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A B S T R A C T

Due to the worldwide population growth and the increasing needs for sugar-based prod-

ucts, accurate estimation of sugarcane biomass is critical to the precise monitoring of sug-

arcane growth. This research aims to find the imperative predictors correspond to the

random and fixed effects to improve the accuracy of wet and dry sugarcane biomass esti-

mations by integrating ground data and multi-temporal images from Unmanned Aerial

Vehicles (UAVs). The multispectral images and biomass measurements were obtained at

different sugarcane growth stages from 12 plots with three nitrogen fertilizer treatments.

Individual spectral bands and different combinations of the plots, growth stages, and nitro-

gen fertilizer treatments were investigated to address the issue of selecting the correct

fixed and random effects for the modelling. A model selection strategy was applied to

obtain the optimum fixed effects and their proportional contribution. The results showed

that utilizing Green, Blue, and Near Infrared spectral bands on models rather than all bands

improved model performance for wet and dry biomass estimates. Additionally, the combi-

nation of plots and growth stages outperformed all the candidates of random effects. The

proposed model outperformed the Multiple Linear Regression (MLR), Generalized Linear

Model (GLM), and Generalized Additive Model (GAM) for wet and dry sugarcane biomass,

with coefficients of determination (R2) of 0.93 and 0.97, and Root Mean Square Error (RMSE)

of 12.78 and 2.57 t/ha, respectively. This study indicates that the proposed model can accu-

rately estimate sugarcane biomasses without relying on nitrogen fertilizers or the satura-

tion/senescence problem of Vegetation Indices (VIs) in mature growth stages.

� 2022 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of

KeAi. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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1. Introduction

Nowadays, confronting the demands for agricultural products

as the world population increases is a major challenge. Sugar-

cane, a perennial crop suitable to grow in tropical and sub-

tropical areas contributes to nearly 80% of the global sugar-

based products [1]. Farmers together with food industries

are seeking to monitor sugarcane growth in an accurate and

efficient way to ensure the quality and quantity of yields

before harvesting [2]. Biomass is crucial for the monitoring

of crop growth and yield prediction [3]. Accurate estimation

of biomass through a precise and non-destructive way

requires data on the crop status with high spatial and tempo-

ral resolution [4].

The recent advancements of remote sensing techniques

have proved the capability in the estimation of sugarcane bio-

mass [5]. Despite the widespread use of satellite-based data

for large spatial coverage [6-9], there are some concerns about

the low spatial–temporal resolution, the high cost, and the

weather constraints of monitoring biomass at the regional

scale [10]. The Unmanned Aerial Vehicle (UAV) platform has

been broadly employed to estimate sugarcane biomass

because of its advantages, such as low operation cost, high

spatial resolution (<10 cm), and high temporal frequency

[2,11–14]. Although these models have proven to be reliable

in predicting sugarcane biomasses at the field or block level,

they have not been investigated at the finer scales. This is a

critical issue that cannot be ignored since sugarcane produc-

tion varies not only seasonally and geographically but also

within crop rows.

In addition to a remote sensing platform, various regres-

sion methods have also been implemented to stablish crop

biomass estimation models. Multiple Linear Regression

(MLR) is the most widely used conventional statistical regres-

sion method for determining a fixed linear relationship

between remote sensing data and biomass contents [15,16].

Furthermore, machine learning methods such as Artificial

Neural Network (ANN), Support Vector Machine (SVM), and

Random Forest Regression (RFR) models are being employed

more frequently to improve the nonlinear estimation capabil-

ity of the crop biomass models [15,17–20]. However, most of

these methods have attempted to define the relationships

between the crop variables as predictor variables (e.g., spec-

tral information) and response variables (e.g., biomass) [21].

The specific geographical and environmental factors that

affect canopy reflectance, such as plant species, growth stage,

and location, could not be taken into account by these meth-

ods [22,23]. The performance of the existing biomass estima-

tion models varies depending on random factors (e.g., crop

growth stage, fertilization level, site location, and plant spe-

cies) [21], since the fixed-effect regression models do not con-

sider these factors [24]. The mixed-effect regression models,

which may generalize correlation models to various crop

types and growth phases, can solve this challenge for a wide

range of applications [25–27].

One prominent challenge in the application of the mixed-

effect models is the choice of the appropriate random effects.
The random effects are usually assigned to grouping factors

as a sample of all possibilities for which we tend to generalize

results to a whole population based on the representative

sampling [28]. This grouping can directly affect the perfor-

mance of the mixed-effect models in highly structured data

with correlated observations and repeated measurements

taken on the same experimental unit [29,30]. The analysis of

repeatedly acquired agricultural data from the same sample

units at different time periods, referred to as longitudinal

data, could demonstrate how the sample units evolve over

time. The mixed-effect models can quantify the relationships

between independent and dependent variables in longitudi-

nal studies with repeated measurements, by considering both

fixed and random effects appropriately [27]. However, to the

best of our knowledge, no previous study has inspected the

effect of various random effects on biomass estimation in a

sugarcane field.

In addition to selecting a suitable regression method and

its parameters, the finding of a proper subset of explanatory

variables is an important step toward establishing and deter-

mining the accuracy of the biomass estimation model. There

are many explanatory variables retrieved from remote sens-

ing and ground data, such as the reflectance of spectral

bands, textural information, and vegetation indices (VIs),

which can be used for biomass estimation [15]. VIs such as

the Normalized Difference Vegetation Index (NDVI) [31], have

been repeatedly used to measure biomass [1,32], and provided

reliable information about crop growing status [33,34]. San-

karan et al. [35] estimated the dry biomass of beans by using

the Green Normalized Difference Vegetation Index (GNDVI)

and reported a high correlation between the mean GNDVI

and the biomass. Rahman and Robson [36] also used the

GNDVI extracted from multi-temporal satellite data to predict

sugarcane crop yield in Bundaberg, Australia. Hunt et al. [37]

presented a good correlation between biomass contents and

GNDVI using UAV-based multispectral imagery. The Normal-

ized Difference Red Edge (NDRE) as a variant of the NDVI cal-

culated by substituting Red bandwith Red Edge (RE) band, has

been identified as the sugarcane biomass predictor with the

highest sensitivity [38].

Contrary to the broad applicability of VIs, the saturation

problem known as the imbalance between the Red and

Near-infrared (NIR) reflection that occurs because Red reflec-

tance becomes flat when the leaf area index is high, may lead

to inaccurate biomass estimation especially at the peak stage

of crop growth and on large biomass crops, such as sugarcane

or mature crops [39]. Leaf senescence also makes the use of

VIs difficult because the photosynthetic capacity of leaves

declines with time during the late cropping season [40,41]

and, therefore, the correlation between a VI and biomass is

low. To overcome this issue, we focus directly on the reflec-

tance measurements in five spectral bands, namely Red,

Green, Blue, NIR, and RE from a multi-temporal of UAV-

based multispectral images, rather than using a particular VI.

Selection of the most efficient spectral bands as explana-

tory variables is important in order to remove any irrelevant

variables, reduce the dimension of variable space, and
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increase model performance [42]. Stepwise regression meth-

ods have been widely used in many studies to model biomass

yield [43], in order to simplify models with the minimum

number of explanatory variables. However, they are not

appropriate when the number of variables are excessive, or

observations are lack [44]. The variable selection methods

based on the Akaike Information Criterion (AIC) have been

used to overcome the weaknesses of the stepwise selection

methods [42]. They can be applied to the mixed-effect mod-

els, linear and non-linear models, and normally or non-

normally distributed data [45].

In this research, similar to the work of Wang et al. [21], we

attempted to develop a mixed-effect model based on the

ground measurements coupled with the remote sensing

observations. The multi-temporal UAV images with a high

spatial resolution (<3 cm) were assessed in this study to

develop a more accurate biomass estimation at the row level.

Additionally, we tested the model’s performance for different

random effects and extended to the model selection strategy

to use prominent spectral bands in order to improve the accu-

racy of biomass estimation in the sugarcane field. We used

the ground measurements of the wet and dry biomasses

and the UAV images, at five separate months from different

stages of sugarcane growth, from 12 plots treated with three

different nitrogen fertilizers, over the complete 2018–2019

growth cycle. Because the plant’s water content is directly

influenced by soil moisture and the weather, dry biomass is

also considered as a more reliable measure than wet biomass

in yield prediction [46]. Nitrogen fertilizer treatments play a

key role in the biomass contents, and the crop growth conse-

quently. Hence, the availability of information regarding the

applied nitrogen fertilizer treatments could influence the

accuracy of the biomass estimation. Thus, we investigated:

(1) the significance of random factors to the sugarcane bio-

mass estimation and the performance of the proposed model.

This would contribute to bridging the knowledge gap in the

use of the appropriate random factor in a longitudinal sugar-

cane biomass estimation study that utilizes repeating mea-

surements; (2) the possibility to estimate the biomass

without any knowledge of the applied nitrogen fertilizer to

the crop; (3) the efficiency of the extracted spectral informa-

tion in estimating the sugarcane biomass; and (4) the most

appropriate explanatory variables from the spectral informa-

tion to address the VIs’ saturation problem at the peak growth

and the leaf senescence at the harvest stage.

2. Materials and methods

2.1. Study area

Sugarcane grows best in well-drained/fertilized soil with

around 1 500 mm of annual rainfall or irrigation in a sunny

and warm climate. These ideal conditions can be found along

a 2 000 km strip of land on the east coast of Australia, with

about one-third of the sugarcane farms located in the north-

ern Queensland. This research was carried out at an existing

experimental site where different nitrogen fertilizer manage-

ment practices were trialed for sugarcane farming in the

Bundaberg region, Queensland (152� 240 E, 24� 500 S, see
Fig. 1). Bundaberg has a subtropical humid climate with hot,

rainy summers and mild, dry winters, and accounts for about

28 percent of the total sugar output in Australia [47]. The aver-

age yearly precipitation is 1 143 mm which is mostly from

October to March. The average daily temperature ranges from

9.9 �C to 30.3 �C.
Sugarcanes of the Q242 variety were planted in November

2015. The nitrogen fertilizer experiment was established in

December 2016, with 12 treatments arranged in 48 plots in a

randomized block design with 4 replicates [48]. Each plot is

approximately 21 m long and 11 m wide, with six crop rows

spaced by 1.83 m between rows and plots.

2.2. Field measurements

Sugarcane samples were collected from 12 out of the 48 plots

(Fig. 1) to measure the dynamics of plant biomass and nitro-

gen uptake in 3 different treatments (for details see Table 1)

during the 2018–2019 crop growing season [48]. Wet and dry

biomass samples were collected at different stages of sugar-

cane growth to observe the temporal variation from tillering

to mature crop (Table 2). Since this is the third ratoon crop,

there is no germination and establishment phase; only tiller-

ing, ground growth, and ripening phases are present. These

data serve as a source of ground truth for adjusting and vali-

dating biomass estimating models. The UAV imagery was

then acquired for these plots at dates close to the plant sam-

pling events. The time intervals (5–8 days except the first

sampling) between the two data collection methods are short

in comparison to the nine-month span of all data collection

(January to September), hence such a discrepancy is assumed

to not affect the conclusions of the study.

As each plot had six rows, Rows 2 to 5 were assumed to be

equally representative of the crops in the same plot, whilst

Rows 1 and 6 may be affected by fertilizer contamination of

the neighboring plots and, thus, were excluded from the anal-

ysis. Rows 2 and 5 were sampled for the ground measure-

ments in January, February, April and June 2019, and Rows 3

and 4 remained intact until the final harvest date. As these

central two rows had not been affected by the in-season sam-

pling, they were assumed as the best representatives of the

crops at the harvest season (September 2019).

The plant samples were taken on six occasions from Jan-

uary to September 2019 throughout the cropping season.

From January to June 2019, the aboveground plant samples

were taken from a 1 m section in Rows 2 and 5 of each plot.

The number of plants and the total biomass weight in each

section were recorded. In September 2019, the crops were har-

vested from two 5 m sections in the middle two rows to

weight the wet biomass. Immediately after the total biomass

weighing during the harvest, about 1–20 stalks (usually 10

each from each row) were randomly selected and segregated

into stalks and cabbage/leaves. The stalks and cabbage/leaves

wereweighed separately, and then crushed and cut into small

pieces using a mulcher, subsampled, and dried at 60 �C for

more than 48 h for determination of water contents. Wet bio-

mass yield in each plot was calculated as the sum of fresh

stalk and leaf/cabbage, corrected for the crop density (number

of stalks per meter measured over a 10 m section in Row 3 or



Fig. 1 – Sugarcane field distribution in Australia (left) and the study area (right).

Table 1 – Specifications of the nitrogen fertilizer treatments.

Nitrogen fertilizer treatment Fertilizer ratio Nitrogen rate/(Kg/ha)

Treatment 1 Control 0
Treatment 3 Urea 130
Treatment 9 75% Polymer-coated urea + 25% urea 130

Table 2 – Dates of data collection.

Survey number Plant sampling date UAV-survey date Sugarcane growth phase

1 03 January 2019 31 January 2019 Tillering
2 04 February 2019 10 February 2019 Tillering
3 08 April 2019 31 March 2019 Ground growth
4 18 June 2019 11 June 2019 Ground growth
5 24 September 2019 29 September 2019 Ripening
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4). The dry biomass yield was estimated after correction for

water content.

Fig. 1 shows the polygons of the selected plots, which were

generated in ArcMap (version 10.7.1) to extract the average

numeric values of the pixels that fell inside each crop row.

The zonal statistics function of ArcToolbox was used to gen-

erate a mean of the reflectance values in the Red, Green, Blue,

NIR, and RE from the UAV images. The mean values were

saved in a 2D dataset table along with the wet and dry bio-

masses, which were also measured at the same polygon

areas. Figs. 2 and 3, and Table 3 display the descriptive statis-

tics on wet and dry biomasses, as well as the five spectral

bands throughout the whole season.
2.3. UAV imagery

The multi-temporal collection of multispectral images with a

spatial resolution of 3 cm was acquired at different stages of

sugarcane growth, using a UAV-integrated MicaSense

RedEdge sensor (Micasense, Seattle, WA, USA) on a Phantom

3 Advanced multirotor drone (DJI, Shenzhen, China). The

images were captured at a height of 45 m above ground and

with a parallel camera CCD angle to the ground. The 60%

and 90% of side and forward overlap in all flights respectively,

generated a satisfactory performance of image stitching. A

downwelling light sensor and a Global Positioning System

(GPS) antenna integrated with the sensor were used to collect



Fig. 2 – The summary statistics for (a) wet and (b) dry biomasses over the complete period of data collection.

Fig. 3 – The summary statistics for the five spectral bands (a) over the entire period of data collection and (b) per month with a

zoom-in to the further details.
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Table 3 – Descriptive statistics of wet and dry biomasses and spectral bands across the entire season.

Minimum Mean Maximum Median

Wet biomass/(t/ha) 5.81 74.92 188.74 70.62
Dry biomass/(t/ha) 1.105 20.136 57.734 16.597
Red 0.026 0.047 0.11 0.040
Green 0.063 0.086 0.124 0.084
Blue 0.029 0.036 0.055 0.035
NIR 0.315 0.469 0.522 0.465
RE 0.127 0.165 0.238 0.161
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irradiance and location data while UAV images were collected

between 11 am and 2 pm (�1 to +2.5 hrs. from solar noon) to

minimize any shadowing impact. Afterward, The UAV spec-

tral reflectance was calibrated using the information of irradi-

ance, heading, orientation, and solar angle. The image

acquisition dates are presented in Table 2. The multispectral

images include reflectance measurements in five spectral

bands: Blue (wavelength of 460–510 nm), Green (545–

575 nm), Red (630–690 nm), RE (712–722 nm), and NIR (820–

860 nm). Six ground checkpoints were built and marked with

a Real-time Kinematic (RTK) GPS (Leica Geosystems CS20 con-

troller plus GS14 antenna, Hexagon, Madison, AL, USA) across

the field study (see Fig. 1). Later, the ground checkpoints were

utilized to geo-reference each sample data in the World

Geodetic System (WGS) 1984 projection, Universal Transverse

Mercator (UTM) Zone 55 datum, and then, to register the

ground data with the corresponding multispectral images.

The acquired images were orthorectified and mosaicked

on Pix4Dmapper software package (Pix4D S. A. Prilly, Switzer-

land), designed to process the multispectral images using

computer vision and photogrammetry methods. The GCPs

were used to geo-reference the study area, increase the accu-

racy, and decrease the misalignment on the Pix4D software.

2.4. Analysis of the vegetation indices

An overall analysis of the most frequently used VIs in bio-

mass estimation was conducted to understand the VIs’ per-

formance, concerning the saturation problem at the peak

growth and the senescence problem at the harvest. For this,

the NDVI, NDRE, and GNDVI were derived from the UAV ima-

gery corresponding to each of the growth stages using Eq. (1),

Eq. (2), and Eq. (3). To confirm the limitations of these indices

for biomass estimation of a mature crop, the linear, polyno-

mial (second order), logarithmic, and exponential regression

models were fitted to scatterplots of the VIs versus wet and

dry biomasses. The Coefficient of Determination (R2) and

the Root Mean Square Error (RMSE) were used to analyze

the performance of the four models. The statistical analyses

were executed on RStudio version 1.3.959 [49].

NDVI ¼ ðNIR� RedÞ
ðNIRþ RedÞ ð1Þ

NDRE ¼ ðNIR� RededgeÞ
ðNIRþ RededgeÞ ð2Þ
GNDVI ¼ ðNIR� GreenÞ
ðNIRþ GreenÞ ð3Þ
2.5. Mixed-effect models

To evaluate the capability of the spectral information to esti-

mate wet and dry sugarcane biomasses, we investigated the

relationship between the response and predictor variables

using the mixed-effect models. It is a regression model where

some of the predictor variables are random, and others are

fixed. The matrix form of the models is given in Eq. (4), where

y represents a column vector standing for the response vari-

able, X and Z represent design matrices of the predictor vari-

ables, a is an unknown vector of the fixed-effect regression

coefficients, b represents a vector of the random effects, and

e represents a vector of the residuals [50].

y ¼ aXþ bZþ e ð4Þ
However, different choices of the random effects influence

the performance of the biomass estimation models. For

example, using the minimum level of random effects

decreases data variance due to the smaller number of group

combinations and influences the model’s robustness [21].

For both wet and dry sugarcane biomass estimations, the five

spectral bands were considered as the predictor variables

with the fixed effects and the wet and dry biomasses as the

response variables. The contributions of random factors were

investigated by using different selections of random effects

(as explained in the following Section).

The Analysis of Variance (ANOVA) function is used to test

for the predictor of the fixed-effect variables on the total

abundance of the response variable, taking the optimal ran-

dom effects into account. First, the full model was fitted by

the maximum likelihood and a second model lacking the

fixed effects of the explanatory variables. Then, these two

models for both wet and dry biomass estimations were com-

pared with a likelihood ratio test using the ANOVA function.

2.5.1. Random effects
To analyze the performance of the mixed-effect model in

response to different selections of the random effects, 108

observations from the 12 plots were considered for the esti-

mations of wet and dry biomasses. These were repeated

observations at different growth stages summing up a total

of 24 samples in January, 24 samples in February, 24 samples
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in March and April, 24 samples in June (all from Rows 2 and 5

as described in Section Field measurements), and 12 samples

in September from Rows 3 and 4 (see Section 2.2). Thus, the

plots and the growth stages of the samples are treated as ran-

dom effects with 12 and five levels, respectively. We randomly

selected three of the 12 treatments applied to the experimen-

tal field to generalize their contributions to the sugarcane’s

wet and dry biomasses. In both wet and dry biomass estima-

tion models, the predictor variables represent the spectral

bands, the response variable represents the wet and dry bio-

masses, set as fixed effects. The random effects include dif-

ferent combinations of the plots (ID-12 levels), the data

collection dates from different sugarcane growth stages (M-

five levels), and the nitrogen fertilizer treatments (T-three

levels). The R2 and RMSE were used to compare the predictive

capabilities of the estimation models. The statistical analyses

were executed on RStudio version 1.3.959 [49].

2.6. Analyzing different models

In our analysis, one linear regression model called the Multi-

ple Linear Regression (MLR), and two data-driven methods,

namely the Generalized Linear Model (GLM) and the General-

ized Additive Model (GAM), were used to construct prediction

models and analyze our mixed-effect model. The MLR is a

mathematical algorithm that uses multiple predictor vari-

ables to obtain the response value. Along with their general-

ity, MLR models have been widely used in many biomasses’

estimation and yield prediction studies [51–54]. The GLM is

an extended form of the conventional linear model that

allows the specification of models whose response variable

follows different distributions. We chose poisson regression

among various distributions (e.g., the normal, binomial, pois-

son, and gamma) because of its advantage in fitting the loga-

rithmic model of variables [55]. The GAM developed by

Chambers et al. [56] is essentially an extension of the GLM,

but it is not restricted by linear relationships. It is particularly

useful in revealing the non-linear effects of the environment

variables on the biomass [57]. In this research, the ‘‘mgcv”

package of R is used [58]. The R2 and RMSE between fitted

and observed data were used as accuracy evaluation indices

of these models with the proposed mixed-effect model here.

The statistical analyses were performed on RStudio version

1.3.959 [49].

2.7. Model selection

A proper model selection algorithm is required to identify the

most appropriate explanatory variables from the spectral

information and overcome the saturation and senescence

problem of mature growth stages. In this research, the

‘‘Dredge” function of an R package ‘‘MuMIn” [59] was used

to select the most proper variables for the model, as the

fixed-effects terms. The selected variables were used as the

final wet and dry sugarcane biomass estimation models. This

analysis generated a selection table of models with subsets of

fixed-effects terms in the model by adding and removing the

predictor variables in each step and evaluated the prediction

performance with respect to the AIC. This process was
repeated until all subsets were tested by running all combina-

tions of the variables examined. The number of possible sub-

sets is n2, where n is the number of explanatory variables. All

data processing and statistical analyses were performed

using RStudio version 1.3.959 [49].

2.8. Evaluation of wet and dry biomass models

To evaluate the performance of the final estimation models of

wet and dry biomasses, the correlation test between the pre-

dicted and actual wet and dry biomasses was performed

using the statistical parameters. Adjusted R2 (AR2) and RMSE

were used to evaluate the performance of the final models.

Generally, higher AR2 and lower RMSE values indicate a better

performance of the estimation model.

3. Results and discussion

3.1. Results

3.1.1. Analysis of Vegetation indices
Fig. 4 displays the overall analysis of three VIs versus wet and

dry biomasses, as well as the effect of fertilizer treatments on

biomass values. All three VIs perform similarly in the early to

mid-season which includes January, February, March, and

April, and the variance in crop response to the different treat-

ments is less noticeable than in the late season which

includes June and September. However, by the mid-season,

a substantial difference in crop response to each treatment

could well be noticed. Treatment 9 (the triangle symbol in

Fig. 4) which includes 75% Polymer-coated urea, 25% urea

and 130 kg/ha Nitrogen, has produced the highest amount

of biomass in June and September when compared to other

treatments. In the late season, there was a low correlation

between the NDVI values and the wet and dry biomasses in

September due to the leaf senescence, and equally low corre-

lation between the three nitrogen treatments compared to

the earliest growth stages (Fig. 4(a) and Fig. 4(b)). The NDRE

and GNDVI exhibited higher resistance to senescence than

NDVI in conditions of higher biomass (Fig. 4(c) to Fig. 4(f)).

The included spectral bands in each VI might account for this

performance difference. The Red and NIR bands, as discussed

in earlier sections, may cause biomass estimation to be incor-

rect at the peak growth stage. Therefore, the mathematical

combination of these bands in the NDVI resulted in a lower

correlation between the VI and biomass as compared to the

NDRE and GNDVI, which lack the Red band in their formulae.

However, the senescence and saturation problems were still

present in the samples from June and September measure-

ments, when the crop reached the highest amount of

biomass.

Moreover, the polynomial model resulted in the highest R2

and the lowest RMSE, outperforming the other regression

models (Table 4 and Table 5). A polynomial model regression

of the observed wet and dry biomasses with the NDVI pro-

duced the models with R2 of 0.41 and 0.40, respectively. With

the NDRE values, it yielded R2 of 0.32 and 0.31, respectively.

And with the GNDVI values, the R2 values were 0.32 and

0.30, respectively.



Fig. 4 – The scatterplots of (a) wet biomass vs NDVI (b) dry biomass vs NDVI (c) wet biomass vs NDRE (d) dry biomass vs NDRE

(e) wet biomass vs GNDVI (f) dry biomass vs GNDVI.

Table 4 – Performance of regression models for estimating wet biomass.

VI Model Regression equation R2 RMSE/(t/ha)

NDVI Exponential y = � 63.25e 61.38 x 0.06 48.08
Linear y = 112.63 x � 15.96 0.05 48.47
Logarithm Y = 65.16 ln x + 89.44 0.02 48.92
Polynomial y = 307.81 x2 + 112.44 x + 74.92 0.41 38.15

NDRE Exponential y = � 56.26 e81.29 x 0.06 48.07
Linear y = 111.67 x + 22.03 0.05 48.41
Logarithm y = 30.78 ln x + 98.77 0.03 49.09
Polynomial y = 263.11 x.2 + 115.35 x + 74.91 0.32 41.11

GNDVI Exponential y = � 106.87 e91.48 x 0.06 48.07
Linear y = 161.76 x � 35.77 0.05 48.31
Logarithm y = 89.50 ln x + 109.41 0.04 48.67
Polynomial y = 265.73 x2 + 119.25 x + 74.91 0.32 40.84
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Table 5 – Performance of regression models for estimating dry biomass.

VI Model Regression equation R2 RMSE/(t/ha)

NDVI Exponential y = 4.51e 6.94 x 0.01 16.23
Linear y = 8.83 x + 13 0.05 16.27
Logarithm Y = 0.78 ln x + 20.31 0.01 16.29
Polynomial y = 106.2 x2 + 8.82 x + 20.14 0.40 12.58

NDRE Exponential y = 4.60 e9.62 x 0.01 16.22
Linear y = 9.94 x + 15.40 0.01 16.26
Logarithm y = � 0.88 ln x + 19.46 0.01 16.30
Polynomial y = 92.63 x.2 + 10.32 x + 20.13 0.31 13.54

GNDVI Exponential y = 0.92 e9.67 x 0.01 16.24
Linear y = 13.74 x + 10.74 0.01 16.26
Logarithm y = 3.92 ln x + 21.64 0.01 16.28
Polynomial y = 91.98 x2 + 10.12 x + 20.13 0.30 13.59
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However, the performance of this model proved to be rel-

atively poor in the implementation of the biomass estimation

at the peak growth/harvest stage. These results indicate the

importance of selecting proper spectral information in bio-

mass estimation to overcome the VIs’ high saturation and

less correlation with leaf senescence during the medium to

high crop biomass conditions. Therefore, we employed five

spectral bands individually into the mixed-effect model to

enhance the estimations of both wet and dry sugarcane

biomasses.

3.1.2. Mixed-Effect models
3.1.2.1. Random effects. Identifying the appropriate parame-

ters of the mixed-effect models from which the accurate esti-

mation model can be constructed is the key to success. Eight

selections of the random effects were tested, and the optimal

models were obtained with respect to the maximum R2 and

minimum RMSE (Table 6). For the wet biomass, the combina-

tions of [ID, IDM] and [ID, IDM, M] resulted in themaximum R2

(0.98) and theminimum RMSE (5.41 t/ha). For themixed-effect

models on dry biomass, the maximum R2 (0.97) and the min-
Table 6 – Comparison of the predictive capability of the models

Biomass Random effects selections

Wet Biomass ID
ID, IDM
ID, IDM, M
ID, M
ID, T
ID, IDM, T
ID, IDM, M, T
ID, M, T

Dry Biomass ID
ID, IDM
ID, IDM, M
ID, M
ID, T
ID, IDM, T
ID, IDM, M, T
ID, M, T

Note: ID represents the plots in 12 levels; M represents the data collect

nitrogen fertilizer treatments in three levels; IDM represents the combin
imum RMSE (2.53 t/ha) were achieved by the combination of

[ID, IDM]. Due to the prediction accuracies, the combinations

of [ID, IDM] and [ID, IDM, M] with the highest performance

were concluded as the optimum random factors of wet and

dry biomass estimations on the mixed-effect models.

From the ANOVA results (Table 7), strong evidence of an

association was found in all four models by taking the opti-

mal random effects into account for the explanatory vari-

ables. Improving the AIC parameter and p-value indicates

the impact of modification by the intervention of the explana-

tory variables with fixed effects.

3.1.3. Analyzing different models
By comparing the values of R2 and RMSE, the proposedmixed-

effect models for both wet and dry biomasses exhibited sig-

nificantly better performance compared to the MLR, GLM,

and GAM models (Fig. 5 and Fig. 6). The R2 values for both

wet and dry biomass estimations were remarkably similar,

with 0.98 and 0.97, respectively. In comparison to the three

other techniques, the RMSE values of wet and dry biomass

estimations reduced to 5.6 t/ha and 2.62 t/ha, respectively.
.

R2 RMSE/(t/ha)

0.60 23.65
0.98 5.41
0.98 5.41
0.92 12.67
0.63 23.52
failed to converge
failed to converge
0.92 12.81
0.54 7.96
0.97 2.53
0.97 2.62
0.89 4.94
0.60 7.87
failed to converge
failed to converge
failed to converge

ion dates from different sugarcane growth stages; T represents the

ation of the plots and the growth stages.



Table 7 – Results of a likelihood ratio test using the ANOVA function.

Models AIC p-value

wet biomass � random effects (ID, IDM) 994.63 �
wet biomass � fixed effects + random effects (ID, IDM) 985.02 0.001**
dry biomass � random effects (ID, IDM) 798.78 �
dry biomass � fixed effects + random effects (ID, IDM) 775.22 2.907e-06***
wet biomass � random effects (ID, IDM, M) 908.44 �
wet biomass � fixed effects + random effects (ID, IDM, M) 905.91 0.01*
dry biomass � random effects (ID, IDM, M) 709.69 �
dry biomass � fixed effects + random effects (ID, IDM, M) 708.45 0.04*

Note: Significance levels are marked as 0 < p-value < 0.001 (***), 0.001 < p-value < 0.01 (**), and 0.01 < p-value < 0.05 (*).

Fig. 5 – The Coefficient of Determination (R2) of wet and dry

biomass for the four regression models.

Fig. 6 – The Root Mean Square Error (RMSE) of wet and dry

biomass for four regression model.
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Both combinations of [ID, IDM] and [ID, IDM, M] produced the

similar performance of wet and dry biomass estimations on

the model. As a summary, in the associated Figures, we just

displayed the outcome of the [ID, IDM, M] combination.

3.1.4. Model selection
The proposed mixed-effect models which were constructed

based on (ID, IDM) and (ID, IDM, M) as random effects were
used to extend the model selection approach to the explana-

tory variables. When the combination of [ID, IDM] was incor-

porated as a random effect, the model selection resulted in

singularity. To prevent this, the combination of [ID, IDM, M]

with equally high predictive performance was chosen to enter

the model selection. The AIC values were used as a criterion

for choosing the best explanatory subsets among the spectral

bands in the proposed models. A lower AIC implies that the

model is the most reliable. Tables in Appendix illustrate the

selection results for wet and dry biomasses, respectively,

starting with the full data set of the spectral bands.

By using the full data set, the result for the wet biomass

presented an AIC of 933.0. After analyzing all possible combi-

nations (Appendix Table A1), Red and RE bands were excluded

from the best model, and the AIC value improved to 930.8,

meaning that Green, Blue, and NIR bands were the optimal

spectral value. Eq. (5) shows the final selected spectral bands

that are more suited to describe the relationship between

spectral information and wet biomass based on the mixed-

effect model with ID, IDM, and M as random effects. In this

equation BW stands for the wet biomass, and G, B, and NIR

represent the Green and Blue, Near Infrared bands,

respectively.

BW ¼ �45:13� 1301:00Gþ 4322:50Bþ 161:79NIR ð5Þ
The model selection analysis for the dry biomass was

examined with a full set of spectral bands and 32 different

combinations of the bands (Appendix Table A2). For the

best-selected model with ID, IDM, and M as random effects,

when the Red and RE bands were removed the AIC improved

from 709.5 at the initial step to 706.1. As for Eq. (3), the final

combination of the Green, Blue, and NIR bands will reflect

the relationship between the spectral information and the

dry biomass. In the formula given in Eq. (6), BD stands for

dry biomass.

BD ¼ �10:52� 298:21Gþ 901:85Bþ 53:16NIR ð6Þ
3.1.5. Evaluation of wet and dry biomass models
After the model selection, we obtained two estimation mod-

els with the selected spectral bands as the fixed effects, and

the combination of ID, IDM, and M as the random effects

for wet and dry biomasses as shown in the Eq. (5) and Eq.

(6). Fig. 7 presents the performances of the two proposed

models, expressed by scatterplots between the observed and

predicted values of the wet and dry biomasses. The R2 values

and the RMSE show the potential of the obtained models to



Fig. 7 – Scatterplots of predicted vs actual a) wet biomass and b) dry biomass values.
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predict wet and dry biomasses by using the selected spectral

bands.

3.2. Discussion

The main purpose of this research was to develop the best-fit

model with respect to sugarcane properties and the collected

data structure to enhance the accuracy of sugarcane’s wet

and dry biomass estimations. Four research questions were

intended to be answered in this research: 1) How can intro-

ducing proper random effects related to the sugarcane prop-

erties and the collected data structure affect the model

performance? 2) Is it feasible to estimate biomass without

prior knowledge of the applied nitrogen fertilizer treatments?

3) Are the extracted spectral bands efficient in estimating the

sugarcane biomass; and 4) Which are the most appropriate

spectral bands of multispectral images for the sugarcane bio-

mass estimation?

The correlation between variables in the repeated mea-

surements is high, in terms of data collection and the crop

properties, which brings complexities to the development of

the estimation model [29]. In comparison to other models,

the mixed-effect model is a robust technique for dealing with

studies on highly structured data with repeated measure-

ments [25,60]. In this research, the linear mixed-effect model

was selected to estimate wet and dry sugarcane biomasses

due to its generalization capability compared to other types

of mixed-effect models [61]. The model’s efficiency was

improved after the incorporation of the correct random

effects, which depended directly on the sugarcane properties,
the data structure, and objective analysis. For example, Wang

et al. [21] selected the indicators for rice growth, such as cul-

tivator types, planting patterns, and growth stages, as candi-

dates of random effects to estimate the rice biomass. Here for

addressing the first question, we examined eight separate

selections of random effects along with ID, M, and T as the

important indicators of the crop properties and the data

structure to see what the most appropriate random effects

are for correctly estimating the sugarcane growth parameters.

These variables (ID, M, and T) were chosen as candidates of

the random effects to cluster our data to the generally homo-

geneous groups. For instance, the ID variable presents the cor-

relation for the measurements collected from the same plot.

The IDM variable specifies this correlation at the row level

for the samples taken from the same plot at the same growth

stage. The sugarcane growth stage (M) indicates that the mea-

surements taken from the same growth stage have a higher

probability to be correlated. The results we present here indi-

cate that for both wet and dry biomass estimations the

mixed-effect models with [ID, M, IDM] and [ID, IDM] outper-

formed the rest of the models (Table 6). Since the models with

less random effects (ID and IDM) failed to converge by the

model selection strategy, we concluded the proposed models

with more random effects (ID, IDM, M) are preferable in this

research. Therefore, a mixed-effect model with fewer random

effects is not necessarily more efficient, due to a smaller

number of levels, which results in more observations per level

as concluded by Wang et al. [21]. As previously mentioned,

the crop properties and the data structure are critical to group

observations in terms of random effects. The crop height as a
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significant crop property allows researchers to investigate the

development dynamics of various crop varieties under a vari-

ety of environmental conditions and agricultural manage-

ment. Therefore, as a future study recommendation, Digital

Surface Model (DSM)-derived crop height based on the

multi-temporal UAV imagery might improve the performance

of the biomass estimation model.

The importance of the second question is the nitrogen fer-

tilizer treatment caused differences in wet and dry sugarcane

biomasses and consequently in crop growth as presented in

Fig. 4 and Tables 4 and 5. The biomass content at each growth

stage significantly changed depending on the type of the

applied nitrogen fertilizer treatment. Regarding this, intro-

ducing the T variable to the proposed model could be a neces-

sity to estimate biomass. Generally, the T variable selection as

a fixed or random effect is subject to the aim of the study.

When T is treated as a fixed-effects factor, it is difficult to

draw general inferences for other treatments which are not

included in the model. It is only possible to compare applied

T to one another and the different impacts on crop growth.

On the other hand, if T is considered a random effect, the

results could be generalized to all treatments. In this

research, T was used in four of the random-effect selections

to examine whether we could estimate sugarcane biomass

efficiently using the model without utilizing the T variable.

Then, we aimed at generalizing the obtained estimationmod-

els for any other type of nitrogen fertilizer treatment, in the

future. Regarding the comparative analysis of the predictive

capability was performed between all eight selections of ran-

dom effects shown in Table 6, the proposed models excluding

the T variable performed better than the models including T.

Therefore, the proposed models can be considered as an effi-

cient, sufficient, and effective way to estimate wet and dry

sugarcane biomasses without prior knowledge of the applied

nitrogen fertilizer. However, in the final proposed sugarcane

biomass estimating models, ID and M made a significant con-

tribution. Therefore, in order to use this model in practice, the

location and growth stage of the crop must be determined

first. It is simple to assign a local ID for each crop plot in a

row and plot-level studies, or a local field ID for field-level

estimation of crop biomass in any region/country of the

world, in order to distinguish between crop locations and

account for their effects in the final estimation model. The

growth stage might change depending on geographical region

or sugarcane variety. In such a scenario, even if the growth

stage information is not accessible from ground observations

records, it may be simply identified based on the time of data

collection. In future studies, the model will be employed to

develop estimating models at various scales, such as block

or field levels, in other locations and for diverse sugarcane

species.

The efficiency of the proposed models was proved by the

comparative analysis in terms of R2 and RMSE between the

proposed models and three baseline models (Fig. 5 and

Fig. 6). The results also addressed the third question that

the UAV-based spectral bands can be successfully applied to

prevent the senescence and saturation problem with the VIs

and enhance the accuracies of wet and dry sugarcane bio-
masses. The last question of this research was addressed

regarding the results of the model selection in terms of the

AIC parameter. The results show the selected spectral bands

can be successfully applied to wet and dry sugarcane bio-

masses. These selected bands not only obtained the equal

accuracy compared with the mixed-effect models using all

five spectral bands but also removed the redundant spectral

bands. As a result, the developed models here can enhance

the accuracies of the wet and dry sugarcane biomass estima-

tions. It is likely that different results will obtain in other sug-

arcane growth cycles or types to those identified here. Further

research with the abundance of data will tell how these mod-

els differ on other sugarcane growth cycles and types. Fur-

thermore, the abundance of data will enable machine

learning methods to be used to evaluate the performance of

the suggested model here. Our intention is to pursue further

research in this aspect in the future. It should be also noted

that considering the nitrogen fertilizer treatments as a

fixed-effects factor in the model can provide valuable infor-

mation for analyzing and comparing the effects of each treat-

ment on crop growth.

4. Conclusions

In this study, we developed the best-fit mixed-effect models

in terms of fixed and random effects to improve the estima-

tions of wet and dry sugarcane biomasses in comparison with

three baseline methods (MLR, GLM, and GAM). The measure-

ments of the plant biomass and the UAV-based multispectral

imagery at different crop growth stages in the experimental

sugarcane field with different nitrogen fertilizer treatments,

were conducted to model the biomass estimation. The

mixed-effect models outperformed the other models for both

wet and dry biomass estimation, with the highest R2 and low-

est RMSE. The contributions of various random effects regard-

ing the sugarcane properties and the collected data structure

were investigated in the proposed mixed-effect models. The

model selection strategy was extended to the models to ana-

lyze the most suitable spectral information as fixed effects to

avoid the insufficient efficiency of the VIs in biomass estima-

tion of a mature crop in the harvest time. The results showed

that throughout the season, the Green, Blue, and NIR spectral

bands correlated significantly with biomass parameters (wet

and dry), while three selected VIs (NDVI, NDRE, and GNDVI)

have been weakly associatedwith biomass parameters during

the peak growth/harvest stage. In summary, the study indi-

cated that the wet and dry sugarcane biomasses can be effec-

tively estimated using the proposedmixed-effect models here

without prior knowledge of the applied nitrogen fertilizer

treatment on the crop. These findings can further serve as a

useful reference for the prediction of sugarcane crop yield

in various nitrogen applications.
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Blue Band NIR Band RE Band AIC

4 322.50 161.79 � 930.80
4 295.75 161.34 865.05 930.97
3 708.77 177.45 � 932.61
4 345.18 160.06 873.04 932.97
3 630.40 147.52 �479.50 934.26
3 367.94 � � 935.05
� 211.51 � 935.12
3 353.66 � 849.65 935.25
2 400.71 118.23 � 935.35
2 575.34 178.04 �480.73 935.59
� 170.03 � 935.61
5 240.89 � 1 118.88 935.71
� 204.14 �306.66 936.09
4 467.02 � � 936.49
2 077.29 � � 936.65
� 206.45 413.34 936.73
1 386.27 146.65 � 936.74
2 825.56 � �311.77 937.24
2 317.61 � 938.62
3 280.92 � �324.32 939.12
� � � 939.29
� � � 940.89
� � �63.52 941.22
� � 601.56 942.07
� � � 942.56
� 78.33 � 943.24
� � 196.89 943.67
� � 944.24
� 73.50 184.30 944.48
� � 889.95 944.51
� 75.34 � 945.01
� 76.46 914.10 945.23



Table A2 – The model selection results for dry biomass.

Model Number Intercept Red Band Green Band Blue Band NIR Band RE Band AIC

1 �10.52 � �298.21 901.85 53.16 � 706.06
2 �16.13 217.62 � � 57.71 � 706.17
3 �9.01 330.38 �218.74 � 72.19 � 706.30
4 �8.33 333.02 � � 71.92 �118.65 706.52
5 �15.95 � � 466.02 43.07 706.88
6 �9.74 � � 796.84 50.68 �130.67 707.03
7 �11.48 177.31 �291.20 524.02 65.35 � 707.49
8 5.28 � � � 35.56 � 707.92
9 �11.55 � �388.98 896.67 53.20 54.65 707.97
10 �10.28 225.38 � 352.17 66.77 �139.53 708.10
11 �16.75 194.67 � 63.12 56.39 708.15
12 �8.52 335.53 �164.67 � 72.66 �34.03 708.29
13 �11.56 175.74 �299.41 526.90 65.25 4.90 709.49
14 2.26 � � � 35.10 18.94 709.87
15 3.91 � 16.70 � 35.29 � 709.92
16 21.66 � � � � � 710.44
17 9.55 � � 317.33 � � 710.95
18 2.18 � �124.43 � 35.54 83.43 711.73
19 4.12 �158.25 � 673.41 � � 712.15
20 19.06 50.48 � � � � 712.16
21 15.24 � � � � 37.56 712.17
22 16.61 � 56.34 � � � 712.26
23 13.18 � �97.19 450.36 � � 712.64
24 12.42 � 401.58 � �35.56 712.81
25 8.63 �210.09 �164.75 1012.12 � � 713.32
26 7.83 �175.60 � 835.09 � �52.52 713.84
27 15.57 34.59 � � � 25.17 714.07
28 16.69 39.91 32.46 � � � 714.11
29 15.27 � �60.71 � � 69.20 714.13
30 12.18 � �187.89 445.78 � 54.44 714.55
31 5.80 �235.37 �373.81 1069.83 � 120.83 714.97
32 15.60 34.38 �59.24 � � 56.10 716.03
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