
positioning of the states along the first axis to be defined, and to clarify or reject its status as a
degradation gradient within each sampling date. The acceptance of the first ordination axis
within each date specific data set as a degradation gradient was a prerequisite for condensing the
quantified vegetation states into generalised vegetation states.

! See Table 2 for species nomenclature and descriptive information
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Survey Vegetation states and changes Rainfall trends
date
Severe drought
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e m e e 4
State A (1989) State B (1989) ! StateBl State C (1989)
August Astrebla spp. Astreblaspp, M. |1 (1989) E M. americanum,
1989 dominant with americanum, C. E A. latifolia C. cinereum ,
D. sericeum cinereum mix ! subgroup | Sida spp. mix
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4 \ A 2 v
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State E (1994)
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Fig. 2. Movement of sites between vegetation states formed from one date to another. Solid
boxes represent well defined states (the grouping of a large number of sites), dashed boxes
represent poorly defined states (the grouping of a small number of sites). Solid lines indicate a
general movements of sites, dashed lines indicate the movement of individual (or a small
proportion of) sites.

Once the first axis was confirmed as a degradation gradient, the abundances of species were

plotted against PCA axis one, and Gaussian fit regression analyses performed using ISPD
(Bosch er al. 1992, Bosch and Kellner 1991). Indicator species were defined as those with
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significant R? values (P<0.05) in relation to the first ordination axis, and with relatively high
abundances in the Mitchell grasslands.

Data from sample dates with common indicator species displaying similar trends under similar
rainfall conditions (e.g. the “average summer, wet winter” preceding August 1989, January 1990
and April 1991, Fig. 2) were grouped and re-analysed using PCA. As long as the same species
and trends persisted, the combined model was used as a basis for more generalised indicator
species curves (e.g. August 1989, January 1990 and April 1991 data were combined to become
“Following major drought”). Where the same species and trends did not persist, the ability to
combine data sets was rejected and individual data sets formed the basis of the indicator species
curves. Consequently May 1993 and May 1994 became “During seasonal drought” and
“Following seasonal drought” respectively. Details of combined models and indicator species
curves are provided in “Determining Indicator species” within the results and discussion section.

The relative strength of indicator species as decreasers or increasers along the degradation
gradient (axis one) was used to define the position of states (including sub-groups) within the
generalised STM. Hence the high abundance of bare ground (a strong increaser species) in State
VII, coupled with the absence of other species, suggested it to be the most degraded state. High
abundances of Cullen cinereum within State III suggested it to be less degraded than State V,
despite the strength of M. americanum as an increaser species. This evidence was reinforced
through a tendency for degraded sites to be more common within States VII, VI and V.

Data availability

Data sets are available from the first author upon request, or can be found appended to Phelps
(1999).

Results and Discussion
Identification of vegetation states

The main vegetation states identified from the ordination diagrams of each date are presented in
Fig. 2. States were numbered for the individual ordinations at each field recording time. State A
in August 1989 should thus not be considered as the equivalent to State A in May 1993, for
example. The vegetation states are presented in the same order in which they appeared along the
first ordination axis, although the relative length of each first axis is not provided. Vertical
differences in May 1994 are for ease of presentation and do not reflect the second (residual)
axis.

The general movement of sites through subsequent time specific ordinations is indicated by solid
arrows, with August 1989 used as the baseline ordination. This general movement represents the
creation of new ordinated vegetation groups at different times which may be similar to, or
dissimilar from, the ordinated vegetation group in the preceding time and were assumed to
represent time specific states. For example, the single arrow from State A (1989) to State A
(1990) indicates that all the sites ordinated in this state in the August 1989 data were also
ordinated in this state in the January 1990 data, reflecting stability over this time period.
Stability of this kind was later used as evidence in determining generalised vegetation states.

The movement of a small proportion of sites against the general trend through subsequent
ordinations is indicated by dashed arrows. For example, some sites moved from State C (1990)
to State C (1991), whilst others were now ordinated in the State B (1991) group of sites.
Instability of this kind was later used as evidence in determining transitions.

The temporal movement of sites to form new states is provided in the following descriptions:
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Changes in State A (1989, Astrebla spp. dominant with D. sericeum)

This grassland, dominated by Astrebla spp. (primarily 4. lappacea and A. elymoides, with some
A. pectinata but rarely A. squarrosa), stayed the same during average to good rainfall years but
by 1993 most of the D. sericeum (a palatable perennial grass, Table 2) had been lost following
drought. After more favourable rainfall conditions over the 1993/94 summer period, bare ground
was replaced by Iseilema spp. to form grassland dominated by Astrebla spp. with occurrences of
Iseilema spp. A small number of sites in the grassland dominated by Astrebla spp. changed to
grassland with Astrebla spp. mostly dominant between January 1990 and April 1991. Since this
was against the general trend and rainfall conditions did not vary substantially (data not
presented), it could be assumed that this resulted from increased grazing pressure at these sites.
There was some evidence (data not presented) that the grouping of 4. squarrosa with all other
Astrebla spp. may cloud the correct interpretation of vegetation dynamics, especially given its
relatively lower palatability (Table 2) and preference for run-on areas (Orr 1975). Its separation
into a separate category would be recommended for future monitoring programs.

Changes in State B (1989, Astrebla spp., M. americanum, C cinereum mix)

This grassland, mostly dominated by Astrebla spp., retained M. americanum but lost
C. cinereum between August 1989 and January 1990. A change in rainfall patterns may have
induced this vegetation shift. Bushell et al. (1993) found the density of both species declined in
response to changed rainfall patterns, whilst C. cinereum increases are often associated with cool
wet seasons. Alternatively, the change may reflect greater M. americanum persistence.
M. americanum remained abundant until May 1993 when it was replaced with bare ground
following dry conditions, with the exception of two sites which lost all plant cover (probably due
to overgrazing during dry conditions). More favourable rainfall over the 1993/94 summer cansed
most of the sites to change into a mixed Astrebla spp. and Iseilema spp. state, whilst some
changed to a C. cinereum dominant state.

Changes in State Bl (1989, A. latifolia sub-group)

This grassland, with a predominance of Aristida latifolia, formed a sub-group within State B in
1989, and remained the same until May 1993 when bare ground started to increase. This sub-
group changed to an Astrebla spp. and Iseilema spp. mix by May 1994 (State B 1994). This
followed improved rainfall conditions.

Changes in State C (1989, M. americanum, C. cinereum, Sida spp. mix)

This herbfield, dominated by M. americanum, C. cinereum and Sida spp. (primarily S. fibulifera
and S. trichopoda), lost the C. cinereum component between August 1989 and January 1990.
This shift in botanical composition coincided with the loss of C. cinereum from State B
(grassland with Astrebla spp. mostly dominant). A small proportion of sites moved to State B
(1991) following a reduction in M. americanum and Sida spp., but were generally returned in
May 1993 following low summer and winter rainfall. This low rainfall (approximately 50% of
mean rainfall) resulted in the complete loss of M. americanum and Sida spp. from all sites. This
loss suggests a relatively unstable vegetation state which is more susceptible to drought
conditions than either of the grassland states. The herbfield was dominated by Amaranthus spp.
(primarily A. mitchellii) in May 1994 following improved rainfall conditions. The sites which
had remained in a grassiand state during 1991 and 1993 became dominated by C. cinereum in
May 1994. »

The analysis has indicated that rainfall was the dominant driving force for the major changes in
botanical composition over time (represented by solid arrows in Fig. 2), a finding supported by
other studies (e.g. Orr 1981, Roe and Allen 1993, Fensham et al. 2000). Within this dominant
rainfall influence, other work has indicated that grazing can influence both short- and long-term
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changes in botanical composition (e.g. Orr 1980a, 1980b). This may be especially true at
specific sites, and may be reflected in the deviations from the general pattern of change
(represented by dashed lines in Fig. 2). For example, most sites within State A (1989) remained
in this state until 1993 where drought conditions lead to the loss of D. sericeurm. Some sites,
however, went directly to State B in 1991. This deviation may have resulted from high grazing
pressure at these sites and the subsequent removal of highly palatable D. sericeum plants. The
change of sites from State B (1991) to State B (1993) and State A (1993) to State E (1994) may
have resulted from high grazing pressure, with a decline in Astrebla spp. offset by an increase in
less palatable plants or bare ground in each instance (Fig. 2). However, the shift of individual
sites from State B (1993) to State D (1994) is difficult to explain. Whilst most bare ground sites
were populated by Amaranthus spp. (generally regarded as a coloniser of bare ground), a few
had high abundances of Sida spp. (generally regarded as a benign species), perhaps reflecting
differing rainfall patterns, grazing pressure or initial soil seed banks.

Some individual sites had known grazing and rainfall histories that enabled the successful
definition of disturbance gradients. For most sites, exact management practices (¢.g. the timing
and duration of grazing and numbers and types of animals) and rainfall data (e.g. timing and
intensity of rainfall) which would have influenced changes were not recorded, necessitating the
use of interpolated rainfall data and assumptions of grazing histories based on pasture
measurements. A monitoring program which sought to fully involve land managers from the
outset would have helped capture the detailed data required.

Generalised vegetation states

The generalised vegetation states (Fig. 3) represent a condensing (outside of ordination space) of
the 20 date dependent states (Fig. 2) into a STM independent of time and rainfall, based on a
consistent movement of sites and the existence of a degradation gradient at each sampling date.
The continuity of sites dominated by Astrebla spp. for four out of five monitoring dates, across a
range of seasonal rainfall patterns, provided evidence for the existence of one generalised
Astrebla spp. dominated state (State I, Fig. 3). The continuity of sites with Astrebla spp. mostly
dominant, but mixed with other species, provided evidence for the formation of State ]I

Date specific grassland states were also associated with vegetation inseparable from the main
groupings in ordination space (e.g. the 4. latifolia sub-group, State B1 1989 to 1991 and State
A1 1993). These are reflected as sub-groups within the generalised states. State I and State II
were subdivided into two and four sub-groups, on the basis of the sub-dominance of
D. sericeum, A. latifolia, M. americanum, bare ground or Iseilema spp. These generalised states
are supported by evidence from McArthur ef al. (1994) and Partridge (1996). State I is similar to
a climax sere suggested by Roberts (1972) but at odds with some suggested pioneer species
(e.g. A. latifolia and Iseilema spp.).

The general similarity between herbfield states identified under each set of seasonal
circumstances (particularly the absence of perennial grasses) creates the temptation to form one
generalised herbfield state, The lack of temporal species continuity, particularly with the
separation of sites dominated by bare ground in May 1993 into three separate vegetation states
in May 1994, provides insufficient evidence to justify this. grouping. The evidence, instead,
points to five separate vegetation states (States III through State VII) to be used within a
monitoring framework. Pragmatically, a simplification to sub-groups within a single herbfield
state (“State III”) for presentation to range managers may be justifiable, if not strictly correct
based on the evidence.

Some potential vegetation states were not identified over the monitoring period. One expectation

from observations and anecdotal evidence was a Salsola kali dominant state similar to States [V
or VI. Other dominant plants recorded in the literature include Boerhavia diffusa (under
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revision, B. diffusa is no longer valid in Australia), Plantago debilis and Solanum esuriale
(Davidson 1954). There is, however, insufficient evidence to include these plants within states in
the current model. This suggests that a longer period of monitoring was required to capture a
wider range of rainfall conditions and hence a fuller overview of the potential states within the
central Mitchell grasslands. The emphasis should be placed on a time frame sufficient to capture
a suite of different rainfall trends whilst being able to compare grazing management. Jones et al.
(1995) suggested a minimum of 10 years when monitoring experimental grazing sites. Phelps ez
al. (1993) suggested monitoring 10 to 15 major climatic events over whatever time was
necessary to encapsulate rainfall induced vegetation changes in the Mitchell grasslands.

Identifying a degradation gradient

The existence of a degradation gradient from State I (good condition) to State VII (poor
condition) was tested through plotting known grazing histories, surface litter cover, erosion
activity and bare ground within the generalised vegetation states of the proposed STM. It would
be expected that declining ecological condition along a degradation gradient would be associated
with factors such as increasing erosion resulting from increasing grazing intensity (expressed as
utilisation) and the loss of soil surface cover. The lack of such a relationship would be sufficient
to reject the presence of a degradation gradient, and to reject the proposed STM.

a)  grazing management history

L@ Ll LTO (1) Key:
M@ M(6) LTOD(2) o) | a) management histories:

Hb | LTop ) “ L (low); M (moderate); H (high)

IS —— utilisation; LTO = overgrazed in the long
LTO (1} LoD term; LTOD = overgrazed in the long
LoD (1) term and disturbed (e.g. near a watering
LToD (2) l point; overgrazed comer; overgrazed
b)  erosion classes ;t)";k(;i;'pc)lassey

s S0 Am S (stable); P (partly stable); A (active

PS (3) T crosion evident); NA (no data available)
PS (1) A Loam c) litter classes:
Al \ i H (high or moderately high); M

NA NA {moderate); L (low or nearly no litter); Z
(no litter); NA (no data available)
NA
. _ (n) = the number of sites within each
¢) litter classes category

HE) HD o L Data was recorded during surveys with
M(3) M(7) prer litter and erosion not available for all

Lan [ 2 recordings (Table 1).

§ "]

good Range condition poor

Fig. 4. Evidence for a degradation gradient within the STM for the central Mitchell grasslands:
a) grazing management history; b) erosion classes; and c) litter classes.

The general trend present was for grazing intensity and erosion to increase and for surface litter
levels to decline from State I to VII (Fig. 4). State I was dominated by sites with low utilisation
(8 out of 10 of sites with known management histories), stable erosion (6 out of 8 sites) and high
to moderate levels of litter (all sites). There were minor incidences of moderate utilisation and
active erosion at sites within these vegetation states. State Il was dominated by sites with
moderate utilisation (6 out of 8 sites, with one low and one high), stable erosion (13 out of 21
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sites) and moderate to low levels of litter (18 out of 20 sites). There were occurrences of active
erosion (five sites). The herbfield states (States IIT to VII) exclusively contained sites that were
overgrazed in the long term, or overgrazed and disturbed (those close to watering points, near
stock camps and in overgrazed corners), were actively eroding and had low to zero surface litter
present.

Other authors have deliberately ordered States and Transitions along degradation gradients, or in
some cases, along two axes representing different aspects of degradation. For example, Ash et
al. (1994) presented a model for northern Australian tropical tallgrass communities with States
placed along axes for disturbance and risk of accelerated soil erosion. They also discussed the
value of recognising key pasture species to indicate positive or negative change. Otr et al.
(1994) presented two axes relating to degradation in their model for the southern black
speargrass zone, animal productivity and soil stability. They also included a “Management
Restoration Threshold” below which major alterations to management would be required to
effect change to range condition, This threshold is similar in nature to the border between
domains of attraction along a degradation gradient presented by Bosch (1989) and Bosch and
Kellner (1991).

Grice and Macleod (1994), in a discussion on the practical use of STMs, ordered their model for
the woodlands/grasslands of western New South Wales along a degradation gradient, albeit
without defining the gradient as such. Jones and Burrows (1994) defined the relative degradation
of states within their mulga zone STM, again suggesting the value of retaining this basic element
of Clementsian theory. Mclvor and Scanlan (1994) presented a model for the northern
speargrass zone, in which transitions were acknowledged to be accompanied by changes in soil
stability and pasture productivity. They did not define a degradation gradient although states
were ordered in a way which could be interpreted as a degradation gradient. McArthur ef al.
(1994) explicitly divided their model for the Mitchell grass, bluegrass-browntop and Queensland
bluegrass pasture zones into sustainable, deteriorating and degraded categories along a
degradation gradient.

These examples indicate that whilst STMs are now well accepted in Australia, aspects of
Clements (1916) and Dyksterhuis (1949) have been retained, albeit generally not explicitly
stated. Specifically, perceived degradation gradients, management thresholds and key plant
species are still presented as tools in interpreting range condition. This seems sensible. The
introduction of a new system of modelling range condition should not mean all previous
attempts have nothing to offer. Rather, the combining of the best elements of each would seem
appropriate. This appears to be the unwritten intent of many rangeland researchers.

Determining indicator species

The definition of degradation gradients in both the generalised vegetation states and the time
specific vegetation states made it possible to determine indicator species along the first
ordination axis. The time specific vegetation states were initially analysed for indicator species,
to reduce noise from differing rainfall patterns. Where rainfall patterns were similar at different
dates (e.g. rains following a seasonal drought) similarities were also found in both species
abundance and behaviour. This made it possible to summarise the indicator species according to
rainfall patterns (Fig. 5). Whilst indicator species are presented individually, it is the combined
abundances of all species which serve to group sites in ordination space. When assessing the
placement of new sites relative to existing groups along the degradation gradient (i.e. states), all
indicator species should be considered in the context of the descriptions included in the
catalogue of states (see section “A quantitative State and Transition Model” for comprehensive
descriptions).
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a) During seasonal drought

Astrebla spp. Panicum spp.
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; R™=0.7 °‘ R>=0.2
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bare ground Digitaria spp.
h 1 . ]
- R™=0.9 S 5% R™=0.7 |
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S / \ !
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b) Following major drought

c) Following seasonal drought

Astrebla spp. M. americanum Astrebla spp.
‘ R™=0.9 - R™=0.8 g N R'=0.9 |
| | / | N\ |
RN i e ‘ N ‘
! \1\\\ } - g | ‘ \\\\ |
Panicum spp. Sida spp. C. cinereum*
15% : 15% - ‘
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: . | /// — / !
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| / v/ 1 |
; / / \\ ‘ // } i / g
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Fig. 5. Stylised response curves of indicator species along the degradation gradient (PCA axis
one) for the central Mitchell grasslands within rainfall pattern groups: a) during seasonal
drought; b) following major drought; and c) following seasonal drought. Maximum abundances
(vertical axis) are 100% unless otherwise indicated.
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During seasonal drought (Fig. 5a), bare ground was the strongest indicator (R*=0.9) of degraded
range condition (equating to State VII of Fig. 3), while Astrebla spp. was the strongest indicator
(R*=0.7) of non-degraded range condition (equating to States I and II). Digitaria spp.
(a combination of D. coenicola and D. ctenantha) (R =0.7) and Panicum spp. (primarily
P. decompositum) (R*=0.2) were associated with State II at low abundances (Fig. 5) with high to
moderate abundances of Astrebla spp. and low to moderate abundances of bare ground.

Analysis of the sites surveyed following drought-breaking rains (Fig 5b) indicated that Astrebla
spp. again had its highest abundance in the non-degraded vegetation states (States I and II). The
relatively high abundance of D. sericeum in association with Astrebla spp. was a good indicator
of State Ia. The combined presence of Astrebla spp., M. americanum and C. cinereum was a
good indicator of State II, forming State IIb under these circumstances. Panicum spp. provided
an indication (R’=0.4) of State II, albeit only reaching low abundances (less than 10%). High
abundances of 4. latifolia distinguished State Ila within the overall confines of State II. Both
M. americanum and C. cinereum were good indicators (R*=0.8) of the degraded forb states
following major drought (partlcularly State III). Sida spp. abundances were less than 15%,
contributing as an indicator (R*=0.4) of State III.

Following seasor/l drought (Fig. 5¢), Amaranthus spg) dominated State VI in response to
favourable rainfall and is therefore a good indicator (R°=0.7) of severely disturbed states in a
process of recovery. Sites in good condmon were associated with high abundances of Astrebla
spp., providing a good indicator (R‘—O 9) for State 1. Sites dommated by Astrebla spp. but with
abundances of C. cinereum (R*=0.8) or Iseilema spp. (R*=0.3) indicated State II following
seasonal drought, particularly States IIb and IId. Other species associated with State II under
these-conditions included Eriochloa crebra, Digitaria spp. and Sida spp.

The ability to identify indicator species along a degradation gradient allows quantitative (using
thresholds within ISPD, Bosch and Kellner 1991) or qualitative (using indicator species
proportions as a guide) positioning of new sites into the central Mitchell grassland STM based
on botanical composition and seasonal conditions. The use of indicator species from different
times, representing a range of rainfall-induced botanical compositions, reduces the need to
extrapolate from dissimilar seasons, and should provide a degree of certainty not previously
available.

The concerns of Everist and Webb (1975) are thus partially satisfied through a model
incorporating seasonal impacts, with a single recording event interpreted in context of both
spatial and temporal variability. The prerequisite of success in this approach is adequate
coverage of temporal variability, to ensure confidence in capturing all major vegetation states
and transitions.

A quantitative State and Transition Model (STM)

The identification of vegetation states, degradation gradients and indicator species has allowed a
quantitative STM to be developed (Fig. 3) and described (Box 1) for the central Mitchell
grasslands. Supplementary information from other sources has allowed transitions to be better
defined and described than from the pasture monitoring evidence alone. This new model
enhances information previously presented by McArthur et al. (1994) by refining the area of
applicability and utilising more recent evidence. This process could be considered useful in
determining quantitative STMs in other rangeland ecosystems where monitoring programs have
been undertaken or are current.
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Implications of differing conditional states

Data presented in this paper indicate that the states can be arranged along a degradation gradient,
with the best ecological condition at State I and the worst at State VII (Fig. 4). Direct
observation, experience and other published evidence (Bushell et al. 1993, Phelps et al. 1993)
suggest grazing, rainfall and vegetation data have been interpreted correctly in placing the
herbfield states along the degradation gradient, although the spacing in Fig. 3 is not necessarily
indicative of the relative severity of degradation of each state. It is likely that a management
threshold exists between State II and the herbfield states (States III to VII), as few sites from
latter states returned to a grassland state during the survey period. It is also likely that animal
productivity in the herbfield states would be both reduced in the long-term and highly variable in
the short-term.

The herbfield states, lacking perennial grasses, would have little feed on offer for livestock
during dry periods. Perennial grasses comprise a significant proportion of the diet of sheep
between (Lorimer 1978), as well as immediately following (Orr ef al. 1988), pasture growth
initiating rainfall events. This enables livestock to be carried longer into dry periods than
pastures consisting of forbs alone would allow. However, animal nitrogen and energy balances
may be lower on diets dominated by grasses (Norton ez al. 1978, McMeniman et al. 1989), with
forbs reported to have higher nutrient levels than green leaf of grasses (McMeniman et al. 1986).
It is likely that animal productivity would vary considerably within the herbfield states and that a
high risk of liveweight loss and animal mortality (or the need for agistment or supplementary
feeding during drought) result.

The supposition that animal productivity is much reduced in states in the worst ecological
condition (e.g. the herbfield states) is also supported by the findings of Roe and Allen (1993)
and Phelps and Orr (1998). Both have reported that stocking sheep at levels which maintain
good conditional states (i.e. moderate stocking rates) provided improved monetary returns over
levels which lead to degraded states (i.e. high stocking rates) in the southern and northern
Mitchell grasslands respectively.

Mechanisms of transitions

As with states, not all expected transitions were identified during the study period and cannot
easily be determined from the literature. For example, changes directly from State I to State II
and State II to the herbfield states (e.g. State IV) were recorded only within sub-groups (there
were transitions from State Ia to IIb and from State IIc to IV but transitions were not recorded
from State I to II). Whilst such transitions may be expected, they are not presented within Fig. 3.
Where there was clear evidence that a transition existed during the study period, it is represented
as a solid arrow. Transitions with only weak evidence (e.g. only one or two sites which moved in
that direction) are represented with a dashed line.

The mechanisms of transitions were not clear from the current study, with both the literature and
observations used to define the processes involved. Any movement from good to poor condition
would necessarily involve the loss of Astrebla spp. (Fig. 3 and Box 1). Orr (1975) cites the
reasons for the depletion of Astrebla spp. in Mitchell grass pastures as:

i) the removal of seedlings by gross overstocking;

ii) excessive grazing during active growth;

iil) grazing dormant plants close to ground level; and
iv) burrowing for roots.

Within the context of variable rainfall, and associated variable pasture growth and botanical

composition, 1) would most likely occur following drought when the pasture biomass is low and
there are few existing Astrebla spp. tussocks, or potentially over winter (Roe and Davies 1985);
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ii) would most likely occur during periods of below average rainfall or drought recovery;
iii) would most likely occur during either winter or periods of drought; and iv) would most
likely occur during periods of extreme drought.

Catastrophic climatic events, such as flooding, prolonged drought and wildfire may also lead to
the loss of Astrebla spp. tussocks. Bowman et al. (1997) reported that flooding can lead to the
large scale disappearance of 4. lappacea in New South Wales. 4. squarrosa and 4. elymoides,
however, often grow in flooded areas (Orr 1975), and flooding during dormancy may not have
as severe an impact (personal observation). Williams and Roe (1975) reported that Astrebla spp.
tussocks can be killed by drought, and local knowledge suggests that wildfire in the heat of
summer can lead to the loss of Astrebla spp. Grazing management may also play a role in these
extreme events. A transition from State I directly to a herbfield State would probably require a
catastrophic event to reduce Astrebla spp. abundances from 50 to 90% to less than 30%.

Declining range condition could be avoided through the prevention of conditions which lead to
a net loss of Astrebla spp., through either the protection of existing tussocks or the promotion of
new plants through recruitment. Recruitment is generally both small and irregular (Williams and
Roe 1975), and. insufficient to compensate for high tussock mortality. This suggests that the
maintenance of a site within either of the grassland states would be dependent on existing
Astrebla spp. tussock survival.

Any improvement in range condition would necessarily involve a net gain of Astrebla spp.
(Fig. 3 and Box 1) through rare large recruitment events, and depend upon both favourable
summer rainfall patterns and a high germinable seed bank at the start of summer (Orr 1991, Orr
and Evenson 1991), although seedlings recruited towards the end of summer may survive if soil
moisture is maintained over winter (Austin and Williams 1988).

It is unlikely that differences in recruitment would exist between States I and II, as seedling
recruitment and yearling mortality is higher under moderate grazing pressure than under no
grazing, resulting in net similarities (Orr and Evenson 1991). However, if rainfall conditions
favour Iseilema spp., recruitment of Astrebla spp. may be restricted (Orr and Evenson 1993).
Iseilema spp. abundances reached 30% within State IId. Consequently, high grazing pressure
within State IId could result in a transition to a herbfield state, similar to the removal of
seedlings by gross overstocking. Orr (1980b) also suggested that the recovery of Astrebla spp.
following drought depends largely upon recruitment. An increase in Iseilema spp. following
drought could therefore reduce the proportion of 4strebla spp., potentially leading State Ilc to a
herbfield state, or preventing State VII from recovering.

Populations of both D. sericeum and A. latifolia increase with above average summer rainfall
(Blake 1938, Lee er al. 1980, Orr 1980a), the latter increasing mainly under lighter grazing
pressure. As with Astrebla spp., their abundance is a result of recent rainfall history over the
past one to three years (Orr 1981). A decline in D. sericeum and A. latifolia results from drought
conditions. High grazing pressure may also reduce the abundance of the highly palatable D.
sericeum. The Transitions of State Ia to State IIb and State Ila to State IIb or State IId resulted
from dry conditions. The return of favourable rainfall at these sites would likely see the retwrn of
these sites to the compositions recorded in 1989.

Other grasses and forbs occupy the spaces between the tussocks of the perennial species and
their dynamics are the most difficult to predict. This is reflected in the small proportion of forbs
which were useful indicator species (Fig. 5). The abundance of the annual and short lived
perennial forbs is a result of immediate rainfall history (Orr 1981) and dependent upon the
germinable seed bank, the bare space available and the projected foliage cover of the perennial
grasses (Orr 1980a). The low basal areas found in the Mitchell grasslands (1 to 6%) suggests
that space is rarely limiting, although increases in the abundance of perennial grasses can be at
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the expense of annual species (Orr 1981). Root competition from the perennial grasses may also
limit moisture availability and restrict the abundance of annual species:.

A wide range of annual forbs and grasses can be found following rains immediately after
drought. Botanical composition under these conditions is determined by the timing of the
rainfall e.g. Daucus glochidiatus and Plantago spp. respond to increased winter rainfall, whilst
Desmodium campylocaulon and Sida spp. were recorded in highest abundance following
summer rainfall (Orr 1981). Iseilema membranaceum was found to increase with increasing
summer rainfall, as were B. diffusa and Rhynchosia minima. (Orr 1981, 1986). M. americanum
increased with late or early summer rainfall (Orr 1986, Bushell ez al. 1993, Phelps et al. 1993)
but it survives for only two to three years before dying during dry or drought conditions.

Some forbs and annual grasses have been reported to occur only under different grazing
pressures. Hall and Lee (1980) reported Abutilon malvifolium, M. americanum, Portulaca sp., S.
kali, Sida filiformis and C. cinereum to occur only under heavy grazing with cattle in the
northern Mitchell grasslands. Some Sida spp. were found to occur under both heavy and light
grazing (e.g. S. trichopoda), but none were confined to light grazing alone. Iseilema spp. tended
to increase under moderate grazing (Fig. 5). This is consistent with Foran and Bastin (1984)
who reported Iseilema vaginiflorum density and biomass to be greater at 1.6 km than at either
0.8 or 3.2 km from water in a cattle grazing area, but differs from Hall and Lee (1980) who
found that /seilema spp. tended to increase under heavy grazing by cattle.

Transitions from and between any of the herbfield states are therefore difficult to predict. It is
likely that the Transitions from State III to State V and from State V to State VII resulted from
dry conditions and subsequent high forb mortality, rather than from grazing pressure. The
formation of State IV, however, probably resulted from a combination of high grazing pressure,
high Iseilema spp. density and rainfall -conditions which favoured the germination of
C. cinereum. The few sites which moved from State IV to State III probably received rainfall
favouring the establishment of M. americanum and Sida spp. The Transition of State VII to
either of States V or VI is probably dependent on rainfall patterns, similar to the findings of Orr
(1981). The transition from State IIc to State Ib probably resulted from summer rainfall allowing
Iseilema spp. to fill the bare spaces, but may have been accompanied by light grazing pressure.
The return of any of the herbfield states to a grassland State would require the large scale
recruitment of Astrebla spp., with a direct change from a herbfield State to State I very unlikely.

Application of the central Mitchell grassland STM at the paddock scale

The introduction of this paper asserted that “the successful implementation of sustainable best
management practices ultimately rests with land managers”. Whilst a quantitative STM has been
developed to describe vegetation changes and their causes at specific sites, land managers
require tools to monitor changes at relevant scales. In central western Queensland, the basic
natural resource management unit is the grazed paddock, which ranges in size from small
holding paddocks of 25 to 100 ha (used to infrequently hold stock for short periods of time
during husbandry activities) to main paddocks of 2500 ha or greater. It is at this scale that land
managers make decisions concerning stock numbers (grazing intensity), grazing initiation and
grazing duration in relation to factors such as animal husbandry, market forces, labour supply
and rainfall. It is thus at this scale that the largest impact on sustainability is realised.

In theory, paddocks can be mapped into conditional states within county types (e.g. Land Zones
or Land Systems) using on-ground monitoring and remote sensing technology through GIS or
paper-based cartography. For instance, Orr (1978, 1980a) defined grazing pressure and
vegetation condition patterns through the on-ground monitoring of Astrebla spp. basal area and
botanical composition in the Blackall district of Queensland. Bellamy at al. (1996) and Bastin et
al. 1993 are two examples of the application of GIS and remote sensing technologies at the
paddock scale to identify changes in vegetation states and grazing patterns for the interpretation
of range condition. However, satellite technology has limitations in determining vegetation
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composition changes for some soil types or at fine scales (e.g. Bastin ef al. 1998) and on-ground
monitoring programs have failed to gain general acceptance within the grazing community.

In practice, basing a monitoring program upon the central Mitchell grassland STM (to provide
an interpretational framework), on-ground monitoring sites (to provide site specific data) and
satellite imagery (to enable scaling up of site specific data and assist in monitoring site
selection) could provide the capacity to trace the expansion or contraction of conditional states
over time at the paddock scale. Paddock scale transitions could be hypothesised or developed
from expert knowledge as an aid to on-ground management decisions. Such an approach may
provide the “common ground” required for successful dialogue between researches, policy
makers, funding bodies and rangeland managers and may be best approached within existing
group structures (e.g. Landcare groups).

Scaling the central Mitchell grassland STM up to application within paddocks could introduce
an additional layer of complexity, with the possibility of attempting to trace changes between
seven states over time. For simplicity at the paddock scale, the model may need to be
summarised through the pragmatic removal of the grassland sub-groups and the condensing of
the herbfield states into “State III Herbfield (Illa dominated by forb species following rainfall,
IIIb dominated by bare ground during drought)”. This may provide a more acceptable and
practical model for graziers who have not yet been exposed to State and Transition Models and
overcome difficulties relating to data and mapping complexity when attempting to categorise
paddocks into states. It should not, however, be confused with the more definitive central
Mitchell grassland STM. It should also not be confused with possible models for other regions,
but may be useful in providing a framework for developing experiential based models for other
regions.

Further work

The six years of data collection reported here is short relative to reported botanical fluctuations
in Mitchell grasslands (e.g. Orr 1981, 1986). Consequently, this relatively short monitoring
period has probably failed to identify all possible states and transitions. However, the major
states reported do conform well to existing local and published knowledge (McArthur et al.
1994, Partridge 1996, Roberts 1972). Continuation of this monitoring would be invaluable to
unravel the many transitions that are possible under varying climatic and management
conditions. It is doubtful whether researchers alone could refine such a complex system. The
active involvement of land managers to provide detailed management information and their
observations to help explain transitions, would be essential. Land managers are actively
“experimenting”’ in their day to day management of the resources by applying “treatments”
(management practices) and observing or monitoring the outcomes of their actions. The first six
years of monitoring by scientists in this study have made tools (models and indicators) available
for helping land managers to more formally assess and interpret the condition of their
rangelands. Putting these in practice through the establishment of a long term monitoring
program for land managers could play an important role in the further refinement of states and
indicator species, and the explanation of transitions between states. Such a community-based
monitoring program that is designed to be an integral part of rangeland management will also
directly benefit the development and evaluation of sustainable management practices, through
the capturing and sharing of monitoring information with other land managers and researchers
(Allen et al. 1995, Bosch et al. 1996).

There is no reason to assume that STMs supplant models of rangeland ecosystem dynamics
based on Clementsian successional theory. Westoby ez al. (1989) provided examples in their
defining paper on State and Transition Models that could easily be arranged along a degradation
gradient. However, the long held assumption of singular climax has been discredited. Other
authors have come to question this aspect of successional theory, often presenting their own
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alternatives and compromises (see Glenn-Lewin and van der Maarel 1992 for many examples)
that suggest succession goes beyond a self repairing ecological sliding scale.

Conclusions

State and Transition Models (Westoby et al. 1989) and the Clementsian based Degradation
Gradient Method, which acknowledges the existence of thresholds (Bosch and Kellner 1991),
were successfully combined to produce a quantitative STM for the central Mitchell grasslands
of Queensland. Vegetation states were identified using ordination techniques and tracing the
movements of individual monitoring sites through time. Similarities within these states across
rainfall patterns allowed a generalised (temporally independent) model to be developed. Both
the time specific and generalised vegetation states were found to occur along a degradation
gradient. It was therefore possible to identify indicator species and to develop a STM which
includes quantitative descriptors to place new sites within the predefined states. Using these two
theories in combination it was possible to develop a tool by which land managers can interpret
both current range states and transitions for monitoring sites on their own properties.
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