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Abstract. Multi-environment trials (METs) used to evaluate breeding lines vary in the number of years that they
sample. We used a cropping systems model to simulate the target population of environments (TPE) for 6 locations
over 108 years for 54 ‘near-isolines’ of sorghum in north-eastern Australia. For a single reference genotype, each
of 547 trials was clustered into 1 of 3 ‘drought environment types’ (DETs) based on a seasonal water stress index.
Within sequential METs of 2 years duration, the frequencies of these drought patterns often differed substantially
from those derived for the entire TPE. This was reflected in variation in the mean yield of the reference genotype.
For the TPE and for 2-year METs, restricted maximum likelihood methods were used to estimate components of
genotypic and genotype by environment variance. These also varied substantially, although not in direct correlation
with frequency of occurrence of different DETs over a 2-year period. Combined analysis over different numbers of
seasons demonstrated the expected improvement in the correlation between MET estimates of genotype
performance and the overall genotype averages as the number of seasons in the MET was increased.
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Introduction

In crop breeding programs, testing of lines or crosses takes
place over 1 or more years and locations. During the early
stages of the breeding process, large numbers of potential
cultivars (generating high genotypic variance) may be tested
in only 1 year and in 1 or 2 locations. Characteristically, the
number of locations and years of testing increases as the
process of selection reduces the number of lines under test
and the potential cultivars move closer to commercial
release. The number of locations evaluated in these
multi-environment trials (METs) may range from fewer than
10 in small markets such as summer crops in Australia to
hundreds in large markets such as maize in the USA.
Although new hybrid cultivars may have been adequately
tested for tolerance to biotic stresses (through artificial
screening), a general consequence of the short time frame for
field testing is that there is inadequate exposure of the
hybrids to the range of climatic conditions that a released
cultivar will encounter. In the north-eastern grain cropping
area of Australia, these aspects of testing for environmental

adaptation are of particular concern due to substantial
inter-annual variation in summer rainfall, which is greatly
influenced in 1–30-year cycles by the interactions between
the southern oceans and the atmosphere (El Niño Southern
Oscillation (ENSO) effects) (Nicholls 1988).

The abiotic and biotic stresses over many years and
locations in the geographic mandate area of a plant breeding
program comprise a complex ‘target population of
environments’ (TPE) (Comstock 1977). The distribution of
the stresses experienced in the sampling of the TPE
complicates breeding programs by creating a substantial
genotype by environment interaction (G × E) in any series of
cultivar performance tests. This has been demonstrated for
sorghum (Sorghum bicolour) in Australia (Chapman et al.
2000a), among other crops. The unpredictability of the
climate and its generally poor correlation with locations
imply that it is difficult to choose a cultivar for a location
based on the future expectations of weather. Hence, released
cultivars must usually be selected to have a degree of ‘broad
adaptation’ to the environments.
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Chapman et al. (2000b) used a sorghum simulation model
to quantify the temporal and spatial variation in the
occurrence of different drought environment types (DETs)
as determined by seasonal patterns of water stress. The
frequency of occurrence of different DETs at different
locations was partially associated with measures of the
effects of locations on the performance of hybrids in
evaluation trials. Although that study showed that there may
be value in producing genotypes with slightly different
specific adaptations for particular locations/soil types in the
longer term, it would be difficult to identify these genotypes
given the time period that would have to be sampled by
METs in Australian conditions.

There are many options for plant breeders in the estab-
lishment of the germplasm pool and methods of evaluating
and selecting improved genotypes. To deal with the
complexity of directing the accumulation of favourable gene
networks into improved hybrids, researchers are using
simulation tools to complement experimentation. Cooper et
al. (1999) have reviewed their application in plant breeding
programs. Podlich and Cooper (1998) developed QU-GENE
for this type of application and have demonstrated the impor-
tance of sampling the range of environments in the TPE, and
the value of weighting data from METs (as samples of the
TPE) in accordance with their expected frequency in the TPE.
Podlich et al. (1999) reported an advantage in breeding
progress of the weighted method of up to 20%, particularly
when the size of the MET was small and the cross-over
component of the genotype by environment interaction was
substantial.

Obviously, plant breeders cannot ever evaluate
germplasm in the full range of environments that may occur
in the target geographical mandate. QU-GENE is a
quantitative genetics simulation platform that enables
genotype performance to be quantified in terms of the
statistical interaction of gene effects. An additional
simulation technology (dynamic biophysical crop
simulation) allows us to define values for trait parameters
and estimate their effects on yield as mediated by the growth
of the crop in response to the soil and climate conditions
encountered. This requires a reliable crop model that
incorporates the direct and indirect effects of target traits.
Using a cropping system model (APSIM; McCown et al.
1996) with a sorghum module developed for this purpose,
Hammer et al. (1996) simulated the yields of a set of 24
sorghum near-isolines in 3 locations over 10 years. The
statistical attributes of these data, including the actual and
relative sizes of the genotypic and G × E interaction variance
components generated for yield, were comparable with that
observed in actual trials.

In extending the approach of Hammer et al. (1996), we
have here used the cropping system model to evaluate the
expected genotype performance in a much larger sample of
the TPE than is ever possible experimentally, by sampling the

entire period of reliable weather record (>100 years) for
representative locations in the Australian sorghum cropping
region. Using subsets of these data, we can then interpret the
effectiveness of the sampling of the TPE over the small
numbers of consecutive years available to plant breeders in
conducting METs. We appreciate that simulation requires
some major simplifications about crop responses to the
environment, but models do allow us to interpret the
long-term and spatial effects of environment, where
experimentation is simply not possible. The main objective
of this paper is to outline the basic dataset and interpret the
variation in environment and genetic interaction with
environment for several physiological parameters affecting
dryland adaptation of sorghum. A simple correlation
analysis determines the relationship between long-term yield
estimates and shorter term samples (1–6 years) that are
available to practical plant breeders. In other papers (e.g.
Cooper et al. 2001; Chapman et al. 2002), we are extending
the methodology to simulate entire ‘adaptation landscapes’
of gene–environment effects and ‘searching’ these
populations using a simulation model of the plant breeding
process, QU-GENE (Podlich and Cooper 1998).

Materials and methods

This simulation experiment and its analysis required several steps that
are detailed in following sections and are summarised here. Firstly, a
standard ‘reference’ genotype (SSSS, see text below) was simulated in
an opportunity cropping system for 108 years at 6 locations (648
potential ‘trials’) across the sorghum production region of Australia.
After elimination of ‘failed’ trials, the stress encountered by the
reference genotype was used to define the pattern of drought stress for
each trial. Data from each trial were then analysed in 2 ways: (1) in
combinations of locations within a year (a single year MET: MET1);
and (2) in combinations of locations across several years (i.e. in METs of
2, 3, 4, and 6 years). Analyses applied to the trial data included
computation of the variance components for genotypic and genotype by
environment interaction effects with simulated experimental error
variances.

Cropping system simulation

All simulations were done with version 1.5 of the ‘Sorg’ crop module
developed within the APSIM cropping systems simulation model
(McCown et al. 1996, website www.apsru.gov.au). APSIM, developed
by a team of about 30 scientists, uses weather data on a daily time step
to interact with a specified soil profile and simulate the soil and plant
processes associated with water and nitrogen during fallow and in-crop
states. All parameter initialisation and management files for APSIM are
external to the model and can be easily updated as new information
becomes available. The sorghum module has undergone extensive
development using data from more than 40 experiments to enhance its
capacity to realistically simulate the interactions among physiological
processes that occur when key parameters have been varied (Hammer
et al. 2001). The model has been particularly designed to account for
the genetic variation in 4 traits observed in experiments in the region:
flowering time (PH), transpiration efficiency (TE), osmotic adjustment
(OA), and stay-green (SG). As part of the simulation of maximum leaf
area (Hammer et al. 1993), the model requires the potential number of
tillers (dependent on location and time of year) to be input. All other
parameters are ‘generic’. Published descriptions of the model are given
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by Hammer and Muchow (1994) and Hammer et al. (1996, 2001),
although recent improvements have adopted concepts of ‘emergent’
properties (Hammer 1998) in seeking more realistic simulation of
genetic variation in traits via underlying physiological functionality.

Weather records were obtained for 6 locations across the sorghum
growing region: 2 stations in each of the 3 major areas (Table 1). Using
representative soil types for each location, we simulated a continuous
summer sorghum–winter fallow cropping system with planting only
taking place if criteria for sowing were met within a planting ‘window’.
For each region (Table 1), the planting window and potential tiller
numbers were defined and the crop was planted at 50000 plants/ha. In
all cases, the sowing rule for planting within the window was the same:
the soil had to have accumulated 80 mm of water, and the field needed
to have received 25 mm of rain within a 4-day period. Initially, the
continuous system simulation was done using the SSSS (standard)
genotype to define the soil moisture conditions at planting and the
planting dates for each multi-environment trial. The growth and yield
of all other genotypes were then simulated using these starting
conditions for each season.

Genotype simulation

The public sorghum breeding program in Australia, based in the
Queensland Department of Primary Industries (QDPI), has focussed on
the development of midge resistance and on the stay-green trait to
improve yields under drought (Henzell 1992). Staff at QDPI, The
University of Queensland, and CSIRO Plant Industry (formerly
Tropical Agriculture) have investigated these, and other traits, with the
aim of designing breeding strategies to improve adaptation of sorghum.
The research has established the approximate range of genetic variation
for the 4 physiological traits mentioned above (Table 2). In this paper
we aimed to represent trials of a factorial combination of the extreme
(U, upper; L, lower) and ‘standard’ (S) gene expression states for these

traits. Whilst these exact genotypes may not (yet) exist in the breeding
population, the trial attempts to simulate the potentially available range
(see below).

The 54 genotypes used in this paper have been designated in
alphabetical order of the values for the 4 traits, e.g. LLSL is genotype
number 1 (and has the ‘lower’ values for the traits TE, PH, and SG, and
the ‘standard’ value for OA) and UUUU is genotype 54 (and has the
‘upper’ values for each trait). These gene definitions have been
simplified from the set used in the simulation of the whole population
of genotypes (>4000) that incorporates more complex genetic
architecture (Chapman et al. 2002). To further simplify discussion here,
we assume that the S and U effects are simple additive gene effects (2
and 3 genes, respectively) beyond the base level established by the
expression state at level L (1 gene).

Starting parameters in the sorghum model were set to reflect known
genetic variation in the underlying physiological traits. Genetic variation
in transpiration efficiency (TE) was simulated by either decreasing (L)
or increasing (U) the standard transpiration efficiency coefficient for
sorghum of 0.009 MPa by about 10% (Table 2), a range that has been
observed in studies over sorghum genotypes in well-watered and
water-limited situations (Hammer et al. 1997; Mortlock and Hammer
1999). The TE coefficient represents the product of the atmospheric
vapour pressure deficit (vpd) and the observed transpiration efficiency
of the plant (g dry matter/g transpired water). Hence, resulting
transpiration efficiency computed on any day will be influenced by both
environment (vpd) and genotype (TE coefficient level).

Developmental rate in sorghum can be predicted via known
responses to temperature and photoperiod (Hammer et al. 1989). To
reflect genetic variation in phenology (PH) the thermal duration of the
developmental phase prior to floral initiation was either decreased (L)
or increased (U) by 25 degree-days (Table 2). Differences in duration
prior to floral initiation will generate differences in number of leaves

Table 1. Characteristics of the planting windows and the soil types at each location

Region Planting 
window

Tillers per 
main culm

Locations
(lat./long.)

Soil type
(depth)

Water holding 
capacity

(mm)

No. of 
seasons
planted

Central Queensland
(CQ)

01 Nov., 31 Jan. 0.25
Biloela (24.4S, 150.52E)
Emerald (23.57S, 148.18E)

Black Vertisol (0.8 m)
Black Vertisol (0.8 m)

Medium (170)
Low (120)

101
196

Southern 
Queensland (SQ)

01 Oct., 15 Nov.
16 Nov., 15 Jan.

0.50
0.25

Dalby (27.17S, 151.27E)
Miles (26.67S, 150.18E)

Black Vertisol (1.5 m)
Grey Vertisol (0.8 m)

High (250)
Medium (170)

102
095

Northern NSW
(NNSW)

01 Oct., 15 Nov.
16 Nov., 15 Dec.
16 Dec., 1 Jan.

0.50
0.25
0.0 

Gunnedah (30.98S, 150.25E)
Moree (29.47S, 149.85E)

Black Vertisol (1.5 m)
Grey Vertisol (0.8 m)

High (250)
Low (170)

088
083

Table 2. Values used for different ‘expression states’ (levels) of the four physiological traits in the crop simulation

Trait name Model variable description and units Value in allele combination
Lower (L) Standard (S) Upper (U)

Transpiration 
efficiency (TE)

Transpiration efficiency coefficient — the efficiency with 
which transpired water is used during the assimilation of 
dry matter (MPa)

0.008 0.009 0.010

Phenology (PH) Thermal time from the end of juvenile stage to panicle 
initiation (degree-days)

90 115 140

Osmotic 
adjustment (OA)

Growth amount required per grain set (g/grain) and fraction 
of stem biomass available for retranslocation (%)

n.a. 0.00083
20%

0.00075
36%

Stay-green (SG) Specific leaf nitrogen (SLN), the target SLN of new leaf
(g N/m2 leaf)

1.35 1.5 1.65

n.a., Not applicable.
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produced (Hammer and Muchow 1994) with consequent effects on
canopy leaf area development (Carberry et al. 1993; Hammer et al.
1993) and, thus, patterns of water use through the crop cycle.

For osmotic adjustment (OA), genetic variation was simulated by
increasing potential grain number and the ability to retranslocate stem
biomass to grain under moisture limitation. Although it is not directly
apparent from the trait description, this effect arises from a physiological
analysis of mode of action of OA in high and low OA sorghum lines (P.
Snell, PhD Thesis, unpubl. data; under review) as summarised by
Hammer et al. (1999). They found that, at the crop level, high OA lines
(selected on OA based on screening for OA in stressed plants) had a
greater ability to set grain and re-translocate carbohydrate from the stem
to grain. The genetic increase in grain number (resulting from the jump
from S to U) was simulated by reducing the amount of crop biomass
growth required between floral initiation and flowering to produce an
individual grain (Table 2). Enhanced remobilisation of assimilate from
stem during grain filling was simulated by increasing the fraction of
stem biomass at flowering that was potentially available for
re-translocation. Both mechanisms were only invoked under
circumstances when the crop demand for moisture could not be met by
the supply ability of the soil–root system. Only standard (S) and
enhanced (U) levels of OA were simulated as we have no evidence to
suggest the existence of more detrimental OA effects.

Genetic variation in the ‘staygreen’ trait (SG) was simulated by
modifying the target specific leaf nitrogen (SLN g N/m2 leaf area) of
new leaf (Table 2). This mechanism was reported by Borrell et al.
(2000) from physiological studies on mode of action of SG in hybrids
from a cross of parents with high and low levels of SG. Increasing the
target SLN (U) allows increased N uptake during canopy development.
Subsequently, during grain-filling, depletion of N from leaves is
delayed, resulting in stay-green. Whereas this mechanism appears to
explain at least one form of SG (Borrell et al. 2000), other mechanisms
are also likely to exist.

Classification of patterns of drought environment types (DETs)

The definition and classification of DETs for the SSSS genotype have
been described elsewhere (Chapman et al. 2000b). Briefly, the crop
simulation model produces a daily ‘stress index’, which is termed
relative transpiration (RT), and is the ratio of water supply to water
demand. The RT was averaged over each 100 degree-days [‘thermal
time weeks’ (TTweeks)] of the season to produce 11 values over the
season. Thus, a matrix of 11 columns (TTweeks) by 565 rows (trials)
was produced for pattern analysis.

Clustering was used to group the trials from all locations and seasons
into 3 DETs according to how similar the RT pattern was across the
season (Muchow et al. 1996). Firstly, a proximity matrix was created by
calculating squared Euclidean distances among all of the trials. A
hierarchical agglomerative cluster analysis (Ward’s method) was then
used to group the locations. Analyses of variance determined how much
of the variation was explained at each level of grouping. At the 3 group
level, the seasonal RT values were averaged over members within each
group to give a sequence of RT against TTWeek for the DET group.
Frequency tables were constructed to analyse the occurrence of these
DET groups at different locations. All analyses were undertaken using a
library of S-Plus (MathSoft Inc., Seattle) functions developed for this
purpose (K. Basford, School of Land and Food, The University of
Queensland; software available from http://www.uq.edu.au/~agkbasfo/
index.html).

Analysis of simulated yields and effect of MET sampling

Simulated yields were obtained for each combination of genotype,
location, and year in which the planting criteria were met. In some
cases, genotypes failed (due to drought) and a zero yield was simulated.
To reduce the degree of imbalance in the data, any trials where more

than one-third of the genotypes failed were deemed ‘trial failures’ and
were deleted from the analysis. In other cases, genotypes with zero
yields retained those values.

The data were coded by genotype, trial (environment), location, and
year. Additional factors defined the METs that a plant breeding
program may utilise to test a set of hybrids for release. Beginning with
year 1891, the METs were defined as being of k = 1 (MET1), 2 (MET2),
3 (MET3), 4 (MET4), or 6 (MET6) years in length, to result in 108, 54,
36, 27, and 18 sequential METs for the entire 108-year record.
Genotype means were averaged over trials within different METs of
different lengths. Correlations [n = 54, signif. r = 0.27 (P < 0.05) or
0.35 (P < 0.01)] were computed between these means and the genotype
means averaged across all of the trials.

The analyses described above were repeated after re-processing
the data to include experimental error (micro-environment) effects. In
previous studies of actual data (Chapman et al. 2000a), we have
determined that the coefficient of variance (CV) for grain yield in
Queensland and NSW was approximately 12% of the trial mean yield
for trials (i) of 3 replications. This CV was used to compute an
average error variance (s– 2) for the entire dataset of 0.194 t2/ha with
the estimated value for individual trials (ŝ 2

i ) ranging from 0.006 to
0.835 t2/ha, reflecting the range of mean yields obtained. To take into
account the variable effect of the error variances for each simulated
trial, a yield weight (wi) was calculated as used by Cullis et al.
(1996):

where ri is the number of replicates in trial i.
In about 20 of the trials, the simulated yields were such that the trial

essentially ‘failed’ (<0.2 t/ha), resulting in extremely low error
variances and high weights. For this reason, the wi values were
restricted to a maximum of 70, based on analysis of Chapman et al.
(2000a), where there was a maximum wi of 62.5 from 168 sorghum
hybrid trials over 17 years of testing.

To obtain estimates of genotypic (σ2
g) and genotype by

environment (σ2
ge) variance including experimental error effects, the

simulated yield data were analysed using a residual maximum
likelihood method (Patterson and Thompson 1975) implemented by
the ASREML software (Gilmour et al. 1998). Environments (ej) were
considered fixed (as they encompassed the ‘entire’ TPE) and
genotypes (gi) and genotype by environment interaction effects were
considered random on the basis that the genotypes should represent
the ‘potential’ range of genetic variation for the traits of interest. The
method was used to estimate σ2

g and σ2
ge over all locations and

years, as well as best linear unbiased predictors (BLUPs) for the
genotypes and a predicted value for each genotype by trial
combination. Additional variance component estimates (σ2

g(k) and
σ2

ge(k)) were computed for different METs (k) within a series of
METs, i.e. within MET1, MET2, etc. To evaluate the effects of the
number of years of sampling of the TPE, the correlations applied to
the raw data were repeated using the predicted values for genotype
by trial combinations, i.e. the predicted values averaged for all trials
were correlated against those for individual METs within any of the
5 sequences of METs.

Results

Sampling of environment types

From 648 attempted ‘trials’ or environments over locations
and years, 565 trials met planting criteria and 30510
genotype/trial combinations were simulated. Another 18
trials were deemed to have ‘failed’ (see text above), leaving

22
iii s/srw ˆ•=



Crop simulation to interpret G×E interaction 383

a total of 547 trials (84% of the potential number of locations
and years) (Table 3). In the two Queensland regions, fewer
intended trials were successful on the shallower soil within
each region (Emerald and Miles). In northern NSW, fewer
than 80% of trials were a ‘success’, with a greater number of
failures in the shallower soil (Moree).

Fig. 1 shows the stress patterns that were determined for
3 DET groups clustered from all locations and seasons for
the entire dataset, based on the reference genotype (SSSS).
In all cases, stress as measured by the relative supply and
demand for water by the crop was minimal (c. 1.0) until
about 400 degree-days after planting. Beyond that point,
where leaf area has been well established, the ability of the
crop to maintain a balance between supply and demand for
water decreased within all 3 groups of stress types. The mean
thermal time to anthesis for this genotype was 732

degree-days, with a standard deviation of 18 degree-days. In
one DET (termed ‘mild terminal’ stress), the mean stress
index remained higher than 0.8 throughout the period of
grain filling (>732 degree-days), and resulted in a mean
yield for genotype SSSS of 5.15 t/ha. A pattern of decreasing
stress index (i.e. continuously increasing stress) was
experienced in another DET (‘severe terminal’ stress) where
mean yield was 2.35 t/ha. With a mean yield of 3.54 t/ha, the
pattern of stress observed in the ‘mid-season’ stress DET
was similar to the severe terminal DET until
700 degree-days when the stress began to be relieved
through mid to late grain-fill. 

Across all locations and years (i.e. for the TPE), the
frequencies of the 2 terminal DETs were similar and slightly
greater than that for the mid-season DET (Table 3). Over the
whole record, the frequencies at Emerald, Gunnedah, and
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Table 3. Number of planted seasons from 108 possible at each location (648 in total) classified into 
each of three season types characterised in Fig. 1

Numbers in parentheses are the percentage of planted seasons at a location (or in all locations) that were 
grouped into the same season type. For right-hand column, numbers in parentheses are percentage of total 

seasons

Location Group Number of trials
Mild terminal Severe terminal Mid-season planted

Biloela 046 (46%) 027 (27%) 027 (27%) 100 (93%)
Emerald 029 (31%) 033 (35%) 033 (35%) 095 (88%)
Dalby 058 (58%) 018 (18%) 024 (24%) 100 (93%)
Miles 036 (39%) 036 (39%) 021 (23%) 093 (86%)
Gunnedah 028 (34%) 034 (41%) 021 (25%) 083 (77%)
Moree 006 (8%) 042 (55%) 028 (37%) 076 (70%)
Total 203 (37%) 190 (35%) 154 (28%) 547 (84%)

Fig. 1. For 3 groups (drought environment types), the mean stress index (ratio of
water supply to demand) across the season for the reference (SSSS) genotype. Lines
show the mean values of the stress index (with bars representing standard deviations)
for all members of each environment type over 11 thermal time periods during the
season. Mean anthesis date was 732 degree-days.
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Miles were closest to the frequencies over all locations,
whereas the mild terminal DET was over-represented at
Biloela and Dalby and under-represented at Moree.

The dashed lines and extreme right-most column in Fig. 2
indicate the average frequencies of occurrence for each of
the 3 DETs (i.e. data from the bottom line of Table 3) in the
entire TPE. For MET2s (sequential METs of 2 years in
length), an average of 10.1 of 12 possible trials (2 years by 6
locations) were ‘planted’ (Fig. 2), with the fewest (5) being
planted in the MET2 that had begun in 1901. In an ideal
MET that represented the TPE, all 3 DETs would be sampled
in almost equal proportions: DET1 37%; DET2 35%; and
DET3 28% (Table 3). In most cases, all 3 DETs (Fig. 1) were
sampled at least once within each MET, although the highest
proportions recorded for each DET (mild terminal, severe
terminal, and mid-season stress) were 100% (in 1925), 91%
(1913), and 64% (1909), respectively. In terms of the relative
frequencies of the 3 DETs, the MET2 that began in 1953 was
the most similar MET to the overall target frequency (Fig. 2).
At other extremes, in several MET2s, there were no
occurrences of the mild terminal DET (1913, 1919, 1937),
and in 1925, 1939, and 1945, no severe terminal DET was
sampled. Clearly, the average yield of genotype SSSS for an
entire MET2 was depressed when the MET sampled only a

small frequency of the mild terminal DET (e.g. 1913, 1919,
1937, 1951, 1967, 1993). The converse applied in trials in
1925 and 1939. The degree to which average yield changes
with the sampling by METs of TPE is important in absolute
terms, but it is the relative change in genotype performance
that most greatly influences plant breeding, i.e. choosing the
apparently superior genotype, when its performance is a
function of the sampling of the TPE, rather than a real
advantage in the entire TPE.

Genotype performance over all years and within METs

The genotype overall mean yields are given in Fig. 3a, with
the overall average being 3.79 t/ha, and ranging from
2.81 t/ha for genotype LLSL to 4.92 t/ha for genotype
UUUU. When ordered by mean yield, the general increase in
yield due to gene effects of the different traits is evident in
the association between the genotype means and the
increasing heights of the columns. However, there are several
points where a large change in the mean yield is observed
with the same total number of gene expression states, e.g.
between the 7th (SLUL) and 8th (LLSU) genotypes in Fig.
3a. In this case, compared with the 7th genotype, the 8th
genotype had a lower value for the TE (1st letter) and OA
(3rd letter) traits and higher values for the stay-green trait
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Fig. 2. Frequencies of the different drought environment types (Fig. 1) across 6 locations within a series of 54 two-year
multi-environment trials (METs) and across all seasons (target, same as the last row of Table 3). The lines (squares) indicate the
number of ‘successful’ trials in each MET (out of a possible 2 years and 6 locations) and the simulated grain yield (triangles) of
the reference (SSSS) genotype averaged within each MET and for all trials (target).
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(4th letter), but had the same early maturity (L value for PH
trait). Other large mean yield effects for the same total
number of gene effects are evident in the genotype sequences
beginning with SUSU and SUUU.

The variation in each of the traits produced similar
effects on yield. Genotypes with L expression levels for

TE, PH, and SG yielded an average of 0.34, 0.38, and
0.33 t/ha less than the average of the genotypes for the S
levels of these traits. The yields for the genotypes with U
levels of TE, PH, OA, and SG were 0.29, 0.26, 0.28, and
0.23 t/ha higher than for their respective S level
equivalents.

Fig. 3. (a) Fifty-four genotypes ranked by their average yields from 547 trials, together with average yields determined after REML
analysis to introduce experimental error; and a representation of the ‘expression state’ of genes (L = 1, S = 2, U = 3) for each of 4 traits
(Table 2) making up a genotype. Note that the trait OA has only 2 levels (2 and 3). (b) Using the same genotype ranking as in Fig. 3a, average
genotype yields within 5 different 2-year METs chosen from the 54 METs in Fig. 2.
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Although the overall mean yield from the REML analysis
was the same as for the raw data (as would be expected), the
genotypes underwent re-ranking, especially within groups of
similar numbers of gene effects. The raw and REML means
were highly correlated over the 54 genotypes (r >0.99), but
the re-ranking effect can be seen in the non-alignment of
lines for the raw means and the means of the REML
predicted data (Fig. 3a). Inspection of the data showed that
for traits TE and OA there was no difference (<0.01 t/ha)
between raw and REML means. However, for PH and SG,
the average REML yields for genotypes with the L
expression level were 0.065 and 0.040 t/ha higher,
respectively, than for the S genotypes. Thus, the re-ranking
resulted from an increased estimate of performance of the L
level genotypes for PH and SG traits, when experimental
error was introduced.

Fig. 3b shows the genotype mean yields for several
MET2s. The first example is for MET2-1919 in which no
mild terminal DET was sampled (see Fig. 2). In this MET,
several genotypes that were ranked low over all trials
performed quite well, resulting in a relatively poor
correlation (r = 0.63, P < 0.01) between the genotype means
for the MET and the overall means.

Two more examples relate to sequences of MET2s. In
MET2-1937 the mild terminal DET was again not sampled
(Fig. 2), whereas in the following MET2 (1939), the mild
terminal DET was sampled 78% of the time. The yields in
MET2-1937 were similar (r = 0.75, P < 0.01) to those
obtained in the MET2-1919, which had a similar bias in
sampling against the mild terminal DET. In contrast, yields
from MET2-1939 were poorly correlated with MET2-1919
(r = 0.17). Substantial changes in genotype performance
between the consecutive MET2s (1937 and 1939) can be
seen in Fig. 3b.

Finally, consider 2 MET2s conducted during the 1990s. In
MET2-1991, genotype deviations were relatively small and
the environment main effect was such that the MET means
were similar to those overall. Genotype performance
differences were much greater in MET2-1997. For many
genotypes, MET2-1997 was a direct contrast with
MET2-1939. Although a correlation was still present
between these 2 METs (r = 0.55, P < 0.01), many genotypes
(almost all with S or U levels for PH, i.e. not early maturing)
that performed well in 1939 were poor performers in
MET2-1997.

Variance components and correlations of METs with overall 
data

For the entire dataset, the sizes of the genotypic and G × E
interaction variance components were 0.187 ± 0.037 and
0.223 ± 0.002, respectively. For the MET2 data, the G and
G × E components ranged from minimums of 0.015 and
0.074 to maximums of 0.59 and 0.66, respectively (Fig. 4).
Averaged across all of the MET2s, G was 110% of G × E.

However, in 28 of the 54 MET2s, G was less than G × E,
often substantially. In the MET2s discussed above, 1919,
1937, 1939, 1997, the G/G × E ratios were 0.35, 0.56, 0.19,
and 0.48, respectively. For each of the MET2s, the
correlation coefficients between the genotype means from
the MET and the overall genotype means are also given in
Fig. 4. Lower correlations were generally, but not
exclusively, associated with low G.

Whereas Fig. 4 documents the correlation between MET2
averages and overall averages for the 54 genotypes, Fig. 5
demonstrates the effect of conducting METs that consist of
different numbers of years. When the MET was only 1 year,
the correlation coefficient ranged from 0.09 to 0.99 with an
average of 0.82 (signif. r = 0.27 for P < 0.05). As the length
of the MET was increased from 1 to 6 years, the mean
correlation increased to 0.97. For METs beyond 3 years in
length, all correlations were greater than 0.8. When the same
analysis was applied to the REML genotype by trial
estimates, the correlation results were unchanged.

Discussion

In the design of this simulation experiment, we constructed
genotypes that differed in the degree in which they express
traits that have been demonstrated to have effects on the yield
adaptation of sorghum to dryland conditions, particularly
through the way in which the growth of the crop is matched
with the pattern of water supply through the season. The
ranges of trait variation defined were derived from prior
experimentation on the pool of sorghum germplasm used in
the region. Although a simple genetic model was used (4
traits with up to 3 expression states that were additive in
nature), this was sufficient to generate substantial genotypic
and G × E interaction effects. Estimated variance
components for these 2 effects ranged 4- or 5-fold in METs
of 2 years. Although genotype yields from samples of 6
locations over 2 years were often reasonably correlated with
means for the entire dataset, there was substantial re-ranking
of the genotypes within many of these METs. The results are
quite consistent with the types of variation observed in
hybrid trials (Chapman et al. 2000a).

The simulated germplasm pool has a broad base (i.e. high
genotypic variance) and it may be argued that the pool is
more representative of the state of a breeding population in
the early stages of testing, rather than at the stage of cultivar
testing. Of the 4 traits used, the TE trait has a dominating
effect as it is always expressed, resulting in higher water use
efficiency by the crop in any conditions. Although there is
indeed measurable variation for TE (Mortlock and Hammer
1999), the bulk of the germplasm in advanced testing
exhibits little variation for this trait. For this reason, the data
presented here may exaggerate the genetic variance for this
trait that is encountered in the advanced stages of the current
selection program.
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In each of the 3 regions, the planting criteria were met in
fewer than 108 years, especially in the southern-most region
(northern NSW) (Table 3) and particularly in the sites with
soil of lower water holding capacity (Table 1). The reduced

season number in northern NSW is partially a function of the
cropping system rules used in the simulation. In the region,
growers generally use long fallows (18 months) to allow the
soil to accumulate more water prior to planting. By utilising
a continuous summer sorghum–winter fallow system in the
model, the soil was often not refilled during the winter
period, especially in Moree, to the degree it would have been
in sites further north. This same explantion holds for the
greater number of trial ‘failures’ in the same sites. The
sowing rule also explains why little stress was observed in
the first 400 degree-days of the seasons; crops were growing
on some stored soil moisture and were able to avoid stress
during this period.

The 3 environment types determined by pattern analysis
of the seasonal stress indices equated with those defined by
Chapman et al. (2000c) in an analysis of >200 locations
across the sorghum growing region. These were a mild
terminal stress [equivalent to ET1 in Chapman et al.
(2000b)], a severe terminal stress (ET2) and a mid-season
stress that is partially relieved during grain filling (ET3). The
6 locations used in our analysis here were chosen to represent
the major locations and soils, with the results indicating that
the 3 ETs occur in similar proportions, although ET3 is
7–9% less frequent than the other two (Table 3).
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In actual sorghum trials in the region, a correlation has
been observed between the experiment error variance and
log(yield) of the trial. When this was introduced into the
analysis, the most obvious effect was to change the relative
performance of the genotypes that differed in expression
for the ‘phenology’ trait. On REML adjusted data, early
(L) genotypes performed relatively better overall than they
did in the unadjusted data, whereas the late (U) genotypes
were relatively poorer overall in the REML adjusted data.
This can be explained by the fact that PH(L) genotypes
perform best in the more stressed environments that are
generally low-yielding and where the effects of the error
adjustments were greatest. The REML adjustment scales
the data relative to the size of the experiment error
variance (DeLacy et al. 1996). Hence, in these low
yielding environments that were more common in the
stressed environments, the yields of all genotypes receive a
relatively higher weight (than in other environments) in the
REML estimates.

There are two aspects to be considered with respect to
improving sampling of the TPE, given the spatial and
temporal distribution of environment types. The first is
whether repeated use of a location will sample the TPE, and
second, to what degree extending METs over years improves
sampling of the TPE. In the longer term, Emerald,
Gunnedah, and Miles are the most representative of the stress
patterns across the entire region. Hence, if attempting to
select genotypes for broad adaptation, these sites would be
the most appropriate, if testing were feasible over a
sufficiently large number of years. However, the use of such
‘key sites’ would be complicated by the effects of climatic
variation on the occurrence of stresses (Fig. 3), as the
frequency of stresses within a MET often did not match that
of the complete set of environments (this is also the case
when only the 3 sites are used, data not shown). In fewer than
5 of the 2-year METs were the frequencies of the 3
environment types within 5% of the target, and in several
METs, at least one environment type was not sampled at all
(Fig. 3). In these cases, the data from the trials would need to
be weighted to indicate the representativeness of the MET as
a sample of the TPE (see further discussion below).

In a temporal sense, Figs 3b and 4 demonstrate that
genotype averages from a 2-year MET are frequently a poor
estimate of the long-term performance of individual
genotypes. This is despite the generally high correlations
with the overall means. Extending the number of years in the
MET improves the likelihood that the MET averages will be
more representative (Fig. 5). However, extending the METs
in time is often not practical, and extensions of the MET in
terms of locations are more likely to be acceptable.
Alternatives to this scenario are to weight data from each
trial. For a single simulated genotype, Chapman et al.
(2000b) classified trials (from 70 years and 6 locations) as
being one of several environment types. They found that the

mean yield of the genotype in 3-year METs was a better
estimate of its long-term mean yield, if the yield from each
trial in the MET was first weighted by the long-term
frequency of the environment type in which the trial was
classified. Using simulation methodology, Podlich and
Cooper (1998) demonstrated, for a large number of starting
populations and several generations of selection, that genetic
advance would be greater using this type of ‘weighted
selection’ than using the trial means only.

The simulations that we have done here can be used in
QU-GENE to generate the indirect effects of trait genes on
yield as mediated by crop growth and environmental effects.
Combining these 2 simulation tools (QU-GENE and
APSIM) will enable us to simulate the processes of
recombination of the genes determining the traits, evaluation
of genotypes in samples of environments from the TPE, and
selection strategies. As our understanding of the
physiological controls of adaptation improves, the modular
structure of APSIM allows us to incorporate these effects
into the simulation of crop and environment effects.
Similarly, more complex gene action and selection methods
can be accommodated by QU-GENE. Obviously, our models
are limited by the slow accumulation of this understanding,
but provide a reservoir for knowledge. In the experience of
Podlich and Cooper (1998), the technology cannot be used
for ‘cast-iron’ recommendations, but rather provides us with
a means to eliminate the inefficient ways to operate breeding
programs. Readers should be careful in extending our
conclusions on the exact temporal nature of the observed
G × E interactions and the correlations presented in Figs 4
and 5. This is because our data are based on using a broad
genetic base for this sorghum population, which may not
reflect the advanced stages of a breeding program when the
base population has become genetically narrow.

This paper demonstrates that crop simulation technology
can be used to generate and provide insights into the large
scale evaluation of genotypes for adaptation to dryland
conditions. Although the simulation has been designed with
a relatively simple additive genetic model, when examined at
the phenotypic level of the yield determined by the trait
combinations, it has generated both emergent pleiotropic
effects (i.e. effects on the trait and yield) and epistatic effects,
whereby some additive gene combinations can generate
lower or higher yields than might have been expected. These
non-additive effects on yield were a consequence of the
interaction of the genotype trait combinations and the
environmental conditions encountered in the TPE. The
analysis presented here is only of a small dataset and is
designed to illustrate how the data can be used. In the future,
a much larger dataset will be suitable to test methods of
quantitative genetic analysis to determine the additive and
epistatic effects of the trait genes on yield. It also functions
as a platform to test new statistical methods associated with
defining environment and genetic effects.
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