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Abstract
Key message A powerful QTL analysis method for nested association mapping populations is presented. Based on a 
one-stage multi-locus model, it provides accurate predictions of founder specific QTL effects.
Abstract Nested association mapping (NAM) populations have been created to enable the identification of quantitative trait 
loci (QTL) in different genetic backgrounds. A whole-genome nested association mapping (WGNAM) method is presented 
to perform QTL analysis in NAM populations. The WGNAM method is an adaptation of the multi-parent whole genome 
average interval mapping approach where the crossing design is incorporated through the probability of inheriting founder 
alleles for every marker across the genome. Based on a linear mixed model, this method provides a one-stage analysis of raw 
phenotypic data, molecular markers, and crossing design. It simultaneously scans the whole-genome through an iterative 
process leading to a model with all the identified QTL while keeping the false positive rate low. The WGNAM approach 
was assessed through a simulation study, confirming to be a powerful and accurate method for QTL analysis for a NAM 
population. This novel method can also accommodate a multi-reference NAM (MR-NAM) population where donor parents 
are crossed with multiple reference parents to increase genetic diversity. Therefore, a demonstration is presented using a 
MR-NAM population for wheat (Triticum aestivum L.) to perform a QTL analysis for plant height. The strength and size 
of the putative QTL were summarized enhancing the understanding of the QTL effects depending on the parental origin. 
Compared to other methods, the proposed methodology based on a one-stage analysis provides greater power to detect QTL 
and increased accuracy in the estimation of their effects. The WGNAM method establishes the basis for accurate QTL map-
ping studies for NAM and MR-NAM populations.

Introduction

The identification of quantitative trait loci (QTL) has been an 
important step toward understanding the underlying genet-
ics of traits of agronomic interest for crops and has become 
an important breeding tool to release improved lines. For 
decades, QTL detection has been successfully conducted by 

traditional QTL mapping in bi-parental populations known 
as linkage analysis (Takeda and Matsuoka 2008; Collard 
et al. 2005; Bernardo 2002). However, the detected chromo-
some regions were generally broad and not always transfer-
able to other genetic backgrounds (Yu et al. 2008). Alterna-
tively, genome-wide association studies (GWASs) have been 
performed to identify QTL using diversity panels, based on 
a genetically diverse pool of individuals with unknown kin-
ship. The use of diversity panels explores broader genetic 
backgrounds and benefits from historic recombination 
events, potentially providing higher mapping resolution. 
Nonetheless, it can fail to capture alleles of interest that 
are present at low frequencies and the unknown population 
structure can compromise the associations between marker 
and trait. More recently, the strengths of both QTL mapping 
approaches have been integrated through the development 
of multiple connected populations (Blanc et al. 2006), also 
known as multi-parent (MP) populations. This strategy aims 
to capture more recombination events and greater allelic 
diversity than a single bi-parental population. Additionally, 
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compared to a diversity panel, some rare alleles are brought 
to moderate frequencies and the population structure is 
known from the crossing design.

Different types of MP populations have been developed 
in crops following different crossing designs. Blanc et al. 
(2006) proposed a half-diallel design where all parents were 
crossed with each other and reciprocals were not considered. 
Nested association mapping (NAM) populations were first 
discussed in maize by Yu and Buckler (2006). The devel-
opment of a NAM population starts by selecting a set of 
diverse donor parents (donors) to be crossed to a reference 
elite line (reference) in order to obtain multiple families of 
recombinant inbred lines (RILs) that are related by the com-
mon reference parent. Another example is the multi-parent 
advanced generation integrated cross (MAGIC) population 
first described in crops by Cavanagh et al. (2008). A classic 
MAGIC population design starts with a selection of diverse 
founder lines that are then inter-crossed until all founders 
have an equal probability of contributing to the genetic 
makeup of a line and this is followed by multiple genera-
tions of self-pollination to create RILs. Other mating designs 
have been used to perform QTL analysis in crops, which 
do not follow any particular pattern (Bardol et al. 2013), 
while others are variations of previous designs (Jordan et al. 
2011; Mace et al. 2013). An example of a variation is the 
multi-reference nested association mapping (MR-NAM) 
population which has been developed in wheat consisting 
of several related NAM populations. Several different ref-
erence parents were used while some donors were shared 
across NAM populations to keep them inter-connected 
(Richard 2017). The resulting MR-NAM population enables 
the exploration of alleles from multiple donors and several 
genetic backgrounds.

The simplest analysis of an MP population treats the 
population as a diversity panel using the GWAS method. 
In general, GWAS methods scan the whole genome by test-
ing for association between the phenotypic data and every 
molecular marker. Despite being easy to implement, GWAS 
has several issues. Firstly, the increased false-positive rate 
due to multiple testing demands some correction to control 
it; two commonly used methods are the Bonferroni cor-
rection (Holm 1979) and false discovery rate correction 
(Benjamini and Hochberg 1995). Secondly, a single-locus 
approach fails to explain complex traits that are controlled 
by numerous loci simultaneously, and as such multi-locus 
models are preferred (Segura et al. 2012; Wang et al. 2016; 
George et al. 2020). Finally, failure to account for the cross-
ing design results in false positives due to the population 
structure and family relatedness (Blanc et al. 2006). Hence, 
the population structure needs to be inferred from the molec-
ular markers and incorporated into the model using one of 
several suggested approaches (Pritchard et al. 2000; Price 
et al. 2006; Yu and Buckler 2006). Even when these issues 

are addressed, a major limitation of GWAS methods in MP 
populations is that they generally use bi-allelic marker mod-
els which can fail to reflect the population allele diversity 
(Garin et al. 2017).

For the analysis of an MP population, it is crucial to 
determine how best to incorporate the phenotypic data, the 
crossing design, and the generally large number of molecular 
markers in an appropriate statistical model. Various statisti-
cal models have been developed to perform QTL analysis 
for MP populations. In NAM populations, for instance, Yu 
et al. (2008) simply incorporated a covariate accounting for 
family effects. Buckler et al. (2009) introduced the estima-
tion of marker effects nested within each family in the NAM 
population and proposed a method called joint inclusive 
composite interval mapping that used significant markers 
as co-factors to account for the background genetic variance. 
Xavier et al. (2015) proposed performing a GWAS with 
molecular markers recoded to consider the number of alleles 
coming from each founder of the NAM population. Addi-
tional methods were developed for other crossing designs 
and these allow for different assumptions around the allelic 
effect of the founders. Some examples of the assumptions 
behind different methods are, (i) assuming that each founder 
has the same allelic effect independently of the background 
or family (Jourjon et al. 2005), (ii) accepting founders can 
be related and using ancestral alleles as implemented in the 
software package MCQTL combined with the R-package 
Clusthaplo (Leroux et al. 2014), and (iii) a mixture of 
different assumptions as implemented in the MPP (multi-
parent population) R-package (Garin et al. 2018). More 
recently, Li et al. (2021) presented an identity-by-decent-
based mixed model approach that is flexible enough to be 
used for all kinds of MP populations and this method was 
competitive with other tools developed for specific MP pop-
ulations. While each of these methods has the advantage of 
accounting for the crossing design based on the assumptions 
of the allelic effects, they still need to define a correction to 
control the false positive rate. The major disadvantage how-
ever is that they all follow a two-stage approach.

QTL mapping methods can follow a one-stage or two-
stage approach. In a two-stage approach, the analysis of 
experimental phenotypic data is performed first (Stage 1). 
The genotype means are then used as the response variable 
in Stage 2, where associations with molecular markers are 
tested. Typically the variance-covariance of the genotype 
means predicted in Stage 1 are not incorporated into the 
second-stage model. This compromises the full analysis, 
particularly in the presence of sophisticated models for 
the genetic effects (Gogel et al. 2018). A one-stage analy-
sis that models the entire observed data at the level of 
individual plots is usually considered as the gold standard 
(Piepho et al. 2012). Furthermore, Gogel et al. (2018) con-
cluded that a one-stage analysis is crucial for trials with 
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minimal replication such as those with partially replicated 
treatments. Partially replicated designs have become the 
experimental design of choice in many crops (Mace et al. 
2013; Lehermeier et al. 2014; Verbyla et al. 2014b; Rich-
ard 2017) because the size of an MP population can reach 
the order of thousands of lines, each needing to be tested 
in the same experimental trial.

To our knowledge, the only one-stage approach imple-
mented in MP populations is the multi-parent whole-
genome average interval mapping (MPWGAIM) method 
developed for MAGIC populations and implemented in 
the MPWGAIM R-package (Verbyla et al. 2014b). As an 
extension of the whole-genome average interval map-
ping method for bi-parental populations, MPWGAIM is 
based on a linear mixed model. This enables the ability to 
simultaneously incorporate non-genetic sources of vari-
ation such as experimental design effects or multi-phase 
data generation processes (Verbyla et al. 2007, 2012). The 
MPWGAIM method has been demonstrated to be a pow-
erful tool for QTL mapping in MAGIC populations as it 
utilizes the probability of inheriting founder alleles across 
the whole genome simultaneously, either for intervals or 
markers.

In this paper, a whole-genome nested association map-
ping (WGNAM) analysis method is presented as an adap-
tation of the MPWGAIM approach, to perform association 
studies for NAM populations. This method, based on a lin-
ear mixed model, provides a one-stage analysis of raw phe-
notypic data, molecular markers, and population design. It 
simultaneously scans the whole-genome through an itera-
tive process, leading to a multi-locus model using the full 
set of putative QTL, without the need to perform multiple 
testing corrections. It is versatile enough that it can eas-
ily accommodate the MR-NAM population structure and 
has the potential to accommodate other derived crossing 
designs. The WGNAM approach was evaluated through a 
simulation study as well as real data. The simulation study 
was implemented to examine the false positive rate and 
the power to detect true QTL based on a NAM population 
structure. The performance of WGNAM was compared 
with a method that can deal with the NAM population 
structure, the MPP method (Garin et al. 2017), as well 
as with a GWAS approach, the multi-locus mixed model 
or MLMM (Segura et al. 2012). The WGNAM method 
was then illustrated using a real wheat MR-NAM popula-
tion in order to map QTL for plant height. The WGNAM 
approach has the potential to significantly improve QTL 
mapping studies for NAM and MR-NAM populations 
because it increases the power to detect QTL, prevents 
the loss of information entailed in two-stage analysis, and 
acknowledges the complexity of the population structure 
while controlling the Type I error.

Materials

The WGNAM methodology presented in this paper is exam-
ined utilizing empirical data consisting of the wheat multi-
reference nested association mapping (MR-NAM) popula-
tion first described by Richard (2017) and developed at the 
Queensland Alliance for Agriculture and Food Innovation 
(QAAFI). Additionally, a NAM population was simulated 
based on a subset of founders from the wheat MR-NAM to 
create realistic marker profiles.

Plant material

The development of the wheat MR-NAM population is fully 
described by Richard (2017) and Christopher et al. (2021). 
Briefly, the parents of the MR-NAM population or founder 
lines (founders) were selected for attributes desirable for 
improving and expanding wheat production in diverse envi-
ronments, such as those found in the Australian wheat belt 
(Table 2). Three reference parents, namely Suntop, Mace 
and Scout, were selected as key commercial lines in the 
Eastern, Southern, and Western Australian wheat produc-
tion regions, respectively. Eleven donors were selected for 
traits including stay-green, favorable root architecture, dis-
ease resistance, and tolerance to drought and heat.

The MR-NAM population was developed by crossing 
the three reference parents with the 11 donors following 
an incomplete crossing scheme that produced a total of 20 
F1 crosses. Dwarfing genes presence in the founders was 
tested following Ellis et al. (2002) (Table 2). Differences 
in the dwarfing genes present in the founders meant that 
segregation could result in double dwarf or tall genotypes 
rather than the preferred semi-dwarf phenotype. To provide 
an agronomically relevant phenotype for comparisons in 
subsequent yield testing in the field, a moderate selection 
pressure (around one plant in four selected) was applied in 
F2 bulks for semi-dwarf plant-height. Plants were also mod-
erately selected for maturity to resemble the respective refer-
ence parent. The selected F2s were then progressed to the 
F4 generation by following the single seed descent method. 
The subsequent RIL populations served as families within 
the MR-NAM population with sizes varying from 33 up to 
51 lines. Table 2 includes the founder lines and their dwarf-
ing gene status for Rht-B1b (formerly Rht1) and Rht-D1b 
(formerly Rht2).

Markers and map

Recurrent inbred lines were genotyped using the Diver-
sity Arrays Technology (DArT) Pty Ltd (DArT 2017) 
wheat genome-by-sequencing platform. A single F4 plant 
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representing each NAM line was sampled for leaf tissue, and 
DNA was isolated using the CTAB-based extraction proto-
col recommended by DArT. The genotype-by-sequencing 
process was carried out for a larger set of lines within which 
the MR-NAM population lines were a subset and it gener-
ated 18,827 single nucleotide polymorphism(s) (SNPs). A 
subset of markers was successfully positioned on the wheat 
DArT consensus map v.4 provided by Dr. Andrzej Killian 
(DArT 2018) consisting of 21 linkage groups (LGs).

A quality control and imputation process was performed 
on the marker data corresponding to the founders and MR-
NAM population under analysis. SNPs were removed if 
they were not positioned on the consensus genetic map 

(approximately 30% of the initial 18,827 SNPs). SNPs were 
also excluded if they were not consistent among marker pro-
files of different samples of the same founder or presented 
a missing rate of either above 50% within family or over 
10% overall (approximately 25% of the 18,827 SNPs were 
removed). Some SNPs were disregarded based on incon-
sistencies between SNP genotypes from family and parents 
(approximately 5%). For the founders, heterozygous SNP 
genotypes were considered missing data, and then missing 
SNP genotypes were imputed following a random forest pro-
cess implemented in the NAM package (Xavier et al. 2015) 
in R (R Core Team 2019). SNP genotypes for the MR-NAM 
lines, were imputed based on the parental information first 

Table 1  Examples of the process used to calculate the probabilities of inheriting founder alleles in NAM populations at a given marker

For a particular cross, marker genotypes of every line are compared with those of the founders to determine the founder probabilities. Example 
A illustrates a case where founders differ in their genotype, hence lines segregate for that marker and probabilities for each line can be inferred. 
On the contrary, example B shows a case where the marker is not segregating and lines have equal chance to inherit an allele from either of the 
parents and zero probability for the remaining founders

Example Cross (Donor × Reference) Line Marker genotype Founder probabilities

Donor Reference Line Founder 1 Founder 2 . Founder nf

A Founder 1 × Founder nf 1 2 0 2 1 0 . 0
Founder 1 × Founder nf 2 2 0 0 0 0 . 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

Founder 1 × Founder nf n1 2 0 1 0.5 0 . 0.5
B Founder 2 × Founder nf 1 0 0 0 0 0.5 . 0.5

Founder 2 × Founder nf 2 0 0 0 0 0.5 . 0.5
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

Founder 2 × Founder nf n2 0 0 0 0 0.5 . 0.5

Table 2  Incomplete crossing 
scheme for the wheat MR-NAM 
population considered at each 
field experiment (WAR15 and 
WAR16)

The number of recombinant inbred lines (RIL) considered per family and experiment is given. For the 
founders, the status of the dwarfing genes is provided as follows: † indicates presence of the Rht-B1b 
dwarfing allele and ∗ indicates presence of Rht-D1b dwarfing allele

Donors WAR15 reference parent WAR15 total WAR16 reference 
parent

WAR16 total

Mace∗ Scout† Suntop† Mace∗ Suntop†

Dharwah dry† 43 50 42 135 37 32 69
Drysdale∗ 45 42 50 137 45 46 91
EGA Gregory† 37 37 37 37
EGA Wylie† 37 37 30 30
FAC10.16† 39 39 39 39
SB062† 44 40 51 135 40 49 89
SeriM82† 42 50 46 138 38 44 82
UQ114† 42 40 82 39 39
Westonia∗ 33 33 31 31
ZWB10.37† 34 34 32 32
ZWW10.50† 38 38
Total 245 224 376 845 191 348 539
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and when uncertain, via the random forest process. Finally, 
SNPs with a minor allele frequency of less than 0.01 across 
families, including fixed alleles, were excluded from the 
analysis (approximately 15%). Hence, approximately 20% of 
the initial 18,827 SNPs were used in the association studies.

MR‑NAM founder probabilities calculation

A way to formulate a QTL analysis that accounts for the 
crossing design is to define QTL effects in terms of their 
origins. Verbyla et al. (2014b) proposed to use the prob-
abilities of inheriting founder alleles also known as identical 
by descent (IBD) probabilities for each potential QTL locus 
and each line in a MAGIC population. In this paper, the 
approach to estimate the IBD probabilities requires marker 
genotypes for the founders and every line within the fam-
ily. It is assumed that founders are inbred lines and families 
were developed following the NAM crossing scheme (Yu 
et al. 2008) but no specification is required regarding the 
number of self-pollination cycles. This approach treats each 
marker independently from the others hence, no genetic map 
or physical map are needed. However, there are methods that 
use these maps to estimate the probabilities (Broman et al. 
2003; Verbyla et al. 2014b; Li et al. 2021).

Given a family, if both founders have different genotype 
at a given position then, lines with homozygous genotypes 
will have inherited the alleles from just one of the founders 
with a probability equal to 1 and 0 for the other one (see 
Table 1, Cross Founder 1 × Founder nf , lines 1 and 2 as an 
example), whereas lines with heterozygous genotypes will 
have probability equal to 0.5 for each of the two founders of 
that cross (Table 1, Cross Founder 1 × Founder nf line n1 ). If 
both founders of a family have the same genotype at a given 
position, then all the lines in that cross will have the same 
genotype and the method will assign the same probability 
of having an allele coming from either of the two parents 
(Table 1, Cross Founder 2 × Founder nf).

Phenotyping

Two field experiments were conducted at the Queensland 
Government Department of Agriculture and Fisheries, 
Hermitage Research Facility, Warwick, Australia (WAR; 
28.21◦ S 152.10◦ E, 480 m above sea level). The experiments 
correspond to the two winter seasons of 2015 and 2016 and 
were named WAR15 and WAR16. MR-NAM lines were 
grown following partially replicated designs (Cullis et al. 
2006) with an average replication level of 1.40 and 1.46 in 
WAR15 and WAR16, respectively.

The trial layout was composed of plots arranged in 38 rows 
by 36 ranges in WAR15 and 63 rows by 20 ranges in WAR16. 
In both experiments, plot size was 2 m × 4 m with row spacing 

of 25 cm and a target population density of 100 plants/m2 . 
Further attributes of the two experimental environments were 
provided in Christopher et al. (2021), Table 1. QTL analysis 
for other traits has been reported elsewhere (Christopher et al. 
2021) and here the focus is on plant height after flowering, 
measured to the top glume (cm).

Genotypes tested in WAR15 and WAR16 included the MR-
NAM lines at F4:5 and F4:6, respectively, donor and reference 
parents, and other experimental and standard wheat lines. MR-
NAM lines tested in WAR16 were a subset of those tested in 
WAR15 (Table 2). In WAR16, family Mace/ZWW10.50 and 
all families with Scout as the reference parent were poorly 
represented hence they were excluded from the association 
study performed for that year.

NAM simulated data

To create a NAM population with realistic marker profiles 
while the computational time for each simulation remains low, 
a subset of the DArT wheat consensus map (DArT 2018) was 
considered, as well as, a subset of founders to generate the 
crosses. Specifically, Suntop was selected as the reference par-
ent to be crossed with 5 diverse donors (SeriM82, ZWB10.37, 
Drysdale, Westonia, and Dharwah dry). The linkage map 
for the simulation was a subset of the DArT consensus map 
(“Markers and map” section), consisting of seven LGs (1B to 
7B) and the unique positions corresponding to those markers 
where segregation was expected in the NAM population, i.e., 
at least one donor was different to the reference parent at that 
position. This left seven LGs with between 77 and 223 unique 
positions and a total of 895 markers (Supplementary Fig. S1). 
The simulated NAM population consisted of five families of 
100 RILs, corresponding to each of the biparental crosses 
between Suntop and the five donors hence a total of 500 lines.

The marker data for the NAM lines was simulated using 
R-qtl package (Broman et al. 2003). First, the RILs were 
generated at each biparental cross of donor and reference par-
ent. Then, based on the founder marker data available, the data 
was modified to maintain segregation only where expected for 
each biparental cross.

The phenotypic data was simulated under two different 
scenarios to assess the Type I error rate and the power of the 
proposed methodology. The first scenario aimed to estimate 
the Type I error rate, i.e., the probability to detect at least one 
QTL when none existed. Phenotypic data with no QTL was 
generated assuming an experiment with two replicates follow-
ing a simple model of the form:

where yir represents the phenotypic value for line i 
( i = 1, 2, ..., 500 ) and replicate r ( r = 1, 2 ), � represents the 

(1)yir = � + ugi + eir
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overall mean, ugi represents the polygenic random effect for 
line i, and eir represents the residuals. For the simulation, it 
was assumed that � = 7, ugi ∼ N(0, 0.5) , and eir ∼ N(0, 1) . A 
total of 500 simulations were generated for the NAM popu-
lation where no QTL effects were present.

The second scenario for simulation of phenotypic data 
considered the presence of eight QTL, their position and 
size are provided in Table 3. Phenotypic data with the eight 
QTL effects was generated assuming an experiment with two 
replicates following an extension of the previous simulation 
model to incorporate the QTL effect as follows:

where ajl are the effects for QTL j ( j = 1, 2, ...8) and founder 
l ( l = 1, 2, ..., 6) given in Table 3 and pijl is the probability of 
line i receiving alleles from founder l at QTL j. Note that ∑6

l=1
pijl = 1 . Again, a total of 500 simulations were gener-

ated for the NAM population.

Methods

The methodology presented here to perform a whole-
genome analysis for NAM populations, namely WGNAM, is 
an extension of the linear mixed model that forms the basis 
of the whole-genome analysis for MAGIC populations intro-
duced by Verbyla et al. (2014b), MPWGAIM. The following 
sections describe how the MPWGAIM model was modi-
fied to incorporate the NAM population structure, revisit 
the putative QTL selection process, and review the final 
model assessments. Finally, the performance of WGNAM 
was assessed with the simulated data to estimate the false 
positive rate and the power to detect QTL and to compare 
the results with other methods of reference.

(2)yir = � +

8∑

j=1

6∑

l=1

pijlajl + ugi + eir

The linear mixed model

Genetic studies involve the collection of phenotypic data 
based on experimental designs. An efficient analysis of that 
data is often performed in a linear mixed model framework 
since it allows the inclusion of fixed or random effects that 
are present in the trial. The model fitted to the data is of the 
form:

where � is the vector N × 1 of all trait data points (N) and 
� and �0 are the incidence matrices of dimensions N × n

�
 

and N × nu0 corresponding to the fixed effects � and the non-
genetic random effects �0 , respectively. These two effects 
reflect the experimental design of the trial and any other 
variation that requires modeling (Smith et al. 2005, 2006). 
The random effects �0 and the residual vector denoted by � 
( N × 1) are assumed to be independent, normally distributed 
with mean zero and variance-covariance matrices �0 and � , 
respectively. Properly modeling non-genetic effects will help 
to correctly determine the genetic effects �g , which are the 
main focus in this study (Verbyla et al. 2014b).

Suppose there are ng lines of interest, the incidence matrix 
�g of dimension N × ng assigns to each observation the 
appropriate random genetic effect from �g = [ugi] of dimen-
sion ng × 1 . The simplest model that could be considered for 
the genetic effects for a line i (i = 1, 2,… , ng) is the so-called 
infinitesimal or polygenic model for which:

The matrix form of model  (4) is �g = �p where 
�p ∼ N(�, �2

p
�ng ) , i.e., polygenic effects are assumed to be 

zero centered and independent although pedigree informa-
tion could also be included (Oakey et al. 2007).

Association studies rely on the integration of the popula-
tion structure and molecular marker data into the analysis 
of the trait of interest. Thus, an appropriate specification of 

(3)� = �� + �0�0 + �g�g + �

(4)ugi = upi

Table 3  QTL parameters for the simulations assessing power

Eight QTL were positioned across 7 linkage groups (LGs) and the effects for each QTL and founder alleles were specified

QTL Distance (cM) LG Marker Founder

Suntop Seri.M82 ZWB10.37 Drysdale Westonia Dharwah dry

QTL1 94.39 1B LG.1B.53 0.4 − 0.2 − 0.2 0 0 0
QTL2 17.84 2B LG.2B.8 0.5 − 0.1 − 0.1 − 0.1 − 0.1 − 0.1
QTL3 19.00 3B LG.3B.20 0.4 0 0 − 0.4 0 0
QTL4 62.27 4B LG.4B.60 0 − 0.6 0 0 0 0.6
QTL5 60.11 5B LG.5B.148 0.2 0 0 − 0.1 0 − 0.1
QTL6 57.39 6B LG.6B.63 0.2 − 0.04 − 0.04 − 0.04 − 0.04 − 0.04
QTL7 101.51 7B LG.7B.102 0.2 0 0 0 0 − 0.2
QTL8 161.57 1B LG.1B.135 0 − 0.3 0 0 0.3 0
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the genetic effects should be accomplished through models 
more complex than (4).

The basis of the WGNAM model

Suppose there are nm molecular markers in total across all 
the linkage groups or chromosomes in the genome. A pos-
sible (but unrealistic) integration of model (4) with these 
markers is one that allows for a QTL at the position of each 
marker on the genetic map:

where zmij
 is the known marker genotype that corresponds to 

line i and marker at position j on the genetic map, coded as 
the number of copies of a given allele (0, 1 or 2), mj is the 
random effect of the marker at position j (j = 1, 2,… , nm) 
where mj ∼ N(0, �2

m
) , and the last component ( upi ) is the 

polygenic effect that allows for possibly a large number of 
small QTL that cannot be detected individually (Verbyla 
et al. 2012).

Consider now the population structure, and assume there 
are nf  founders. The expression of putative QTL could 
depend on the founders and this can be modeled as follows:

where �j is the nf × 1 vector of nf  founder allele effects at 
position j and �ij is the nf × 1 vector of founder alleles for 
line i and marker at position j. For a given line in the NAM 
population, the elements of �ij indicate the number of alleles 
coming from each founder thus, most of the elements are 
zero except for up to two elements corresponding to the two 
parents of that line and 

∑nf

l=1
qijl = 2.

The origin of the alleles at the putative QTL is not always 
certain then, neither are the elements in �ij in model (6). 
Following Verbyla et al. (2014b), the way to account for this 
uncertainty is to use the probabilities of inheriting founder 
alleles, such as the ones described in “MR-NAM founder 
probabilities calculation” section. This is the major contribu-
tion of the MAGIC method for structured populations, and 
therefore the major component that needs to be modified to 
take into account the population structure of the NAM 
populations.

Let �ij be the nf × 1 vector of founder probabilities for line 
i and marker at position j. Note that 

∑nf

l=1
pijl = 1 since they 

are probabilities now instead of the number of alleles.

(5)ugi =

nm∑

j=1

zmij
mj + upi

(6)ugi =

nm∑

j=1

�T
ij
�j + upi

The WGNAM model considering probabilities of inherit-
ing founder alleles is the basis of this association study and 
has the form:

where �j is the nf × 1 vector of founder specific effects at 
position j which are assumed to be random, independent and 
identically distributed �j∼N(�, �2

a
�nf ).

The determination of the probabilities �ij was discussed in 
detail for MAGIC population by Verbyla et al. (2014b). In 
“MR-NAM founder probabilities calculation” section, one 
approach is presented to determine the probabilities of inherit-
ing founder alleles in a NAM population.

Putative QTL selection for WGNAM

The WGNAM analysis builds the final model by selecting a 
set of the potential QTL from the total number of markers. The 
selection process implemented here corresponds to that pro-
posed by Verbyla et al. (2014b). First, a test is performed to 
check if there is evidence of at least one putative QTL. The ques-
tions that follow are how many putative QTL are present and 
where they are positioned in the genetic map. These questions 
are addressed following a forward variable selection approach. 
Intrinsically, it is an iterative process that first performs the test 
for a putative QTL described below, then identifies the most 
important marker position, and repeats this process until there 
is no longer sufficient evidence of additional QTL.

Test for a putative QTL

This first step consists of contrasting two models that result from 
fitting the linear mixed model (3) where the genetic effects are 
modeled i) only by polygenic effects as in (4) and ii) by molecu-
lar markers and polygenic effects as in (7). Both models are then 
compared to test the hypothesis H0 ∶ �

2
a
= 0 , i.e., if there is 

sufficient variance of marker effects to warrant the selection of a 
putative QTL. The conducted test is a likelihood ratio test where 
the null distribution is a mixture of a chi-squared distributions, 
namely 0.5�2

0
+ 0.5�2

1
 (Stram and Lee 1994).

Selection of the first putative QTL

The selection of the first putative QTL (iteration 1), is based on 
the outlier statistic for every marker position using model (7). 
The foundation of the outlier statistic for a position j′ is the 
alternative outlier model below:

(7)ugi =

nm∑

j=1

�T
ij
�j + upi
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where �j′ is a nf × 1 vector corresponding to position j′ that 
is assumed to be �j� ∼ N(�, �2

aj�
�nf ) . The alternative outlier 

model inflates the QTL effects at position j′ by �j′ while the 
outlier model under the null hypothesis, that is with �2

aj�
= 0 , 

is equivalent to (7). Calculating the outlier statistic for every 
position seems to imply that many models need to be fitted 
(one per marker). However, a procedure based on a score 
statistic for testing H0 ∶ �

2
aj�

= 0 only relies on the null 
model, hence, only model (7) would need to be fitted (Verb-
yla et al. 2012).

If ãjl (l = 1, 2,… , nf ) represents the best linear unbiased 
predictor (BLUP) of ajl , i.e., the size of the potential QTL 
effect for founder l at position j, the outlier statistic is given by:

That is, the outlier statistic sums over the squared effects 
of all the founders at a specific position j in the genome. 
Positions with important effects will result in large values 
of the outlier statistic. Hence, the largest value of the outlier 
statistic among all the marker positions in the genome is 
selected as the first putative QTL.

Selection of additional QTL

To test the presence of a second QTL, the process is equiva-
lent to the one described above but this time, the models 
to be compared by the likelihood ratio test include the first 
putative QTL already detected.

Assume that ns is the number of putative QTL found and 
S is the subset of all their positions, the general form of the 
two models involved in that test are:

and,

where �j ∼ N(�, �2
aj
�nf ) if j ∈ S and �j ∼ N(�, �2

a
�nf ) if j ∉ S . 

Note that there is one variance component for each selected 
putative QTL ( �2

aj
 ) and a common variance ( �2

a
 ) for the 

(8)

ugi =

nm∑

j=1

�T
ij
�j + �T

ij�
�j� + upi

=

nm∑

j=1
j≠j�

�T
ij
�j + �T

ij�

(
�j� + �j�

)
+ upi

(9)t2
j
=

∑nf

l=1
ã2
jl

∑nf

l=1
var

�
ãjl
�

(10)ugi =
∑

j∈S

�T
ij
�j + upi

(11)ugi =
∑

j∈S

�T
ij
�j +

∑

j∉S

�T
ij
�j + upi

effects of all remaining positions where no putative QTL 
were found.

Final WGNAM model

Once the selection process terminates, the final WGNAM 
model is the linear mixed model (3) with (11), which con-
siders all the putative QTL found as random effects. Addi-
tional assessments of the final model are considered to better 
understand the QTL size effects (Verbyla et al. 2012, 2014b).

Essentially, QTL effects are estimated by the BLUP of 
�j j ∈ S , i.e., �̃j j ∈ S , which will inform about the size of 
the effects of the putative QTL for each individual founder. 
The approach to measure the strength of putative QTL effect 
�j depends on the normality assumptions of the linear mixed 
model which leads to the conditional distribution:

where �2 is the component of data free of fixed effects (Verb-
yla 1990), the mean and the variance are, respectively, the 
BLUP of �j and the prediction error variance (PEV) �PEV,j . 
Defining �− a generalized inverse of � , a measure of the 
strength of a putative QTL is given by the following overall 
probability (Verbyla et al. 2014b):

or equivalently, the LOGP score: LOGP j = −log10(pj).

WGNAM performance evaluation

The simulated NAM data described in “NAM simulated 
data” section which covered two scenarios (absence/pres-
ence of QTL) served to study the Type I error rate and 
power of WGNAM. Furthermore, results were compared 
with two multi-QTL approaches: a GWAS approach and a 
NAM specific approach. The nominal Type I error rate was 
set at � = 0.05 for WGNAM but a Bonferroni correction for 
multiple testing was implemented in the alternative methods 
( �bonf = 0.05∕896 ), otherwise all the simulations had at least 
one false positive (results not shown).

The GWAS method implemented in this study was 
MLMM (Segura et al. 2012). The MLMM approach is a 
two-stage GWAS method so, phenotypic data was averaged 
across replicates for each simulation. The kinship matrix was 
utilized to correct for the population structure. To obtain a 
multi-QTL model in each simulation, a forward selection 
process was followed with a threshold set at �bonf and the 
best model was selected using the extended Bayesian Infor-
mation Criteria (eBIC)  as proposed by the MLMM authors.

The NAM specific approach implemented here was the 
multi-QTL model (MQE) from the MPP methodology 

(12)�j|�2 ∼ N(�̃j,�PEV,j)

(13)pj = P

((
�j − �̃j

)T

�−

PEV ,j

(
�j − �̃j

)
> �̃T

j
�−

PEV ,j
�̃j

)
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(Garin et al. 2017). Likewise MLMM, MPP is a two-stage 
method so, phenotypic data was averaged across replicates 
for each simulation. The MPP method estimates parental 
effects by calculating IBD probabilities utilizing the R-qtl 
package (Broman et al. 2003). With a threshold equivalent 
to �bonf a subset of detected QTL was considered first and 
then a forward selection process was followed to build the 
multi-QTL model (setting a minimum distance between two 
QTL of 20 cM).

The simulation study using WGNAM was carried 
out with the same IBD probabilities utilized in the MPP 
approach, given that the WGNAM method is flexible about 
the IBD calculation method and this will facilitate the com-
parison. For the power study, a QTL was considered to be 
detected if it was 10 cM either side of the true QTL. This 
was in agreement with the minimum distance between QTL 
define for the MPP method.

Computation

All the analyses were performed in R (R Core Team 2019). 
The WGNAM approach has been implemented using the 
package wgnam available at https:// github. com/ Valer iaPac 
capelo/ wgnam. The main dependencies on R packages are 
mpwgaim (Verbyla et al. 2014b) and asreml (Butler 
2009). In particular, it is the power of asreml that allows 
the complex models to be fitted. The MLMM approach was 
implemented via the package mlmm.gwas (Bonnafous 
et al. 2019), whereas the MPP approach was implemented 
using the mppR package (Garin et al. 2018).

Results

WGNAM performance with NAM simulated data

In the first scenario, the NAM simulated data in the absence 
of QTL, the Type I error rate was estimated from 500 simu-
lations implementing WGNAM with a nominal Type I error 
rate of � = 0.05 , whereas for the methods MLMM and MPP 
the nominal threshold was based on the Bonferroni correc-
tion. The probabilities of finding at least one false positive 
QTL were 0.044, 0.092, and 0.01 for the WGNAM, MLMM, 
and MPP, respectively. These figures indicate that WGNAM 
does control the false positive rate without implementing any 
multiple testing correction under this scenario of no QTL. 
The Bonferroni correction was not enough for the MLMM 
approach given the realized Type I error rate almost doubled 
the expected value of 0.05 while was too conservative for 
the MPP method. The mean number of detected QTL were 
0.052, 0.10, and 0.01 for the methods WGNAM, MLMM, 
and MPP, respectively. These results showed that there 
were some simulations where more than one false QTL was 

detected for the methods WGNAM and MLMM but not for 
MPP. The latter prevents the search of an additional QTL 
given a certain window (20 cM in this study, i.e., 10 cM each 
side of the detected QTL).

The second scenario considered the presence of QTL 
effects and applied the same nominal thresholds described 
above. The estimation of the power of the three methods 
to detect each of the eight QTL across the 500 simulations 
is presented in Table 4. All the methods were consistent 
for QTL1, QTL2, and QTL3, showing a rate above 0.80. 
Conversely, the detection rate was low for QTL8, failing 
to detect it. For the remaining QTL, the WGNAM method 
presented the highest rate of detection (varying from 0.378 
to 0.646) and the MPP method was only superior to the 
MLMM approach for QTL4. The resolution was also eval-
uated and for those combinations of method-QTL with a 
detection rate above 50%, the distance between the true QTL 
and the detected one was less than 1 cM for all the methods.

Furthermore, within the scenario with QTL effects, the 
Type I error rate was estimated for the three methods, across 
all the LGs (Table 4). The WGNAM method presented a 
high rate of false positives with at least one false positives 
60% of the times and on average, 1.050 false positives per 
simulation. The MLMM approach presented false positive 
rate of 0.232 and the MPP was even better with a rate of 
0.092.

The QTL effects were estimated for each simulation 
when detected under the second scenario. The WGNAM 
method produces zero centered predictions and the predic-
tion represents the effect of having the same genotype that a 
given founder at that position (probability of 1, see Eq. 7), in 

Table 4  Proportion of QTL  detection rates across 500 simulations 
applying three different approaches: whole-genome nested associa-
tion mapping (WGNAM), multi-locus mixed model (MLMM), and 
multi-parent population (MPP)

For the eight QTL, a QTL was considered “detected” if the position 
of the detected marker was within 10 cM from the true QTL position 
otherwise it was considered a false QTL and the false positive rate 
(Type I error) and the mean number of detections were provided

QTL Method

WGNAM MLMM MPP

QTL1 0.962 0.968 0.798
QTL2 1.000 1.000 0.984
QTL3 0.986 0.808 0.922
QTL4 0.646 0.004 0.532
QTL5 0.378 0.106 0.072
QTL6 0.620 0.440 0.104
QTL7 0.556 0.240 0.074
QTL8 0.058 0.040 0.014
False QTL (Type I rate) 0.600 0.232 0.092
False QTL (Mean number) 1.050 0.714 0.098

https://github.com/ValeriaPaccapelo/wgnam
https://github.com/ValeriaPaccapelo/wgnam
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agreement with Table 3. The MPP method estimates allele 
effects relative to the reference parent (with allele effect set 
to zero); furthermore, the model considers allele number 
rather than probabilities, so the effects need to be multi-
plied by two if the line is homozygote. To compare methods, 
MPP estimations were multiplied by two and centered for 
each simulation to obtain estimations for all the founders 
that are centered around zero. Figure 1 shows the difference 
between the estimated QTL effects and the true values for 
QTL1 to QTL4 for WGNAM and MPP methods given that 
both methods showed reasonable power values (Table 4), but 
for that reason, QTL5 to QTL7 show results for WGNAM 
only. For QTL1 to QTL4, the WGNAM effects were, in gen-
eral, less variable than MPP effects, whereas the difference 
from zero sometimes depended on the QTL and founder. For 
QTL1 and QTL4, where the power of the MPP is lower than 
WGNAM, some of the founder effects are more distant from 
zero for the MPP method. For QTL5 to QTL7 where QTL 
effects had smaller size compared with QTL1 to QTL4, the 
WGNAM method shows some bias for some of the founders 
but still was able to detect these QTL with a better rate than 
the MPP method (Table 4).

The MLMM estimations of QTL effects could only be 
compared to the true values when all the effects for the 
donors were the same (QTL2 and QTL4). Having a very 
strong power to detect the QTL2, the MLMM mean estima-
tion was 0.57 for a genotype equivalent to Suntop (with a 
true value of 0.50) and 0.056 for any homozygote genotype 
that was not Suntop, i.e., equivalent to any donor parent 
(with true value of 0.10). For QTL4 with smaller effects, the 
MLMM method presented a lower detection rate (0.44) and 
greater bias (for Suntop equivalent genotype the estimation 
was 0.36 vs the true value of 0.20 and for the alternative 
homozygote genotype the estimation was 0 vs 0.04).

Phenotypic assessment in an MR‑NAM population

The analysis of plant height data at each field trial started 
with a phenotypic analysis using the base linear mixed model 
(model 3). This accounted for experimental design factors 
(replicate blocks), fixed effects for lines that were not part of 
the MR-NAM population (including standard wheat lines, 
founders, etc.) and random genotype effects for MR-NAM 
lines with molecular data. The residuals were considered 

Fig. 1  Distribution of the difference between the QTL effect estima-
tions and the true values in the simulation study for a NAM popula-
tion applying WGNAM and MPP methods. Distributions are shown 

for each founder and grouped by QTL. Results are not shown for the 
MPP approach when presented a detection power below 15%



2223Theoretical and Applied Genetics (2022) 135:2213–2232 

1 3

to be correlated and followed a multiplicative autoregres-
sive model of first order in the row and column directions 
in WAR15 but only in the row direction in WAR16. For 
illustrative purposes, BLUPs were obtained from the base 
linear mixed model for all MR-NAM lines in each experi-
ment and are summarized in Fig. 2. Despite the moder-
ate selection for a semi-dwarfing phenotype, considerable 
variation for plant height remained within the population. 
Overall, similar plant height was observed between years 
for those families tested at both environments. In the case of 
WAR15, all families within each of the three NAM popula-
tions showed variability for plant height. Moreover, donors 
behaved similarly within each background. For instance, 
families with Dharwah dry parentage had generally taller 
lines compared to Drysdale. Overall, there were no clear dif-
ferences among the reference backgrounds. However, when 
comparing families derived from particular donors some 
differences became more evident. For example, Drysdale 
tended to have taller plants when crossed to Suntop com-
pared to Scout and Mace. In WAR16, only Mace and Suntop 

families were grown. Similarly to WAR15, differences due 
to donors were observed as well as different performance for 
the same donor in different reference backgrounds (Fig. 2).

The putative QTL search

To illustrate the putative QTL search performed by 
WGNAM, Table 5 presents a summary of the iterative 
process carried out for plant height in WAR16. It summa-
rizes the iterative process to test the presence of at least 
one (or more) QTL, and identifies the position of the puta-
tive QTL via the outlier statistic. The outlier statistic for 
the first iteration indicated the presence of at least one 
QTL for plant height (p-value = 5.55E − 17). In order to 
identify the position, the outlier statistic was calculated 
for every possible position across the genome (top panel 
of Fig. 3). The maximum value of the outlier statistic in 
the first iteration was identified on LG 6B, position 204 
(LG.6B.204) and corresponded to the marker at a distance 
of 78.29 cM on LG 6B of the consensus map (DArT 2018). 

Fig. 2  Distribution of the plant height best linear unbiased predic-
tions (BLUPs) for each family in the multi-reference nested associa-
tion mapping (MR-NAM) population at each experiment. Family dis-
tributions are shown for each donor and grouped by reference parent 
(Mace, Suntop and Scout) and experiment (WAR15 and WAR16). 

BLUPs are the result of the phenotypic analysis using the base linear 
mixed model. Number of lines per family n tested in each trial are 
provided in brackets. Data for Scout families was not included in the 
analysis for WAR16
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This putative QTL was incorporated into the linear mixed 
model, and then iteration 2 indicated presence of an addi-
tional QTL. The values of the outlier statistic in the sec-
ond iteration were calculated across the whole-genome to 
search for the maximum; however, for simplicity Fig. 3 
shows the values corresponding to the LG 2B where the 
second putative QTL was identified. The process contin-
ued until there was no significant evidence of additional 
QTL (p-value > 0.05 ). Hence, 11 putative QTL were iden-
tified for plant height in WAR16.

Similarly, a WGNAM iteration process was performed 
for plant height in WAR15. Since it comprised 27 iterations 
(26 putative QTL), the details of this whole process are not 
shown.

Assessment of the final model

After the search for putative QTL, further assessments 
of the final model can be performed to gain insight into 
the QTL effects of each founder for each putative QTL. 

Table 5  Summary of the iterative process behind the association study performed for plant height in WAR16

For each iteration, the log-likelihood of the fitted models, likelihood ratio test statistic value, associated probability, outlier statistic value, identi-
fied position, and distance are presented

Iteration Model log-likelihood Likelihood ratio p-value Outlier statistic Identified position Linkage group Distance 
(cM)

Reduced Complete

1 − 1988.64 − 1953.61 70.06 5.55E − 17 5.43 LG.6B.204 6B 78.29
2 − 1966.13 − 1948.96 34.35 2.31E − 09 7.61 LG.2B.98 2B 63.52
3 − 1946.44 − 1942.66 7.57 0.0030 6.73 LG.3A.193 3A 151.45
4 − 1936.88 − 1935.46 2.83 0.0462 5.35 LG.7A.216 7A 149.56
5 − 1932.19 − 1930.62 3.13 0.0384 5.62 LG.2B.408 2B 107.01
6 − 1928.26 − 1925.83 4.87 0.0136 5.64 LG.4D.16 4D 50.96
7 − 1923.32 − 1921.25 4.14 0.0209 5.23 LG.4B.34 4B 35.55
8 − 1918.95 − 1917.05 3.81 0.0255 5.85 LG.7B.176 7B 104.50
9 − 1916.12 − 1914.58 3.08 0.0396 6.61 LG.6A.23 6A 17.57
10 − 1912.65 − 1911.11 3.09 0.0395 5.33 LG.3D.42 3D 149.01
11 − 1910.43 − 1909.06 2.75 0.0488 5.68 LG.5B.89 5B 30.46
12 − 1907.53 − 1906.55 1.96 0.0808 – – – –

Fig. 3  Summary of the putative QTL search performed for plant 
height in WAR16. Values of the outlier statistic are plotted against the 
distance (cM) within linkage group (LG) according to the consensus 
map (DArT 2018). (a) Whole-genome values of the outlier statistic 
for the first iteration. (b) Whole-genome values of the outlier statis-

tic for the remaining iterations, only representing the values for the 
LG where the putative QTL was identified. The outlier statistic value 
for the putative QTL is tagged with the identified position (LG and 
marker order within LG)
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Table 6  Extract of the assessment of the putative QTL detected for 
plant height in WAR16. For the first four detected putative QTL, a 
summary of founder specific effects is provided (size, probability, 

and LOGP score) as well as overall effects (probability, percentage 
of genetic variance attributed to the putative QTL [%var] and LOGP 
score)

Identified position Distance (cM) Founder Marker 
genotype

Founder specific Overall

Size Probability Score Probability % var Score

LG.6B.204 78.29 Dharwah dry 2 2.48 0.3131 0.50 0.0021 17.61 2.74
Drysdale 0 4.42 0.0936 1.03
EGA gregory 2 − 0.37 0.4722 0.33
EGA wylie 2 − 0.51 0.4611 0.34
FAC10.16 2 0.17 0.4877 0.31
Mace 2 4.69 0.0956 1.02
SB062 2 0.57 0.4563 0.34
SeriM82 2 − 1.62 0.3778 0.42
Suntop 2 − 7.68 0.0161 1.81
UQ114 2 − 1.02 0.4244 0.37
Westonia 2 − 0.72 0.4455 0.35
ZWB10.37 2 − 0.41 0.4693 0.33
ZWW10.50 2 0.00 0.5000 0.30

LG.2B.98 63.52 Dharwah dry 0 1.52 0.3581 0.45 0.0693 11.15 1.16
Drysdale 2 − 1.57 0.2748 0.56
EGA gregory 0 − 0.23 0.4794 0.32
EGA wylie 2 − 1.94 0.2761 0.56
FAC10.16 0 0.10 0.4910 0.31
Mace 0 − 2.72 0.1750 0.76
SB062 0 0.35 0.4671 0.33
SeriM82 0 − 0.99 0.4073 0.39
Suntop 0 6.80 0.0057 2.28
UQ114 0 − 0.62 0.4429 0.35
Westonia 0 − 0.44 0.4597 0.34
ZWB10.37 0 − 0.25 0.4775 0.32
ZWW10.50 0 0.00 0.5000 0.30

LG.3A.193 151.45 Dharwah dry 2 0.85 0.3968 0.40 0.0067 3.07 2.23
Drysdale 0 5.13 0.0037 2.54
EGA gregory 2 − 0.13 0.4859 0.31
EGA wylie 0 − 3.66 0.0692 1.16
FAC10.16 2 0.06 0.4935 0.31
Mace 2 − 1.89 0.1348 0.87
SB062 0 2.74 0.0710 1.15
SeriM82 0 0.12 0.4749 0.32
Suntop 2 − 1.03 0.2654 0.58
UQ114 2 − 0.35 0.4587 0.34
Westonia 0 − 1.34 0.2941 0.53
ZWB10.37 0 − 0.51 0.4345 0.36
ZWW10.50 2 0.00 0.5000 0.30

LG.7A.216 149.56 Dharwah dry 0 5.67 0.0309 1.53 0.0082 9.52 2.11
Drysdale 0 − 6.72 0.0097 2.05
EGA gregory 0 − 0.29 0.4761 0.32
EGA wylie 0 − 0.40 0.4666 0.33
FAC10.16 0 0.13 0.4898 0.31
Mace 2 − 3.42 0.0644 1.19
SB062 0 − 1.38 0.3183 0.50
SeriM82 0 5.03 0.0449 1.36
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For illustrative purposes, Table 6 presents the estimated 
founder specific sizes for plant height in WAR16 for the 
first four putative QTL detected in the WGNAM iterative 
process (Table 5). In the final model, the first putative 
QTL detected on 6B at 78.29 cM showed a LOGP score of 
2.74 accounting for a 17.61% of the plant height genetic 
variability of the MR-NAM population. Founder specific 
LOGP scores indicated that the sources of important QTL 
size corresponded to Suntop (Suntop genotype reduced 
plant height by 7.68 cm), and Drysdale and Mace (plant 
height increasing effects). Based on the marker genotype 
for the founders (Table 6) only populations with Drysdale 
(Drysdale marker genotype = 0 ) were expected to segre-
gate. Also, Suntop and Mace both had the same genotype 
for this marker (marker genotype = 2 ) but opposite effects 
( −7.68 and 4.69, respectively), hence the importance of 
considering the allele origin in the model.

On LG 2B at 63.52 cM, the putative QTL had a LOGP 
score of 1.16, explaining 11.15% of the genetic variabil-
ity overall. Suntop was the unique founder that increased 
plant height significantly (LOGP score = 2.28). The only 
populations expected to segregate were Drysdale and 
EGA Wylie both crossed to Suntop (Tables 2 and 6).

A putative QTL on 3A at 151.45 cM showed a LOGP 
score of 2.23, accounting for 3.07% of the genetic vari-
ance of the whole MR-NAM population (Table 6). Drys-
dale presented quite a strong size (LOGP score = 2.54) 
but as a donor parent gave origin to only 91 lines out of 
539 in WAR16, with only a subset of these potentially 
carrying the Drysdale allele. Other donors that showed 
relatively strong effects were EGA Wylie and SB062. 
These were donor parents of 37 and 82 lines in the MR-
NAM population (Table 2).

The remaining putative QTL in Table 6 was located on 
LG 7A. The putative QTL showed a LOGP score of 2.11, 
accounting for 9.52% of the genetic variability (Table 6). 
Regarding the founder specific effects, the founders that 
presented strong QTL size were Drysdale, Dharwah dry, 
SeriM82, and Mace. Note that, based on the marker geno-
type of the founders, only crosses with Mace are expected 

to segregate in the population and the donors just men-
tioned were crossed to Mace (SB062 and Westonia were 
also crossed to Mace but there was no evidence of strong 
effects of their genotypes) (Tables 2 and 6).

Putative QTL for plant height

The WGNAM analysis resulted in the identification of 26 
putative QTL for plant height in WAR15 and 11 in WAR16. 
Putative QTL for plant height with an overall or founder 
specific LOGP score greater than − log(0.05) = 1.30 are 
presented in Table 7. Additionally, the effect type was identi-
fied as “overall” or “specific” depending on if the overall or 
founder specific LOGP score was greater than the threshold. 
Putative QTL were located on LGs 1A, 1B, 1D, 2A, 2B, 3A, 
3B, 4B, 4D, 5B, 6A, 6B, 7A, 7B, 7D.

On LG 2B, both overall and specific effects were detected 
at 62.53 cM in WAR15 and 107.01 cM in WAR16. Addi-
tionally, positions LG.2B.92 in WAR15 and LG.2B.98 in 
WAR16 were at less than 1 cM apart in the consensus map 
(DArT 2018) and with a linkage disequilibrium between 
markers or R2 = 0.84 in the MR-NAM population. QTL size 
for Suntop, increased the plant height by 8.19 and 6.80 cm 
in WAR15 and WAR16, respectively.

On LG 4D, Mace QTL size contributed negative effects 
for each experiment, associated with QTL at different posi-
tions (21.72 cM in WAR15 and 50.96 cM in WAR16). These 
QTL may be related to the Rht-D1 dwarfing allele on LG 
4D that Mace carries (Table 2). Furthermore, putative QTL 
indicated strong allele effects from Mace in both years at dif-
ferent positions on LG 6A (17.57 cM in WAR16 and 42.36 
cM in WAR15).

Discussion

In this study, the powerful MPWGAIM approach described 
by Verbyla et al. (2014b) has been extended to NAM popula-
tions and validated on simulated data as well as on real data 
for a MR-NAM population, enabling a QTL analysis method 

Table 6  (continued)

Identified position Distance (cM) Founder Marker 
genotype

Founder specific Overall

Size Probability Score Probability % var Score

Suntop 0 2.95 0.2645 0.58
UQ114 0 − 0.80 0.4347 0.36
Westonia 0 − 0.46 0.4402 0.36
ZWB10.37 0 − 0.32 0.4738 0.33
ZWW10.50 0 0.00 0.5000 0.30
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Table 7  Putative QTL for plant height in WAR15 and WAR16 that 
presented an overall or specific LOGP score greater than − log(0.05) 
= 1.30. Putative QTL identified position, position and cloneID 
(DArT 2018) are shown, together with the experiment in which they 
were detected. For overall effects above the threshold, percentage of 

genetic variance attributed to the putative QTL [%var] and LOGP 
score are given, whereas for specific effects the founder name, size 
and LOGP score are provided. Effect details in bold correspond 
to putative QTL identified on the same linkage group for both experi-
ments

LG Distance (cM) Marker CloneID Experiment Effect Type Effect Details

1A 66.23 LG.1A.48 1011620 WAR15 Overall %var = 5.5; Score = 2.00
Specific Mace (Size = 7.57; Score = 2.16)

SeriM82 (Size = − 4.46; Score = 1.33)
105.82 LG.1A.106 2261453 WAR15 Specific Mace (Size = 3.69; Score = 1.74)

SB062 (Size = − 3.69; Score = 1.41)
1B 113.49 LG.1B.143 1229218 WAR15 Specific Mace (Size = − 2.80; Score = 1.41)
1D 25.49 LG.1D.11 1099647 WAR15 Overall %var = 2.3; Score = 1.82

Specific Mace (Size = − 4.90; Score = 2.82)
58.66 LG.1D.14 3064835 WAR15 Specific Suntop (Size = − 5.67; Score = 1.87)

139.53 LG.1D.79 1066774 WAR15 Overall %var = 1.8; Score = 1.90
Specific Mace (Size = 3.05; Score = 1.74)

Drysdale (Size = − 3.06; Score = 1.62)
SB062 (Size = − 2.55; Score = 1.33)

2A 75.64 LG.2A.128 2293684 WAR15 Specific Mace (Size = − 1.82; Score = 1.40)
2B 62.53 LG.2B.92 1239537 WAR15 Overall %var = 13.4; Score = 2.23

Specific Scout (Size = − 9.84; Score = 2.21)
Suntop (Size = 8.19; Score = 1.79)

63.52 LG.2B.98 4989040 WAR16 Specific Suntop (Size = 6.80; Score = 2.28)
107.01 LG.2B.408 1218896 WAR16 Overall %var = 3.6; Score = 1.31

Specific SeriM82 (Size = − 4.30; Score = 1.55)
SB062 (Size = 3.92; Score = 1.37)

3A 14.42 LG.3A.20 1056945 WAR15 Specific SeriM82 (Size = − 4.60; Score = 1.77)
151.45 LG.3A.193 1021077 WAR16 Overall %var = 3; Score = 2.23

Specific Drysdale (Size = 5.13; Score = 2.54)
3B 55.13 LG.3B.103 1250327 WAR15 Specific Scout (Size = − 6.43; Score = 1.62)

Drysdale (Size = 4.33; Score = 1.3)
4B 33.74 LG.4B.27 2262825 WAR15 Specific Mace (Size = 3.20; Score = 1.60)
4D 21.72 LG.4D.9 1201923 WAR15 Overall %var = 14; Score = 10.66

Specific Mace (Size = − 9.55; Score = 3.37)
Drysdale (Size = − 7.60; Score = 2.21)
Scout (Size = 7.41; Score = 2.14)
Dharwah dry (Size = 6.33; Score = 1.78)

50.96 LG.4D.16 1161775 WAR16 Specific SeriM82 (Size = 4.91; Score = 1.78)
Mace (Size = − 3.03; Score = 1.46)

5B 30.46 LG.5B.89 1092379 WAR16 Specific Suntop (Size = 2.25; Score = 2.00)
6A 17.57 LG.6A.23 1096778 WAR16 Specific Mace (Size = 5.43; Score = 1.47)

42.36 LG.6A.64 1142355 WAR15 Specific SeriM82 (Size = 13.03; Score = 2.38)
Mace (Size = − 6.42; Score = 1.44)

LG.6A.65 1208893 WAR15 Specific Mace (Size = 7.50; Score = 2.03)
SB062 (Size = − 7.66; Score = 1.37)

75.14 LG.6A.147 999810 WAR15 Specific Dharwah dry (Size = 4.44; Score = 1.58)
Mace (Size = − 2.79; Score = 1.31)

79.64 LG.6A.154 1009888 WAR15 Specific Suntop (Size = − 2.30; Score = 1.89)
6B 78.29 LG.6B.204 4539744 WAR16 Overall %var = 17.6; Score = 2.74

Specific Suntop (Size = − 7.68; Score = 1.81)
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that models the complexity inherent in these populations. 
This approach, based on a linear mixed model, consisted 
of a one-stage analysis of phenotypic data corresponding to 
individual plot data in a trial coupled with a sophisticated 
model for the genetic effects resulting from a genome-wide 
iterative search of putative QTL using molecular markers 
and the MR-NAM population structure.

WGNAM performance with NAM simulated data

The simulation study showed that the WGNAM method was 
powerful to detect QTL, with a detection rate near 100% 
for QTL1 to QTL3, intermediate rates for QTL4 to QTL7 
and not detecting QTL8 (Table 4). Comparing with the 
two methods of reference, one of the main differences was 
observed for QTL 4, where the effects were only present in 
two donors (with opposite effects). The MLMM approach 
could not detect the QTL but the methods WGNAM and 
MPP presented a detection rate of 0.646 and 0.532, respec-
tively. This was expected given that the MLMM approach 
does not estimate parent specific effects while the MPP and 
WGNAM methods do. Another major difference occurred 
for QTL5 to QTL7, where WGNAM was superior with 
detection rates ranged from 0.378 to 0.620, MLMM detec-
tion rates were only closer to WGNAM rates for QTL6 
where all donors had the same effect size, and the MPP 
detection rates were all under 10%. This could be due to 
the need to account for multiple testing in the methods of 
reference and Bonferroni correction being too conservative 
to detect QTL of smaller size.

Despite the fact that the WGNAM approach was the 
only method that showed a false positive rate close to the 
nominal type I error rate in absence of QTL effects, this 
result was different when the effects of eight QTL were 
introduced. When QTL effects were present, the mean 
number of false positives was 1.050, 0.714, and 0.098 for 
WGNAM, MLMM, and MPP methods, respectively. The 
WGNAM approach is more powerful, but with that power 

there is a modest presence of false positives. The results for 
the WGNAM approach are in agreement with those reported 
for the MPWGAIM method when three-point probabilities 
were implemented rather than hidden Markov model. This 
result was unexpected given that in the current simulation 
study the probabilities were calculated within the mppR 
package, which uses the function calc.genoprob from 
qtl package based on hidden Markov model.

The estimations of the QTL effects in the simulation 
study showed that the WGNAM approach provided greater 
accuracy whenever comparisons were possible to the MPP 
method. This result confirms the statement by (Gogel et al. 
2018) that, compared to a two-stage analysis, one-stage 
approach ensures increased accuracy of the predicted genetic 
effects in a QTL mapping environment.

Modeling the NAM population structure

The WGNAM method allows for a search of putative QTL 
with different effects for each of the founders in a NAM pop-
ulation. It does not consider just the marker scores because 
it may not be appropriate to assume the same QTL effect for 
every background present in the population. Some meth-
odologies have incorporated this particular assumption for 
QTL analysis for NAM populations (Garin et al. 2017; Li 
et al. 2021). In fact, some similarities were found between 
one of the models proposed by Li et  al. (2021) called 
IBD.Kin-F and the WGNAM model in “The basis of the 
WGNAM model” such as QTL effects based on IBD prob-
abilities and polygenic effects. However, these methods are 
based on two-stage approaches that could not be followed 
for a partially replicated design. In this paper, the one-stage 
MPWGAIM method for MAGIC populations was adapted 
initially for a NAM population. In a NAM population a 
donor line is only used once, so the QTL effect is nested 
within the crosses between the reference and the donor lines 
while the reference effect is estimated across all the families. 
The method was extended to accommodate an MR-NAM 
population structure to potentially benefit from the fact that 

Bold values correspond to Effect details

Table 7  (continued)

LG Distance (cM) Marker CloneID Experiment Effect Type Effect Details

7A 149.56 LG.7A.216 1216524 WAR16 Overall %var = 9.5; Score = 2.11

Specific Drysdale (Size = − 6.72; Score = 2.05)
Dharwah dry (Size = 5.69; Score = 1.53)
SeriM82 (Size = 5.03; Score = 1.36)

7B 83.16 LG.7B.155 1017568 WAR15 Specific Scout (Size = 5.13; Score = 1.61)
104.5 LG.7B.176 1089670 WAR16 Specific Dharwah dry (Size = 5.24; Score = 1.39)

Mace (Size = − 5.62; Score = 1.31)
7D 80.81 LG.7D.38 1007981 WAR15 Specific Drysdale (Size = 5.19; Score = 2.09)
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a donor can be used more than once, and so the QTL effect 
is estimated across the references that it was crossed to. 
This shows that the concept is potentially adaptable to other 
structured populations. Future extensions could consider that 
founder effects are not independent by using a relationship 
matrix among the founders.

Similarly to the MPWGAIM method, the linear mixed 
model behind the WGNAM approach considers the proba-
bility of QTL alleles inherited from the parents given their 
genotypes. In this study, one simple approach to estimate 
the probabilities was described (Table 1) which relies on 
founder genotypes but does not need a linkage map . How-
ever, WGNAM methodology is flexible enough to allow 
the user to provide the founder probabilities calculated 
following other procedures (Broman et al. 2003; Verbyla 
et al. 2014b; Li et al. 2021). This was shown in the simula-
tion study with the implementation of IBD probabilities 
calculated within the mppR package.

A whole‑genome and multi‑marker model

The statistical methodology behind WGNAM is equiva-
lent to the MPWGAIM method for the QTL analysis of 
MAGIC population using markers positions. The base 
model for both methods has the capability to consider 
the whole-genome. That is, all molecular markers across 
the genome are scanned simultaneously, rather than each 
marker separately. A key component to achieve this is the 
dimension reduction in a large data problem to the number 
of lines ng which can be much smaller than the effective 
dimension in multi-parent situations (different effects for 
each founder at each locus, dimension ≥ nf × nm ). The 
dimensionality reduction works together with the strategy 
to test the presence of QTL and identify the position using 
the outlier statistic. As a result, the QTL search performed 
by WGNAM avoids both repeated scans for every locus 
and the requirement for correction due to multiple testing. 
The results for the simulation study showed this strategy 
keeps the false positive rate, as per the probability that at 
least one QTL found when none exist, at the set threshold, 
agreeing with previous simulation studies (Verbyla et al. 
2007, 2014b).

Furthermore, an iterative process based on forward vari-
able selection is carried out to find additional QTL. Given a 
significance level, at each iteration, a likelihood ratio test is 
performed to support the search for additional QTL. Some 
methodologies carry out a multi-QTL detection model 
(Verbyla et al. 2007; Segura et al. 2012; Verbyla et al. 2014b) 
but none of them was developed for NAM populations. In 
NAM populations, the MPP method (Garin et al. 2017) tests 
each single marker at a time and builds a list of detected 
QTL based on a threshold, that subset of QTL is then used 

to build the multi-QTL model. Compared to single marker 
approaches, the WGNAM requires only a small number of 
iterations to build an exhaustive multi-marker model, provid-
ing a final linear mixed model for a MR-NAM population. 
Furthermore, compared to the multi-QTL approaches, the 
simulation study showed that the WGNAM methodology is 
more powerful, but with that power there is a modest pres-
ence of false positives.

One‑stage approach

The proposed methodology is based on a one-stage analysis 
where non-genetic effects, such as terms for the experimen-
tal design, are easily included in the model. This was crucial 
in the analysis of plant height data for the wheat MR-NAM 
population where a partially replicated experimental design 
was followed and spatial effects were significant in both 
years of experiments. Given the size of NAM populations, 
the presence of spatial effects is unavoidable and having a 
good experimental design as well as the ability to model 
the spatial effects becomes essential for sound phenotypic 
assessment. Despite being computationally demanding 
compared to a two-stage analysis, this one-stage approach 
ensured increased accuracy of the predicted genetic effects 
in the simulation study, which is of particular interest for 
traits with low heritability.

Plant height QTL for wheat

The WGNAM analysis was demonstrated using a wheat MR-
NAM population in order to perform QTL mapping for plant 
height measured at two different field trials. A total of 37 
putative QTL were detected in this study, 26 were detected 
in the WAR15 experiment and 11 in the WAR16 experiment. 
Genetic studies in wheat have identified 25 reduced height 
(Rht) genes and major QTL for plant height on almost all 
LGs (except for 1D, 3D, 6B, and 7D) according to Komugi 
wheat gene catalog (Komugi, n.d.). Most current wheat lines 
contain Rht-B1b (formerly Rht1) or Rht-D1b (formerly 
Rht2) to reduce plant height and increase grain yield (Ellis 
et al. 2005).

One of the major-effect QTL detected in this study 
(LOGP score = 10.66, Table 7) is mapped on LG 4D at 
21.72 cM according to the wheat consensus map v4.0 (DArT 
2018). This is probably related to the Green Revolution 
height-reducing gene Rht-D1 mapped on LG 4D at 20.07 
cM in the consensus map (named RHTD1 in DArT (2018)). 
Furthermore, Mace and Drysdale showed height reducing 
allele effects (Table 7) in agreement with them carrying the 
Rht-D1b dwarfing allele (Table 2). No significant evidence 
was observed for Westonia that also carries the Rht1-D1b 
allele but this may be explained by the fact that Westonia 
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was only crossed to Mace and no segregation was expected 
for this gene in that family.

Another major dwarfing gene Rht-B1 is known to be 
located on the short arm of LG 4B. Both years of trials 
showed evidence of a putative QTL in that LG at 33.74 
cM in WAR15 (Table 7) and 33.55 cM in WAR16 (Sup-
plementary Table S1). In both years alleles coming from 
Mace increased plant height (in WAR15 LOGP score = 
1.60 Table 7, in WAR16 LOGP score = 1.19 Supplemen-
tary Table S1). Rht-B1 does not appear on the consensus 
map (DArT 2018), but both QTL are likely to coincide with 
the major dwarfing gene Rht-B1 (Richard 2017; Christopher 
et al. 2021). Mace was one of the only reference parents 
lacking the Rht-B1b allele (Table 2). Drysdale also does 
not carry that allele but, as a donor, its allele was potentially 
present in fewer MR-NAM lines, so the likelihood for detect-
ing a significant effect might have been affected (Drysdale 
had a plant height increasing effect in WAR16 with a LOGP 
score = 1.18). Another limitation to the detection of plant 
height QTL could be the moderate selection pressure against 
plant height variability carried out during the development 
of this MR-NAM.

Collocation of QTL between experiments was only 
observed on LG 2B (Table 7). In both experiments, the Sun-
top allele increased plant height. This could be collocated 
with Rht-4 also mapped on that LG. Possible reasons for not 
finding more collocated QTL across experiments include 
the interaction of genotype by environment for plant height, 
the lack of coverage of some LG regions, and also that not 
all the MR-NAM lines were tested in the second year of 
trials (Table 2). The reduction in MR-NAM population size 
may have affected the diversity of alleles as well as their 
frequency in the population. Further efforts are needed to 
extend the current model to deal with NAM populations at 
multiple environments that incorporate the interaction with 
the environment (Verbyla et al. 2014a).

The WGNAM method provided scores to measure the 
strength of the putative QTL either for specific parents or 
for the overall MR-NAM population. Additionally, it offered 
estimates of plant height founder specific putative QTL sizes 
(Table 7). This information can facilitate the identification 
of the parental origin of favorable alleles at each QTL which 
can be appealing for line selection purposes given that the 
founders were commercial lines.

The use of the WGNAM method to perform an associa-
tion study for plant height in an MR-NAM population dem-
onstrated that WGNAM can be implemented to explore other 
traits of interest to provide insights into genetic mechanisms 
in wheat which will allow breeders to deliver commercial 
lines to growers with improved characteristics (Christopher 
et al. 2021).

Conclusion

A method to perform QTL analysis in NAM or MR-NAM 
populations has been adapted from the already demon-
strated powerful methodology in MAGIC populations 
(Verbyla et al. 2014b). The WGNAM method was assessed 
and compared to other methods through simulated data and 
applied to a wheat MR-NAM population for plant height in 
two environments. Following the same strategy of MPW-
GAIM, WGNAM results in a powerful QTL detection that 
makes use of the population structure to keep the benefits of 
multi-parent populations while offering, at the same time, an 
understanding of the QTL effects. This extension of MPW-
GAIM originally designed for MAGIC demonstrates the 
potential for it to perform QTL mapping studies in other 
multi-parent populations structures.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00122- 022- 04107-x.

Acknowledgements The authors would like to thank Gabriela Bor-
gognone, Clayton Forknall, and Mandy Christopher for their important 
support and constructive review of the manuscript. The authors are also 
grateful to the reviewers for their suggestions which lead to significant 
improvements in the paper.

Author Contributions All authors shared in the motivation to develop 
this method and interpret all the results. JC conducted the field trials 
and provided the data and information relating to wheat MR-NAM 
population. AV, AK, and VP conceived the statistical approach. AV 
outlined the theoretical framework and provided the WGNAM analysis 
code. AK and VP prepared and conducted the analysis of the wheat 
data. VP performed the simulation studies and prepared the manuscript. 
All authors have read and approved the final manuscript.

Funding Open Access funding enabled and organized by CAUL and 
its Member Institutions. The authors acknowledge the support of the 
Grains Research and Development Corporation of Australia (GRDC), 
the Queensland Department of Agriculture and Fisheries (DAF) and the 
Queensland Alliance for Agriculture and Food Innovation (QAAFI), a 
collaboration between the University of Queensland, and DAF.

Declarations 

Conflict of interest On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

https://doi.org/10.1007/s00122-022-04107-x
http://creativecommons.org/licenses/by/4.0/


2231Theoretical and Applied Genetics (2022) 135:2213–2232 

1 3

References

Bardol N, Ventelon M, Mangin B, Jasson S, Loywick V, Couton F, 
Derue C, Blanchard P, Charcosset A, Moreau L (2013) Combined 
linkage and linkage disequilibrium QTL mapping in multiple fam-
ilies of maize (Zea mays L) line crosses highlights complemen-
tarities between models based on parental haplotype and single 
locus polymorphism. Theor Appl Genet 126(11):2717–2736

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: 
a practical and powerful approach to multiple testing. J Roy Stat 
Soc Ser B (Methodol) 57(1):289–300

Bernardo R (2002) Breeding for quantitative traits in plants. Stemma 
press Woodbury, MN

Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Con-
nected populations for detecting quantitative trait loci and test-
ing for epistasis: an application in maize. Theor Appl Genet 
113(2):206–224

Bonnafous F, Duhnen A, Gody L, Guillaume O, Mangin B, Pegot-
Espagnet P, Segura V, Vilhjalmsson BJ, Mabire C, Flutre T (2019) 
mlmm.gwas: pipeline for GWAS using MLMM. https:// CRAN.R- 
proje ct. org/ packa ge= mlmm. gwas, r package version 1.0.6

Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping 
in experimental crosses. Bioinformatics 19(7):889–890

Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, 
Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC et al 
(2009) The genetic architecture of maize flowering time. Science 
325(5941):714–718

Butler D (2009) asreml: asreml() fits the linear mixed model. www. 
vsni. co. uk, r package version 3.0

Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations 
to magic: resources for gene discovery, validation and delivery in 
crop plants. Curr Opin Plant Biol 11(2):215–221

Christopher M, Paccapelo V, Kelly A, Macdonald B, Hickey L, Rich-
ard C, Verbyla A, Chenu K, Borrell A, Amin A et al (2021) QTL 
identified for stay-green in a multi-reference nested association 
mapping population of wheat exhibit context dependent expres-
sion and parent-specific alleles. Field Crop Res 270:108181

Collard BC, Jahufer M, Brouwer J, Pang E (2005) An introduction 
to markers, quantitative trait loci (QTL) mapping and marker-
assisted selection for crop improvement: the basic concepts. 
Euphytica 142(1–2):169–196

Cullis BR, Smith AB, Coombes NE (2006) On the design of early 
generation variety trials with correlated data. J Agric Biol Environ 
Stat 11(4):381

DArT (2017) Dart: diversity arrays technology. https:// www. diver sitya 
rrays. com/

DArT (2018) Dart: diversity arrays technology - wheat consensus map 
version 4.0. https:// www. diver sitya rrays. com/ techn ology- and- 
resou rces/ genet ic- maps/

Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R (2002) “Per-
fect” markers for the Rht-B1b and Rht-D1b dwarfing genes in 
wheat. Theor Appl Genet 105(6–7):1038–1042

Ellis M, Rebetzke G, Azanza F, Richards R, Spielmeyer W (2005) 
Molecular mapping of gibberellin-responsive dwarfing genes in 
bread wheat. Theor Appl Genet 111(3):423–430

Garin V, Wimmer V, Mezmouk S, Malosetti M, van Eeuwijk F (2017) 
How do the type of QTL effect and the form of the residual term 
influence QTL detection in multi-parent populations? A case 
study in the maize EU-NAM population. Theor Appl Genet 
130(8):1753–1764

Garin V, Wimmer V, Borchardt D, van Eeuwijk F, Malosetti M (2018) 
mppR: Multi-Parent Population QTL Analysis. https:// CRAN.R- 
proje ct. org/ packa ge= mppR, r package version 1.2.1

George AW, Verbyla A, Bowden J (2020) Eagle: multi-locus associa-
tion mapping on a genome-wide scale made routine. Bioinformat-
ics 36(5):1509–1516

Gogel B, Smith A, Cullis B (2018) Comparison of a one-and two-stage 
mixed model analysis of Australia’s national variety trial southern 
region wheat data. Euphytica 214(2):44

Holm S (1979) A simple sequentially rejective multiple test procedure. 
Scand J Stat 65–70

Jordan D, Mace E, Cruickshank A, Hunt C, Henzell R (2011) Explor-
ing and exploiting genetic variation from unadapted sorghum 
germplasm in a breeding program. Crop Sci 51(4):1444–1457

Jourjon MF, Jasson S, Marcel J, Ngom B, Mangin B (2005) MCQTL: 
multi-allelic QTL mapping in multi-cross design. Bioinformatics 
21(1):128–130

Komugi (n.d.) “wheat gene catalog”. Accessed 08 Apr 2021. https:// 
shigen. nig. ac. jp/ wheat/ komugi/ genes/ symbo lClas sList Action. do? 
geneC lassi ficat ionId= 48

Lehermeier C, Krämer N, Bauer E, Bauland C, Camisan C, Campo 
L, Flament P, Melchinger AE, Menz M, Meyer N et al (2014) 
Usefulness of multiparental populations of maize (zea mays l.) 
for genome-based prediction. Genetics 198(1):3–16

Leroux D, Rahmani A, Jasson S, Ventelon M, Louis F, Moreau L, 
Mangin B (2014) Clusthaplo: a plug-in for MCQTL to enhance 
QTL detection using ancestral alleles in multi-cross design. Theor 
Appl Genet 127(4):921–933

Li W, Boer MP, Zheng C, Joosen RV, van Eeuwijk FA (2021) An ibd-
based mixed model approach for QTL mapping in multiparental 
populations. Theor Appl Genet 1–18

Mace E, Hunt C, Jordan D (2013) Supermodels: sorghum and maize 
provide mutual insight into the genetics of flowering time. Theor 
Appl Genet 126(5):1377–1395

Oakey H, Verbyla AP, Cullis BR, Wei X, Pitchford WS (2007) Joint 
modeling of additive and non-additive (genetic line) effects in 
multi-environment trials. Theor Appl Genet 114(8):1319–1332

Piepho HP, Moehring J, Schulz-Streeck T, Ogutu JO (2012) A stage-
wise approach for the analysis of multi-environment trials. Biom 
J 54(6):844–860

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich 
D (2006) Principal components analysis corrects for stratification 
in genome-wide association studies. Nat Genet 38(8):904–909

Pritchard JK, Stephens M, Donnelly P (2000) Inference of popu-
lation structure using multilocus genotype data. Genetics 
155(2):945–959

R Core Team (2019) R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 
https:// www.R- proje ct. org/

Richard C (2017) Breeding wheat for drought adaptation: develop-
ment of selection tools for root architectural traits. PhD thesis, 
Qld alliance for agriculture and food innovation. The University 
of Queensland

Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, Nor-
dborg M (2012) An efficient multi-locus mixed-model approach 
for genome-wide association studies in structured populations. 
Nat Genet 44(7):825

Smith A, Cullis BR, Thompson R (2005) The analysis of crop culti-
var breeding and evaluation trials: an overview of current mixed 
model approaches. J Agric Sci 143(6):449–462

Smith A, Lim P, Cullis BR (2006) The design and analysis of multi-
phase plant breeding experiments. J Agric Sci 144(5):393–409

Stram DO, Lee JW (1994) Variance components testing in the longitu-
dinal mixed effects model. Biometrics 1171–1177

Takeda S, Matsuoka M (2008) Genetic approaches to crop improve-
ment: responding to environmental and population changes. Nat 
Rev Genet 9(6):444–457

Verbyla AP (1990) A conditional derivation of residual maximum like-
lihood. Aust J Stat 32(2):227–230

https://CRAN.R-project.org/package=mlmm.gwas
https://CRAN.R-project.org/package=mlmm.gwas
http://www.vsni.co.uk
http://www.vsni.co.uk
https://www.diversityarrays.com/
https://www.diversityarrays.com/
https://www.diversityarrays.com/technology-and-resources/genetic-maps/
https://www.diversityarrays.com/technology-and-resources/genetic-maps/
https://CRAN.R-project.org/package=mppR
https://CRAN.R-project.org/package=mppR
https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassListAction.do?geneClassificationId=48
https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassListAction.do?geneClassificationId=48
https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassListAction.do?geneClassificationId=48
https://www.R-project.org/


2232 Theoretical and Applied Genetics (2022) 135:2213–2232

1 3

Verbyla AP, Cullis BR, Thompson R (2007) The analysis of QTL 
by simultaneous use of the full linkage map. Theor Appl Genet 
116(1):95

Verbyla AP, Taylor JD, Verbyla KL (2012) RWGAIM: an efficient 
high-dimensional random whole genome average (QTL) interval 
mapping approach. Genet Res 94(6):291–306

Verbyla AP, Cavanagh CR, Verbyla KL (2014) Whole-genome analy-
sis of multienvironment or multitrait QTL in MAGIC. G3 Genes 
Genomes Genet 4(9):1569–1584

Verbyla AP, George AW, Cavanagh CR, Verbyla KL (2014) 
Whole-genome QTL analysis for MAGIC. Theor Appl Genet 
127(8):1753–1770

Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, Zhang J, Dun-
well JM, Xu S, Zhang YM (2016) Improving power and accuracy 
of genome-wide association studies via a multi-locus mixed linear 
model methodology. Sci Rep 6:19444

Xavier A, Xu S, Muir W, Rainey K (2015) NAM: association studies in 
multiple populations. Bioinformatics 31(23):3862–3864

Yu J, Buckler ES (2006) Genetic association mapping and genome 
organization of maize. Curr Opin Biotechnol 17(2):155–160

Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design 
and statistical power of nested association mapping in maize. 
Genetics 178(1):539–551

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	WGNAM: whole-genome nested association mapping
	Abstract
	Key message 
	Abstract 

	Introduction
	Materials
	Plant material
	Markers and map
	MR-NAM founder probabilities calculation
	Phenotyping
	NAM simulated data

	Methods
	The linear mixed model
	The basis of the WGNAM model
	Putative QTL selection for WGNAM
	Test for a putative QTL
	Selection of the first putative QTL
	Selection of additional QTL

	Final WGNAM model
	WGNAM performance evaluation
	Computation

	Results
	WGNAM performance with NAM simulated data
	Phenotypic assessment in an MR-NAM population
	The putative QTL search
	Assessment of the final model
	Putative QTL for plant height

	Discussion
	WGNAM performance with NAM simulated data
	Modeling the NAM population structure
	A whole-genome and multi-marker model
	One-stage approach
	Plant height QTL for wheat
	Conclusion

	Acknowledgements 
	References




