CSIRO PUBLISHING

Australian Journal of Botany, 2020, 68, 557573
https://doi.org/10.1071/BT20066

Spatial extent of invasiveness and invasion stage categorisation
of established weeds of Queensland, Australia

Olusegun O. Osunkoya AD - Claire Lock™®, Joshua C. Buru"® <, Brad CrayA

and Moya Calvert”

Alnvasive Plant and Animal Science Unit, Biosecurity Queensland, Department of Agriculture and Fisheries,
EcoSciences Precinct, Dutton Park, Brisbane, Qld 4102, Australia.

BWeed Risk Consultant, Invasive Species, Biosecurity Unit, NSW Department of Primary Industries PMB 2,
Grafton, NSW 2462, Australia.

“School of Biology and Environmental Science, Faculty of Science & Engineering,
Queensland University of Technology, Gardens Point Campus, Brisbane, Qld 4000, Australia.

PCorresponding author. Email: olusegun.osunkoya@daf.qld.gov.au

Abstract. The risk posed by invasive alien species is determined primarily by two factors: distribution (occupancy)
and abundance (density). However, most ecological studies use distribution data for monitoring and assessment
programs, but few incorporate abundance data due to financial and logistical constraints. Failure to take into account
invaders’ abundance may lead to imprecise pest risk assessments. Since 2003 as part of the Annual Pest Distribution
Survey (APDS) exercise in the state of Queensland, Australia, government biosecurity officials have collected data on
distribution and abundance of more than 100 established and emerging weeds. This data acquisition was done at spatial
grid sizes of 17-50 x 17-50 km and across a very broad and varied geographical land area of ~2 x 10° km>. The
datasets provide an opportunity to compare weed dynamics at large-medium spatial scales. Analysis of the APDS
datasets indicated that weed distributions were highest in regions along the southern and central, coastal parts of
Queensland, and decreased in the less populated inland (i.e. western) and northern parts of the state. Weed abundance
showed no discernible landscape or regional trends. Positive distribution—abundance relationships were also detected at
multiple spatial scales. Using both traits of weed abundance and distribution, we derived a measure of invasion severity,
and constructed, for several (64) weed species, ‘space-for-time’ invasion curves. State-wide and in each of
Queensland’s 10 regions, we also categorised the invasion stages of these weeds. At the grassroots of local
government area or regional levels, the derived invasion curves and stage categories can provide policy direction
for long-term management planning of Queensland’s priority weeds.
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Introduction

Biological invasion is a key component of human-induced
global change (Mack et al. 2000; Ehrenfeld 2010), and must be
proactively and adaptively managed (Auld and Johnson 2014;
Booy et al. 2017; Osunkoya et al. 2019a, 2019b). Successful
management of invasions is influenced by knowledge of
spatial extents or scales, impacts, and identification of the
key drivers promoting invasiveness (Pysek ez al. 2008, 2009;
Vaclavik and Meentemeyer 2012; Wilson et al. 2014;
Osunkoya et al. 2019a). Invasiveness itself refers to the
degree at which an invader has become established, spread
and its impact in an ecosystem (Catford ez al. 2012; Lacasella
et al. 2017; Fan et al. 2018).
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Understanding the scale-dependency and the contexts in
which invasion processes operate is challenging. At large
spatial scales (e.g. global, national or state-wide), the
distributions of invasive species are thought to be best
explained by climatic and historical factors (Sutherst 2003;
Freckleton et al. 2005; Bradley 2013). At medium—low scales
(e.g. regional, catchment, farm levels), local factors like
land cover, topography, soil types or human activities
(e.g. disturbance, population size, road networks) play
greater roles in distributions of the invaders (Freckleton
et al. 2005; Froese et al. 2019). Thus through consideration
of multi-level spread patterns, it will be feasible to distinguish
(for a given invader, say in a region) between invasiveness
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factors that favour arrival and colonisation (i.e. distribution)
and those that influence spread and establishment (i.e. increase
in abundance or cover) (Brummer et al. 2013; Akin-Fajiye and
Gurevitch 2018). For example, having many released
individuals per introduction event favours distribution,
whereas multiple introduction events allow environmental
stochasticity to be overcome and hence tend to favour
establishment (van Kleunen et al. 2018). Consequently, the
use of simple occurrence data in species distribution models
and in estimation of spatial spread may not reflect correctly an
invader’s population dynamics, and as such additional
information relating to abundance or density (an indicator
of propagule pressure) may improve our understanding of
factors that influence a species’ invasiveness (Bradley 2013;
Lacasella et al. 2017).

Data for mapping weed spatio-temporal extent and
abundance are drawn from a variety of sources. These include
information from long-term depositories like herbaria,
supplemented with information from local floristic surveys,
published literature, and citizen science databases (Delisle
et al. 2003; Antunes and Schamp 2017). Although these
sources tend to contain substantial information on
distribution, they rarely contain robust abundance data.
Compared with wusing distribution data alone, the
combination of both distribution and abundance data will
generate a more robust invasion curve — an
excellent bivariate indicator of invasiveness and the degree
of disruption of ecosystem function and services (Standards
Australia International Ltd 2006; Fleming et al. 2017).

Abundance data, especially on a medium-large spatial
scale (such as at the regional, state and national levels) are
rarely collected because of logistic and financial constraints
(Bradley et al. 2018). Where such data are collected and
integrated with spatial and temporal data of occupancy and
climate or habitat suitability models, the ensuing distribution-
abundance function is invaluable for mapping invasion stages,
delineating the spatial extent of invasion severity, and
quantification of invasiveness at multiple scales. For
example, Ngugi and Neldner (2017) derived abundance data
from systematic ecological plot data and combined this with
distribution data from herbarium records to assess the invasive
threats of non-native species in two bioregions of Queensland.
Additionally, the two traits of invasiveness (i.e. abundance and
distribution) have been shown to be correlated and hence one
may reinforce or serve as a surrogate for the other, though the
reliability of such a correlation at different spatial scale or in
different types of organisms has often been questionable
(Thompson et al. 1998; Buckley and Freckleton 2010).

Here we explore the Annual Pest Distribution Survey
(APDS) data series — a qualitative medium-large scale
dataset on distribution and abundance of priority weeds
(established and new incursions) of the state of Queensland,
Australia. The APDS data series, initiated in 2003, are
consistent gridded spatial data (or cells), each on 17-50 x
17-50 km area and spanning the entire state. Periodically, the
APDS captures local and regional expert knowledge of ~100
introduced pest plants and animals from on-the-ground local
government and state biosecurity officers in a standardised
form. Information from selected annual (mostly recent)
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surveys can be accessed online from the Queensland Spatial

Catalogue — BQ’s Interactive Weed Map, or as PDF maps

(https://www.daf.qld.gov.au/business-priorities/biosecurity/

invasive-plants-animals/pest-mapping/distribution-maps, accessed

23 September 2020). Aggregate measures of weed invasions

derived from the APDS have previously been used in State of

the Environment reports (e.g. https://www.parliament.qld.gov.
au/Documents/TableOffice/TabledPapers/2019/5619T2204.pdf,

accessed 23 September 2020). In a recent pest risk assessment
project, Osunkoya et al. (2019a) explored the distribution
aspect of the APDS data and found a good agreement in
weed spread between that generated by the datasets and that
obtained from stakeholders’ consultations. Indeed since its
inception, the APDS has been a tool for documenting
distribution and abundance of pests at the state level. We
contend herein that there is also an opportunity to use the
datasets to examine pest spatio-temporal trends and
prioritisation at lower spatial scale levels of region or local
government areas for policy or weed control decisions. Local
and regional species inventories of invaders, such as that of the

APDS, can provide useful information to identify multiple

scale patterns of invader’s presence or dominance, and to test

alternative hypotheses explaining the invasion dynamics
observed.

Our aims, using the weed datasets of the APDS series and
taking into consideration the influence of survey period (year),
regional variation, and differences in species’ intrinsic traits
(e.g. plant life form, life cycle) and historical factors (e.g. time
since introduction, invasion pathway), are to:

(1) examine the patterns of variation (correlation relationship)
between invasiveness traits of weed distribution and
abundance, and the consistency of the trends at different
spatial scales;

(2) construct state-wide and lower level (regional or local
government area) invasion curves for 64 established and
emerging weeds to classify weeds’ invasion stages. Based on
the invasion stage classifications, we then provide state-wide
or regional control and mitigation measures for each of our
focal weeds; and

(3) compare invasion scenarios (i.e. invaders’ distribution)
between a model that takes into account climate
suitability and one that considers the entire landscape as
potentially ‘invadable’ (i.e. open to occupancy or invasion).
To do this, we integrated climate suitability—species
distribution (henceforth the CS-SD) model into the
dataset based on available ‘Eco-climatic Index’ values
(EI) for 38 of our 64 test species (see Kriticos and
Randall 2001; Sutherst 2003), and compared the model
output with that generated from real dataset of spatial grid
cell occurrence (henceforth, the GCO model) sourced from
the APDS (see Gassoé et al. 2012; Wilson et al. 2014 for a
similar treatise). Climate suitability models can potentially
predict areas where future spread is more or less likely, thus
informing policy makers, including land managers, as to
which areas are not currently occupied by an invader and
how best to prepare or mitigate its arrival (e.g. Kriticos et al.
2018; https://www.agrifutures.com.au/wp-content/; https://
www.daf.qld.gov.au/__data/assets/, accessed 13 June
2020).


https://www.daf.qld.gov.au/business-priorities/biosecurity/invasive-plants-animals/pest-mapping/distribution-maps
https://www.daf.qld.gov.au/business-priorities/biosecurity/invasive-plants-animals/pest-mapping/distribution-maps
https://www.parliament.qld.gov.au/Documents/TableOffice/TabledPapers/2019/5619T2204.pdf
https://www.parliament.qld.gov.au/Documents/TableOffice/TabledPapers/2019/5619T2204.pdf
https://www.agrifutures.com.au/wp-content/
https://www.daf.qld.gov.au/__data/assets/
https://www.daf.qld.gov.au/__data/assets/

Weeds spread and invasion stage categorisation

Materials and methods
Study area

The study area (the state of Queensland) lies in north-eastern
Australia (Fig. 1). The average minimum annual temperature
varies from —10.6 to 5.4°C, and average maximum annual
temperature varies from 36.0 to 49.7°C; mean precipitation
ranges from 600 to 780 mm per year (Australia Bureau of
Meteorology, http://www.bom.gov.au/, accessed 8 October
2020). Spanning an area of 1.73 x 10° km? (Fig. 1), the
state of Queensland encompasses significant climatic and
environmental gradients. Consequently, Queensland invasive
flora, just like its native flora, varies considerably between
regions, but is more similar across local government areas
(LGA) within a given region (Osunkoya et al. 2019a).
Established and widespread pest plants and animals are
managed at a regional level in Queensland by local
government authorities. Each of Queensland’s 77 LGAs
belongs to one of 10 regional organisations of councils
(hereafter ‘regions’), which are administrative groupings of
nearby LGA councils that share relatively similar geographic
and climatic features. These regional affiliations (south to
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Fig. 1. Map of Australia (inset) and the state of Queensland showing
the boundaries for all local governments (faint lines) and the 10 regions
(bold lines) of the state. These regional affiliations (south to north) are:
south-east (SEQId), Darling Downs (south-west) (DDSW), Wide Bay
Burnett (WBB), Central Queensland (CQld), Remote Area Planning And
Development (central west) (CWQId), Whitsunday (WHITS), North
Queensland (NQId), North-west Queensland (NWQId), Far-North
Queensland (FNQId), and Torres Strait Islands (TORRES).
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north) are: south-east (SEQId), Darling Downs (south-west)
(DDSW), Wide Bay Burnett (WBB), Central Queensland
(CQId), Remote Area Planning And Development (central
west) (CWQId), Whitsunday (WHITS), North Queensland
(NQId), North-West Queensland (NWQId), Far-North
Queensland (FNQId), and Torres Strait Islands (TORRES)
(see Fig. 1, and supplementary material table 1 in Osunkoya
et al. 2019a; for LGA memberships of each Queensland
region). In this study, to align with previous and sequel
studies (Osunkoya et al. 2019a; O. O. Osunkoya, unpubl.
data), we use regions and the entire state of Queensland to
delineate the two spatial scales in which invasiveness of our
focal invaders are explored.

Data compilation from Queensland APDS series

The oversight and management function of weeds and pest
animals throughout Queensland is conducted by Biosecurity
Queensland (BQ) — a statutory government agency within the
Department of Agriculture and Fisheries. Since 2003 and at the
LGA level, BQ carries out an APDS exercise to collect
information on the distribution and abundance of the most
important established and emerging invasive plant and animal
species in Queensland (~100 species) (https://www.daf.qld.gov.
au/business-priorities/biosecurity/invasive-plants-animals/pest-
mapping/distribution-maps, accessed 13 September 2020). BQ,
in collaboration with on-the-ground local government and state
biosecurity officers, captures landscape, local and regional data on
distribution and abundance of these introduced pests in a
standardised form (Table 1). The biosecurity officers are very
familiar with the locations, extent, and ecology of invaders in their
LGAs and regions. Experts estimated qualitative abundance on a
7-point scale (Table 1) of each invader species on paper maps
within 17-50 x 17-50 km grid cells that were overlaid on the
maps of LGAs or regions they manage, and then digitised their
assessments to create abundance estimates across the whole of
Queensland.

Between 2003 and 2006, each APDS survey exercise
mapped weed distribution and abundance using two grid
sizes across Queensland: 0.167 x 0.167 degree (10 min)
grids (‘small grids’, ~17 x 17 km in area) in coastal areas,
and 0.5 x 0.5 degree (30 min) grids (‘large grids’, ~50 x

Table 1. Density codes and range (%) used for assessment of
abundance of established and emerging weeds of Queensland,
Australia, by the Annual Pest Distribution Survey (APDS) series

Cover  Probable
code range (%)

Explanation

0 - Unsure if the weed exists in the grid cell

1 - No infestation known in the grid cell

2 1-10 Weed occasionally found but localised within the
grid cell

3 11-20 Weed occasionally found but widespread within the
grid cell

4 21-30 Weed common but localised within the grid cell

5 31-50 Weed common and widespread within the grid cell

6 51-75 Weed abundant but localised within the grid cell

7 76-100 Weed abundant and widespread within the grid cell
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50 km in area) in inland areas. From 2007 onward, weed
distribution and abundance were mapped exclusively using the
small grids across the entire state. This provided consistently
finer resolution after 2007, but it created a divide in data
between coastal and inland areas, as well as pre and post
2007 data, thereby limiting opportunities for data comparison
both spatially and temporally. For this reason, for
standardisation, data from the small grids were ‘scaled-up’
to match the format of the large grids. This was achieved by
overlaying the small grids within the large grid template, with
one large grid containing nine small grids. For each species,
presence and abundance (cover scale: 0—7; see Table 1) values
were assigned to large grids using the following rules: first, if a
species was present in one or more of the nine small grids,
then the large grid was listed as having that species present.
Second, the abundance of that species in the large grid was
based on the highest (maximum) cover value recorded in the
nine small grids for that species. As a result, all APDS datasets
included in this study used the large grids (50 x 50 km),
making it possible to directly compare changes in weed
invasiveness over time, across landscapes and at varying
spatial scales. The choice of our spatial grid size also aligns
with a sister study dealing with weed spread dynamics inferred
from herbarium records (O. O. Osunkoya, unpubl. data). Data
cleaning and conversions were conducted on ArcMap (ver.
10.7.1).

For the purpose of this study, we limited our interrogation
of the APDS database to the period of 2006-2014. New data
beyond 2014 are still being compiled and cleaned, and data
custodians (B. Grey, M. Calvert, pers. comm.) advised that
data from 2003 to 2005 lacked internal consistency as the
APDS methodology was then still evolving. It was tempting to
concentrate on the time range of 2007 and beyond as it allowed
the use of only the small grid size of 17 x 17 km across
the entire state. However, such a choice was discounted as it
resulted in a much lower number of species and survey periods
in the datasets, and may lead to low statistical power of many
of the invasiveness traits being investigated. As highlighted
earlier, the APDS record covers at best only the last 20 years,
and hence it is difficult to infer the correctness of a species’
invasion curve from the plot of time against distribution or
abundance for such a limited time-specific dataset. Moser et al.
(2016) and Fan et al. (2018) showed that by replacing ‘time
with space’, the distribution and abundance data from a limited
snap-shot series of years (like that of the APDS) when
combined can infer invasion stage and invasiveness of any
invader. This is the approach we have taken in this work. In the
process, weed occupancy of spatial grid cells (in our case,
~50 x 50 km in size and spread over 1.73 x 10%km? area)
was used as a surrogate for invasion time. In taking this
approach, our notion is that a landscape of sparse or low
weed occupancy implies an early stage of invasion whereas a
landscape of high occupancy correlates with a later stage of
invasion (Moser ef al. 2016; Fan et al. 2018; Osunkoya et al.
2019a). Though not considered explicitly here, we
acknowledge the influence of environmental conditions,
especially moisture availability, as limiting factors on
potential distribution of plant species.
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Weed abundance, distribution, and invasion severity at
regional and state levels

Note that not all the 64 focal weed species are surveyed
each year due to logistic and time constraints. For each
focal species and surveyed period (year), we aggregated its
spatial (grid) distribution and abundance into LGAs, regional
and state-wide datasets. We summarised and presented the
analyses of invasiveness mostly at the regional and state-wide
levels rather than at lower levels of LGASs or individual grids in
view of the large dataset and number of species considered. In
addition, LGAs within each region showed similarity in weed
identity (Osunkoya et al. 20194) —making management decisions
across LGAs within regions to be all encompassing and effective.

Weed abundance

Grid weed density (abundance) estimate was based on a
scale of 0—7 (Table 1), but truncated to a scale of 1-7 as 0 in the
APDS means ‘unsure if the weed exists in a particular grid
cell’. The cover (‘weed abundance’) for each invader is the
median density value of the APDS scale of 1-7 at a given
survey year (f,).

Weed distribution

At the state-wide, regional and LGAs levels, we estimated a
focal weed’s spread (distribution) in two ways: (i) using
observed data as generated from the APDS (i.e. presence of
a weed species in a spatial grid cell if cover code in the range of
1-7 is stated for that species), and (ii) using simulated data
generated by climate suitability modelling from the CLIMEX
software.

(1) Grid cell occupancy (GCO) model: We defined, for each
weed species at survey time (year) ¢, the ‘Probability of
invasion’ as a ratio of cumulative number of spatial grid
cells infested (ny) to total number of ‘available’ grid cells
(Ny) (for our study and at the state-wide level, N, is a
total of 687 of ~50 x 50-km grids) (Table 2). At the
regional level, the total number of ‘available’ grid cells
refers to assigned total number of spatial grids for that
particular region (Table 2). We referred to this approach

Table 2. Number of 50 x 50-km spatial grid cells in the 10 regions of
Queensland, Australia

Number Region Region Number of
abbreviation grid cells

1 Central Queensland CQld 49

2 Central West Queensland CWQId 138

3 Darling Downs-South West DDSW 144

4 Far North Queensland FNQId 97

5 North Queensland NQId 28

6 North West Queensland NwWQId 129

7 South East Queensland SEQId 15

8 Torres Strait Islands TORRES 20

9 Wide Bay Burnett WBB 23

10 Whitsunday WHITS 44
Total 687
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of using APDS dataset to estimate weed distribution as
the grid cell occupancy (GCO) model. This metric, a
crude but informative way to measure the weed’s
importance, describes the proportional area of a region
or of the state actually infested with a weed;

(i) Climate suitability—species distribution (CS-SD) model:
BQ developed weed distributions models for ~60 weed
species for Queensland in the early to mid-2000s using
CSIRO CLIMEX software (https://www.daf.qld.gov.au/
business-priorities/biosecurity/invasive-plants-animals/
pest-risk-assessments, accessed 23 September 2020;
Kriticos and Randall 2001; Sutherst 2003). The
CLIMEX model is a simulation model that infers a
species response to climate in a novel range from its
known distribution in its native range. The model uses
‘survival thresholds’, which determine a species
population growth and survival during adverse seasonal
and inter-annual periods from its known distribution, then
applies these limiting factors to meteorological data from
other parts of the world to generate potential distribution in
another (e.g. invaded) range (Kriticos and Randall 2001;
Sutherst 2003). The model generates an ‘Eco-climatic
Index’ (EI, scaled from 0 to 1) — an overall climatic
suitability of a nominated location for a given organism.
Thirty-eight of our 64 focal species have El values that have
been generated by the CS-SD CLIMEX modelling
exercise. In this CS-SD model, climate suitability
maps are created, consisting of spatial grid cells (or
pixels) whose quantitative values range from 0 to 1.
These values indicate how close the local environment in
a novel range (i.e. Queensland) is to the invader optimal
growth conditions, with higher values standing for the
most suitable areas for invasion. The necessary step to
model weed distribution using this approach generally
consists of choosing a climate suitability threshold
(often EI > 0.10) to separate unsuitable areas (EI
below threshold) where the invader should be absent,
from suitable areas (EI above threshold) where it should
be present. For our focal invader species with hitherto
modelled EI values, we chose a more conservative
threshold of EI > 0.3 (equivalent to very suitable and
suitable environmental envelopes for occupancy). We
then estimated, for each of the 38 invader species with
known EI values, a ‘modelled’ probability of invasion of
a grid cell by the fraction of total grids potentially
suitable for occupancy within a LGA, region or at the
state level.

Weed severity — a product of distribution and abundance

We defined ‘invasion severity’” as the product of
‘probability of invasion’ (weed distribution) and ‘weed
abundance’. This index serves as a proxy to quantify the
intensity of the occupation of an area by a given weed.
This estimation was done only for the GCO model as the
APDS provided real data to derive invasion severity measure.
In estimating invasion severity, we considered both the
distribution and the dominance of the weed in a particular
area (grid, LGA, regional and state wide) (see also Catford
et al. 2012; Pearson et al. 2016; Fan et al. 2018). To compare
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the relative performance of each invader species in a pool of §
species, we standardised the dataset across species by dividing
each invader value with the global (overall) mean value
followed by the log ratio of the estimate (see Colautti et al.
2014). The relative invasion severity values when plotted
against distribution (i.e. proportion of grid cell infested)
often gives a sigmoid or exponential curve, and can be
viewed as a composite ‘space-for-time’ version of the
hypothetical, temporal invasion process (stage) for a
particular region or area (Fan er al. 2018). At the state-wide
level, for each weed, points on the curve represent a region
(with or without survey periods (years) in this study), with low
invasion severity regions appearing on the left and high
invasion severity regions on the right in a sequential order
(i.e. from low to high probabilities).

Statistical analyses

Data were checked for heteroscedasticity of variance. Weed
abundance and invasion severity were normally distributed.
Spatial grid cell occupancy data were skewed and hence log-
transformed; data presented are back-transformed values. A
series of ANOVA and GLM were carried out to detect main
and interaction effects of factors (survey year, region, and
species) on traits of invasiveness. We used parametric and
non-parametric correlation analyses to explore strength of
bivariate relationships. We excluded the TORRES data
from the CS-SD model analyses due to a difficulty in
deriving a reliable estimate of EI index as the region is
made up of series of islands some of which are smaller in
size than our spatial grid cells.

To test for differences in the shape (i.e. frequency
distribution) of the invasion severity between two species or
between two regions, we explored various statistical procedures
(including Q-Q (quantile) plots, Kolmogorov—Smirnov,
interquartile range (IQR), Cramer-von Mises, GLM and
permutation tests (Moser et al. 2016), and eventually settled
on Kolmogorov—Smirnov test (a  distribution free,
non—parametric test-statistic that quantifies the maximum
difference between two empirical curves or distributions).

Derivation of invasion stage categories through a proxy of
grid cells infested (distribution) and invasion severity

As in Fan et al. 2018 and Pysek et al. 2009, classification and
regression tree (CART in SPSS version 25) analysis was
invoked to segment invasion severity into invasion stage
groups or categories. The CART analysis was done at
region and at state-wide levels, and provided an objective
way to classify the invasion severity into invasion stages both
within and between species. The classifier uses the invasion
severity as a response variable, whereas the invasion
probability (weed distribution) and weed abundance,
together with species-specific traits (plant growth form, life
cycle) and species extrinsic traits of invasiveness (time since
introduction (residence time), habitat invaded, origin,
introduction pathway) were the predictor variables. The last
two sets of data were sourced from herbarium records and
from published literature (see Osunkoya et al. 2019a, 2019b
for details).
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At each node of a classification tree and using the CART
tree-growing function of CHAID (Chi-Square automatic
interaction detector), cases (i.e. species or region’s invasion
severity in this study) are split dichotomously to minimise an
error criterion (Breiman ef al. 1984; Fan et al. 2018). The
optimal regression tree model is the one that minimises the
relative cross-validation error-rate, and was generated with
fives nodes, one depth and when the minimum number of cases
(species x year X region) in parent and child nodes were 400
and 200 respectively. The classified outputs (species or
regions) represent different levels of invasion stage at the
survey year periods: species or regions with an invasion
severity in Class I have low invasion stage; those of higher
classes, say III-IV have higher levels of invasion stages. In
other words, these classification outputs of invasion stages can
be equated with weed management options: prevention or
eradication (Stage I), eradication or control (Stage II),
control or containment (Stage III), containment or asset
protection (Stage IV), and asset protection (Stage V)
(Standards Australia International Ltd 2006; Osunkoya
et al. 2019h). CART also generates the importance value of
the independent variables, reflecting the contribution of each
variable stemming from both its role as a splitter and as a
surrogate across all nodes of the tree.

Results

Invasion trend: effects of survey period, regional and
species differences at varying spatial scale

Of the three main factors of species, region and survey year,
the APDS dataset indicated that probability of invasion of
spatial grid cells (i.e. distribution or occupancy), weed
abundance and product of the two (invasion severity) were
minimally (i.e. least) affected by year of survey (Table 3). In
other words, these invasiveness indices varied more
significantly among regions, even where data are analysed
at the individual species level (see Table S1 of the
Supplementary material). The direction of periodic variation
(i.e. from year to year) in the above indices within regions are
fairly consistent (mainly increase), as the interactions of
survey year X region or survey year X species are often
non-significant; also the F-ratio values of these interaction

Table 3.
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effects were relatively low and made minimal contribution to
the overall variation in the dataset (Table 3).

In all and using the APDS dataset, 50/64 species (78.1%) of
our focal species showed regional differences in their
distributions (i.e. in probability of a spatial grid cell
invasion) (Table S1). Using observed grid cell occupancy as
derived from the APDS dataset, the overall (state-wide)
invasion was 1840 =+ 2.5% (Table S2). Grid cell
occupancy values were highest in regions along the
southern and central, coastal part of the state (in the order:
WBB (30.1%) > NQId (25.1%) > CQId (23.7%) > WHITS
(22.2%) > SEQId (21.1%), and decreased as one moves inland
into the western regions (NWQId (15.6%) > CWQId (13.0%)
>> DDSW (7.0%)) and upwards into the northern (TORRES
(12.6%) > FNQId (8.9%) parts of the state (Table S2). The
proportion of Queensland suitable for invasion using the
environmental envelop index (EI >30%) and generated by
CLIMEX modelling (CS-SD model) was much higher (55.2%)
than that derived from the APDS dataset (the GCO model:
18.4%). Using the CS-SD model, highest occupancy values
were predicted for regions in the middle parts of the state. In
general, the order of predicted weed occupancy at the regional
level was WBB (68.1%) > CQIld (64.0%) > CWQId (62.8%) >
WHITS (55.2%) > FNQId (51.2%) > NWQId (47.7%) >
SEQId (47.3%) > NQId (46.9%) > DDSW (45.6%)
(Table S2). Using each region as an entity, a non-significant
positive correlation for weed distribution was detected
between actual counts of spatial grid cells invaded (The
GCO model) and the count of simulated habitat (grid cells)
available for occupation (The CS-SD model) (r=0.47,n =9,
P = 0.21) (Fig. 2a). State-wide and across species, a non-
significant positive correlation in grid cell occupancy
(i.e. distribution) was detected between GCO and CS-SD
models (r = 0.28, n = 38, P = 0.22, Fig. 2b), primarily due
to three outlier species (water lettuce (Pistia stratiotes),
Cabomba (Cabomba caroliniana) and mesquite (Prosopis
spp.) with predicted CS-SD occupancy of >75%; removal
of these outliers resulted in a significant trend (» = 0.46,
P =0.007; Fig. 2b).

In terms of weed abundance, 39/64 (61%) of species
showed regional differences for the trait (Tables 3, S2).
However, there were no discernible geographical trends like
that observed for weed distribution: highest weed abundance

Summary general linear model (GLM) table for influence of main factors of survey year, species, and region as well as their interactions on

probability of weed invasion (distribution), abundance and invasion severity of a spatial grid cell
Databased on Annual Pest Distribution Survey (APDS) datasets of 2006-2014. Probability values of significant factors (P < 0.05) are in bold

Source of variation d.f. Grid cell occurrence model (i.e. using the APDS dataset)

Weed distribution Weed abundance Invasion severity

F-ratio Probability F-ratio Probability F-ratio Probability
Year 5 1.99 0.078 3.41 0.005 0.51 0.772
Region 9 605.73 0 18.68 0 474.85 0
Species 63 259.98 0 30.64 0 141.57 0
Region X species 265 102.7 0 17.75 0 54.34 0
Year x species 185 1.01 0.444 2.3 0 1.64 0
Year x region 45 0.86 0.736 1.25 0.136 1.53 0.03
Error 580 - - - - - -

Total 1153 - -
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Fig.2. Relationship between the grid cell occurrence (GCO) and climate
suitability—species distribution (CS-SD) models in terms of grid cell
occupancy (distribution) for established and emerging weeds of
Queensland at (a) regional (n = 9), and (b) species levels (n = 38). For
(b) only a subset of the 64 species investigated have available eco-climatic
(environmental) index values (n = 35) and hence were considered; also
dashed circle are around three species with predicted high invasion
probability >0.75 by the CS-SD model whereas the observed
occupancy level is <0.2; their removal from the dataset make the
relationship to shift from non-significant (P = 0.22) to being significant
(P < 0.05). APDS, Annual Pest Distribution Survey.

estimates were in WHITS, CWQId, NQId, and lowest values in
DDSW and NWQId (Table S2).

Weed distribution—abundance (D-A) relationships at
multiple spatial scales are illustrated in Fig. 3 and
Table 4. Positive D-A relationship was detected across
species, year and regions (i.e. proportion of grid cells
occupied by each species at each LGA and year plotted
against their respective weed abundance data; Spearman
rank correlation, r, = 0.51, n = 1120, P = 0.001; Fig. 3a).
Within individual region, significant positive D-A correlations
also exist (range of 7, values = 0.210-0.75; range of
n = 33-165, P < 0.05, except for CWQId and TORRES
where respectively marginally significant (P = 0.07) and no
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Fig.3. Plots of weed invasion probability (distribution) as measured by
the proportion of grid cells occupied against weed abundance at multiple

spatial scales of (a) species x region, (b) region, and (c) across species at
the state-wide levels.

trends (P = 0.35) were apparent) (Table 4). Across the 10
regions (i.e. using region as individual entity), the two
invasiveness traits are also positively correlated, but non-
significant (r; = 0.46, P = 0.18, n = 10; Fig. 3b.). At the
interspecific level, the positive D-A pattern was also apparent
and significant (Fig. 3¢). Within species (i.e. at the intra-
specific level), 35 and 5 out of 64 species indicated
significant rg values for the D-A relationship at P < 0.05,
and 0.10 < P > 0.05 respectively (n ranged from 8 to 44 grid
cells per species). We note, however, that four species (bitou
bush, Chrysanthemoides monilifera subsp. rotundata;
Hygrophila, Hygrophila  costata;  blackberry, Rubus
anglocandicans; and devils’s rope pear, Cylindropuntia
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Table4. Strength of linear relationship (Spearman rank correlation)
between weed cell occupancy (distribution) and abundance at each of
the 10 regions of Queensland, Australia
For each region, data have been pooled across all weed species. Significant
differences are indicated: ***, P <0.0001; **, P <0.002; *, P <0.05; and T,
0.10 < P > 0.05; NS, not significant. See Table 2 for a definition of
abbreviations of region names

Region name Grid cell occurrence model

r n P-value

CQld 0.659 123 ok
CWQId 0.212 69 T

DDSW 0.291 132 ok
FNQId 0.606 165 Hok
NQId 0.573 112 ok
NWQId 0.657 95 Ak
SEQId 0.673 168 ok
WBB 0.552 136 HkE
WHITS 0.754 120 ok
TORRES 0.151 33 NS
Overall 0.555 1120 ok

imbricate), defy this positive trend and rather indicated
negative significant trends (O. O. Osunkoya, unpubl. data).

Invasion trend: severity and stage categorisation

Plots of relative invasion severity against the fractions of
grid cells that are presently occupied state-wide and in each
region are respectively indicated in Fig. 4, 5 and S1 of the
Supplementary material. The dynamics of the relationship
varied between regions (test statistics: Kolmogorov—
Smirnov test; Table S3).

At the state-wide level, CART (CHAID option) analysis
splits relative invasion severity values into five nodes, and
hence classification categories (Fig. 4a, b), with mean (s.d.)
invasion severity values of 0.196 (0.09) (Stage I: prevention or
eradication), 0.378 (0.06) (Stage II: eradication), 0.526 (0.07)
(Stage III: control or containment), 0.676 (0.07) (Stage IV:
containment or asset protection) and 0.86 (0.07) (Stage V:
asset protection) (Fig. 4a, b). The division is driven mostly by
grid cell occupancy (i.e. distribution) and to a limited extent by
weed abundance, introduction pathway and time since
invasion (Fig. 4c¢). These classifications (Stages [-V)
respectively correspond to probability of Queensland spatial
grid cell occupation in the range of <0.03, 0.031-0.07,
0.071-0.156, 0.157-0.371, and >0.371 (Fig. 4a, b). Using
these classification intervals, the stages of invasion of 64
weed species (i) state-wide, and (ii) in each of the 10
regions of Queensland are indicated in Tables 5 and S4
respectively. Overall (i.e. state-wide) 3, 15, 30, 11 and 5
(of 64) species can be categorised being in invasion Stages
I, II, I, IV and V respectively. The low species number in
(final) Stage V (5/64 = 7.8%) will suggest that many of the
established species are yet to fill all potential niches in their
novel environment, and hence, further spreads are possible
(see also Fig. 2b).

For our focal weed species, the dynamics of invasion stages
state wide, and in each of the 10 regions of Queensland are

0. O. Osunkoya et al.

very instructive and can guide policy directions in terms of
management options (Fig. 4b, 5, S1; Tables 6, S4). From
Table 6, it can be seen that the inner, western regions of
Queensland (NWQId, CWQId, and DDSW) have sizeable
proportions of their weed species (53—65%) in early stages
of invasion (classification Stages I and II). In contrast, most
coastal regions, except FNQId and TORRES, have sizeable
proportions of their weed species (50-65%) in the later Stages
(IV and V) of invasion (Table 6). We use a couple of species
within each of the five invasion stage categories to illustrate
the variation in trends at the state and regional levels (Fig. 5).

(1) Stage I: The analysis suggests at the state level, Koster’s
curse (Clidemia hirta) (a shrub), Madras thorn
(Pithecellobium dulce) (a tree) and snake cactus
(Cylindropuntia spinosior) (a succulent), with mean
invasion severity in the range of 0.09-0.19, are the only
three invaders (3/64 species = 4.7%) in this early stage of
invasion (Fig. 5a, b; Table 5); the first two species are
limited currently in distribution to the WHITS and FNQId
regions respectively. Snake cactus (Cylindropuntia
spinosior) has scattered, isolated low populations in
SEQId and western part of the state (CWQId, DDSW
and NWQId); these isolated invasion foci are all in
Stage I category (Fig. 5b).

(i1) Stage II: state-wide, athel pine (Tamarix aphylla) —a tree
(mean (CI) invasive severity = 0.28 (0.26-0.31)) is a
member of a stage classification group with the second
largest membership (15/64 species = 23.5%). Like other
weeds in this state-wide Stage II, athel pine (7. aphylla)
invasion stage categories vary at the regional level (Fig. 5¢;
Table S4): Stage I (DDSW, FNQId), Stage II (SEQId,
NWQId), and Stage IIT (CQld, WHITS). Other notable
members include badhara bush (Gmelina elliptica),
Mexican bean tree (Cecropia spp.), mikania vine
(Mikania micrantha), Limnocharis (Limnocharis flava),
Hudson pear (Cylindropuntia rosea), devil’s rope pear
(Cylindropuntia imbricata), and telegraphic weed
(Heterotheca grandiflora).

(iii) Stage III: gamba grass (4Andropogon gayanus), (mean
(CI) invasion severity = 0.43 (0.41-0.46)) is typical of
weeds in a stage classification group with the largest
membership (30/64 species = 46.9%) (Table 5; Fig. 5d).
For gamba grass (4. gayanus), its regional invasion stage
categories ranges from Stage II (WHITS, NWQId), to
Stage III (NQId), and Stage IV (FNQId, TORRES).
Other prominent species in this group include Aftrican
boxthorn (Lycium ferocissimum), African fountain grass
(Pennisetum setaceum), alligator weed (Alternanthera
philoxeroides), aleman grass (Echinochloa polystachia),

bitou bush (Chrysanthemoides monilifera subsp.
rotundata), fireweed (Senecio madagascariensis),
madeira vine (Anredera  cordifolia), mesquite

(Prosopis spp.), Cabomba (Cabomba caroliniana), and
coral cactus (Cylindropuntia fulgida). Regionally, this
group’s invasion stage categories vary widely, usually
spanning Stages [-IV.

(iv) Stage IV: state-wide, bellyache bush (Jatropha
gossypifolia) — a small tree or shrub (mean (CI) invasion



Weeds spread and invasion stage categorisation Australian Journal of Botany 565
(@ (c)
Relative invasion severity
0.527 |! 100
0.243
1153
100.0 |
0.527
80
)
Proportion of region occupied g
P-value = 0.000, F = 3092.137 ©
dfy =4, df,=1148 =
o
%
I I I I | E 60 -
50.0?10 (0.031010.0700) (0.0700-0.1560) (0.156010.371 0) >o.3|710 ko)
@
(2]
Node 1 Node 2 Node 3 Node 4 %
Mean 0.196 Mean 0.378 Mean 0.526 Mean 0.676 =
s.d. 0.086 s.d. 0.059 s.d. 0.069 s.d. 0.066 S
n 238 n 219 n 236 n 229 z
% 20.0 % 19.0 % 20.5 % 19.9 ! 40
Predicted  0.196 Predicted 0.378 Predicted 0.526 Predicted 0.676 0.864
W JL. s ulln
20
(b)
- Invasion
1.00 | vV stage
catagory 0
T @ > €S T T O £ £
| ® 0O ® 6 6 ©®© © B <=
i ol 'agg-agg%.ge
2 080 ol 3 2 7 2 2 2 S e
= v g £ 8 g E E & § =
5 o 3 L € o= — 9O =
2 \Y c 8 ¢ § 5 8 v £ €
@ S S 2 £ = S 8
7 2 - = £ © o © S o
- > » © » 5 ® o S o
c 0.60 o o 3 S I =
=] - =3 2 ¢ o
‘® o g £ = )
[ c € F £ 8’
> S = =
c =2 [}
= 0.40 S
[}
= =3
© o
w .
@ 0.207 Independent variable
0.00 1
T T T T T T
0.00 0.20 0.40 0.60 0.80 1.00

Proportion of regional spatial grid cells occupied
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severity = 0.51 (0.48-0.53)) is typical of focal invader
species in this classification stage (consisting of 11/64 =
17.2% species) (Table 5; Fig. 5¢). Members in the
group exhibit substantial amplitude in invasion stage
categories at region level (Table S4). For bellyache
bush (J. gossypifolia), its distribution spans the 10
regions of the state, with invasion stage categories
ranging from Stage I (DDSW), Stage II (CWQId,
SEQId), to Stage III (WBB, TORRES), to Stage IV
(FNQId, CQId, NWQId, WHITS), and Stage V
(NQId). Other prominent species in this group include,
African love grass (Eragrostis curvula) cat’s claw
creeper (Dolichandra unguis-cati), calotrope

V)

(Calotropis procera), Salvinia (Salvina molesta),
prickly acacia (Vachellia nilotica), and rat tail grasses
(Sporobolus spp.).

Stage V: state-wide, Parkinsonia (Parkinsonia aculeate) —
another small tree or shrub (mean (CI) invasion severity =
0.72 (0.71-0.73)) is illustrative of the few weed species in
this late stage of invasion (5/64 = 7.8% species;
Table 5; Fig. 5/). Their invasion stage categories at
regional levels oscillate mainly in Stages III-V
(Table S4). For P. aculeate, the classification ranges
from Stage III (SEQIld, WBB), to Stage IV (FNQId,
DDSW) and Stage V (CQld, CWQId, NQId, NWQId
and WHITS). Lantana (Lantana camara), mother-of-
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millions  (Bryophyllum  spp.), parthenium weed
(Parthenium  hysterophorus)  and  rubber  vine
(Cryptostegia grandiflora) are also prominent members
of this state-wide invasion category V.

Discussion

Across multiple spatial scales (state-wide, regional, across
and within individual species levels) we have shown that
abundance and distribution are not independent but are

frequently positively related to each other — a finding
similar to other studies (Freckleton et al. 2005; Webb et al.
2007; Buckley and Freckleton 2010; Dallas et al. 2019).
Several putative mechanisms exist to explain this
relationship, including synchronous range expansion and
population growth, temporal variation in resource (habitat)
availability, and dispersal limitations (Gaston et al. 2000;
Webb et al. 2007; Dallas et al. 2019). Thus it can be
inferred that if the local abundance of an invader increases
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Table6. Regional variation in invasion stage classification of established and emerging weeds of Queensland, Australia, based on regression tree
(CART model) output
Within each region and column, values are counts and percentages (in parentheses) of species in each invasion stage category. The invasion stage
classifications are: Stage I: prevention or eradication), Stage II: eradication or control, Stage III: control or containment, Stage IV: containment or asset
protection, and Stage V: asset protection

Invasion Region Overall
stage (number of
classification CQId CWQId DDSW FNQId NQId NWQIld SEQId TORRES WBB WHITS species)
I 0 4 10 10 0 8 0 0 0 1 33
(0%) (21.1%) (26.3%) (21.7%) (0%) (30.8%) (0%) (0%) (0%) (2.9%) (9.8%)
I 11 6 15 13 6 6 10 3 6 12 88
(29.7%) (31.6%) (39.5%) (28.3%) (17.6%) (23.1%) (20.4%) (21.4%) (15%) (34.3%) (26%)
I 6 3 6 6 9 5 11 6 10 3 65
(16.2%) (15.8%) (15.8%) (13%) (26.5%) (19.2%) (22.4%) (42.9%) (25%) (8.6%) (19.2%)
v 6 3 4 12 5 2 8 3 10 7 60
(16.2%) (15.8%) (10.5%) (26.1%) (14.7%) (7.7%) (16.3%) (21.4%) (25%) (20%) (17.8%)
A% 14 3 3 5 14 5 20 2 14 12 92
(37.8%) (15.8%) (7.9%) (10.9%) (41.2%) (19.2%) (40.8%) (14.3%) (35%) (34.3%) (27.2%)
Overall (number 37 19 38 46 34 26 49 14 40 35 338
of species) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

after establishment in a given area, so will its regional
distribution — the so called double jeopardy or trouble
hypothesis (Gaston 1999). Nonetheless, the negative
correlation between distribution and abundance for bitou
bush (Chrysanthemoides. monilifera subsp. rotundata),
Hygrophila (Hygrophila  costata), blackberry (Rubus.
anglocandicans) and devil’s rope pear (Cylindropuntia
imbricata), in contrast to positive trends for many of the
focal species investigated is worth commenting upon. The
first three species have specialist habitat requirements (dunes,
riparian areas) that limit their distributions. Based on the
regression tree output, the above-named species were
allotted a recommendation of eradication or control (Stage
II category). We think eradication will be a more appropriate
management option for these species. This is in line with the
management objective of Queensland Government (for bitou
bush (Chrysanthemoides monilifera, subsp. rotundata) see
Behrendorff et al. 2019; https://www.daf.qld.gov.au/__data/
assets/pdf_file/0006/72825/IPA-Bitou-Bush-PP10.pdf,
accessed 23 September 2020), and with the generic belief that
such species have established individuals in grid cells
classified as having adequate habitat suitability (i.e. high
probability of occupancy) but currently are limited in
abundance and hence propagule supply (Osawa et al. 2019).
Such grid cells are relatively less likely to be recolonised after
a single (or few recurring) eradication activity due to limited
propagule supply from surrounding grids. However, we concur
that the presence of long-lived seed banks for bitou
bush (C. monilifera subsp. rotundata) or blackberry
(R. anglocandicans) might make the allotted recommendation
challenging (Schoeman et al. 2010; Behrendorff ef al. 2019;
Scott et al. 2019).

Weed distribution rather than abundance was a better
descriptor of invasion severity, and hence in the derivation
of ‘space for time’ invasion curve (Fig. 4). Akin-Fajiye and
Gurevitch (2018) also reported that overall, in modelling the
spread of the invasive spotted knapweed (Centaurea stoebe),

the distribution models performed better than the abundance
models across different spatial scales (see also Bradley 2013;
Lacasella et al. 2017; Bradley et al. 2018). The lower
predictive power of abundance could have resulted from the
fact that most of our weed species are more dynamic along the
abundance axis with varied (high and low) cover estimates at a
given grid cell occupancy value compared with variation along
the occupancy axis (Fig. 3), or that abundance is simply a
difficult trait to comprehensively estimate. The finding also
amplifies the fact that occurrence data alone can predict, to a
great extent, the likely impact of an invader in its novel range
(Vaclavik and Meentemeyer 2012). This, however, does not
discount including invaders’ abundance and effect data for
improved model predictions, but we know they are often
precluded as they are difficult to collect and parameterise
due to logistic and financial constraints (Akin-Fajiye and
Gurevitch 2018; Bradley et al. 2018), although for some
weeds remote sensing can overcome these constraints.
Additionally, collected abundance data are often, as in our
case, only qualitative categorical estimates (Bradley 2013;
Lacasella et al. 2017) and are thus prone to error.

Overall, the CS-SD model based on simulations suggested
higher weed distribution (Fig. 2) than the observed data. In
other words, the CS-SD model predicted much more land area
at risk of invasion (i.e. higher weed distribution) than the GCO
model based on the APDS datasets. A difference in prediction
of CS-SD v. GCO models and as found in this work is not new
(see Gasso et al. 2012; Vaclavik and Meentemeyer 2012), and
may be due to a variety of reasons. The CS-SD model reflects
the potential number of grids a focal weed is capable of
invading assuming all conditions for spread and
establishment are met, i.e. there are no limiting biotic and
environmental conditions for filling available niches, which is
not often the case (Bradley 2013). The CS-SD model uses
CLIMEX predictions which often overestimate the likely
potential occurrence of the species, given that distribution is
only limited by average climate tolerance. It is well known that


https://www.daf.qld.gov.au/__data/assets/pdf_file/0006/72825/IPA-Bitou-Bush-PP10.pdf
https://www.daf.qld.gov.au/__data/assets/pdf_file/0006/72825/IPA-Bitou-Bush-PP10.pdf
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when additional environmental parameters, like soil type or
land zone, are incorporated into distribution models, a more
realistic robust output is often produced (e.g. Taylor and
Kumar 2013). In addition, our CS-SD model, like most
other weed risk models, relied on herbarium occurrence
records assembled from a variety of global herbaria
(depicting natural and novel-range habitats of the invader)
which have been shown to be good at predicting risk of spread
(establishment niche) but are considered poor predictor of
abundance or impact niche (Bradley et al. 2018). The
discrepancy between the models has also been attributed to
the stage of invasion and time lags between introduction and
spread or impact — two important calibrators of the CS-SD
model (Vaclavik and Meentemeyer 2012; Bradley 2013).
These historical variables of invaders can influence CS-SD
output, especially more so for species whose habitat or climate
suitability model is based on data collected at early stages of
invasion when all potential niches are yet to be filled. It is
estimated that ~100-150 years after arrival in a novel
environment are required by an invader to achieve habitat
equilibrium or stability — i.e. full niche occupancy (Vaclavik
and Meentemeyer 2012) — a condition not yet fulfilled by
many of our focal species (O. O. Osunkoya, unpubl. data). The
influence of climate change may mean that this equilibrium
may never be achieved for many invader species.

The use of biological invasion curves to relate invader’s
population growth (based mainly on distribution) with time
abounds in the ecological literature (e.g. Delisle et al. 2003;
Crawford and Hoagland 2009; Antunes and Schamp 2017;
Fleming et al. 2017; O. O. Osunkoya, unpubl. data). Based on
this curve, policy recommendations are often inferred
(Standards Australia International Ltd 2006; Auld and
Johnson 2014; Antunes and Schamp 2017). In Australia,
seldom have invasion curves been constructed for pest
plants and animals of significant concerns (but see Sindel
2009; State of Victoria, see https://www.environment.vic.
gov.au/__data/assets/, accessed 13 June 2020). This
deficiency could be attributable to the fact that for many
invader species, necessary data (especially abundance per
unit area) are not recorded over a sufficiently long period of
time. In this study, and exploring the spatially extensive but
time-limited APDS datasets, we have replaced time with space
(as in Fan et al. 2018). The approach provides an estimation of
weed population changes and invasion status using a single or
minimal number of points in space (distribution) within and
across regions of Queensland.

Based on grid cell occupancy (distribution) and weed
abundance, we have developed a workable framework that
classifies the current conditions of many weeds in Queensland
and its regions into invasion stage categories, which can
then be related to standard weed management guidelines
(Standards Australia International Ltd 2006). This approach
closes the gap between the large spatial extent at the global and
national levels of coarse grain plans (Wilson et al. 2014;
Foxcroft et al. 2017; Froese et al. 2019; Osawa et al. 2019;
Osunkoya et al. 20194, 2019b) and that of the medium-finer
scale necessary at the state or regional or LGA levels. For
example for parthenium weed (Parthenium hysterophorus),
one of the most aggressive invader weed in Queensland

0. O. Osunkoya et al.

(Dhileepan et al. 2018; Osunkoya et al. 2019a, 2019b), the
regression tree (CART analysis) allocated an invasion
category of Stage V at the state-wide level. This will
suggest that overall, the relative invasion severity of the
species is amongst the highest of the weeds examined.
Parthenium weed (P. hysterophorus), just like Parkinsonia
(Parkinsonia aculeata), is weed of state and national
significance (van Klinken et al. 2016; Dhileepan et al.
2018; Osunkoya et al. 2019a; https://www.environment.gov.
au/biodiversity/invasive/weeds/weeds/lists/index.html, accessed
8 October 2020). Nonetheless, drilling down to regional level, the
‘space for time’ invasion curve indicated that different regions
have varying invasion stage categories for parthenium weed
(P. hysterophorus), and as such different management options
will need to be invoked. These options at the LGAs or regional
level will range from monitoring or eradication if detected
(TORRES), to the use of various control measures of
integrated weed management, including chemical and
biological controls and cultural practice of pasture
manipulation (FNQId, CWQId), to the use of aforementioned
actions coupled with protection of environmental and
agricultural assets (CQld, NQId, WHITS, WBB, DDSW,
SEQId). The control and asset protection options are in
regions where parthenium weed (P. hysterophorus) has
already taken footholds and eradication is no longer
feasible. It is heartening that these varying management
options are already in place for parthenium weed
(P. hysterophorus) in different regions of Queensland
(Bajwa et al. 2018; Dhileepan et al. 2018; Shabbir et al.
2018). Our finding thus confirms and validates ‘on-the-
ground’ management, finer grain options for this particular
weed. However, many of the 64 weed species investigated do
not have realistic ‘on the ground’ policy and management
actions either because they are low on the species prioritisation
list (e.g. Aleman grass, Echinochloa polystachia — see
Osunkoya et al. 2019a) are relatively new incursions
(e.g. firethorn, Pyracantha spp.; Saint Johns’s wort,
Hypericum perforatum) or there are inconsistencies in
legislation and lack of socio-political will to manage them
(e.g. Leucaeana leucocephala though not investigated in this
study; Margolis ef al. 2005; Crowley et al. 2017; Mackay et al.
2017; Campbell et al. 2019). The last factor (i.e. a lack of
socio-political will) is often a major consideration — implying
that defining appropriate management option based solely on
invasion stage may be insufficient.

Uncertainty might exist in our data acquisition and inputs
(e.g. estimates of weed cover), and hence some level of errors
is inevitable in data output. Thus the weeds stage
categorisation scheme should be seen as a method to align
weeds on a continuum (and hence compare and contrast),
rather than give absolute values of their invasiveness or
impact and management expediency (see also Auld and
Johnson 2014; Osunkoya et al. 2019b). Consequently, the
stage classification scheme presented here at best categorises
species into fuzzy management action classes that can oscillate
one-step down (except for Stage I category) or one-step up
(except Stage V category) from the assigned stage category in
terms of the realistic ‘on-the ground” management actions (Caton
et al. 2018; Osunkoya et al. 2019b).


https://www.environment.vic.gov.au/__data/assets/
https://www.environment.vic.gov.au/__data/assets/
https://www.environment.gov.au/biodiversity/invasive/weeds/weeds/lists/index.html
https://www.environment.gov.au/biodiversity/invasive/weeds/weeds/lists/index.html
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Conclusions

Using the spatially extensive, but time-limited APDS datasets,
we showed that at multiple spatial scales, abundance and
distribution are not independent but are frequently
positively related to each other. The greater level of habitat
modification caused by higher human populations, together
with greater moisture environments, are likely to explain the
higher weed spread and invasion severity in the coastal eastern
regions (bar the far northern region and the Torres Strait
Islands) (see also Osunkoya et al. 2019a). The use of
models — one based on occurrence data from global herbaria
and climate suitability (CS-SD) simulations, and the other on
actual occurrence inferred from spatial grid records (GCO)
extracted from the APDS — have provided the opportunity to
show that most Queensland established weed species are yet to
realise their full potential and hence further expansion is possible.
We showed that invasion severity is driven mainly by distribution
and abundance traits (in that order), though other factors
(including environmental envelopes like moisture availability
and species-specific and Thistorical attributes) must be
considered alongside these two traits (PySek et al. 2008;
Vaclavik and Meentemeyer 2012; Osunkoya et al. 2019q;
0. O. Osunkoya, unpubl. data).). We have used the APDS
dataset to construct ‘space for time’ invasion curves, and have
identified invasion stage categories of many Queensland weeds.
This has led to the confirmation or development of region-specific
control options for the weeds investigated. Hence, our findings
can feed into policy and management. No doubt, like most pest
prioritisation exercise (e.g. Booy et al. 2017; Osunkoya et al.
2019a,2019b) as more spatial data at finer scale become available,
it is imperative to review the invasion stage categories and offer
appropriate adaptive management and policy options for the focal
species presented in this work. Adding more environmental
layers, e.g. soil types and land zones to the climate-based
models of CLIMEX will also improve prediction of potential
niche distributions. In conclusion, we advocate for continuing
data gathering by the APDS (with improved accuracy and spatial
grid-size standardisation) in view of its uniqueness of
warehousing both spread and abundance data at multiple
spatial scales. The APDS datasets will also complement
herbarium records of invader species, and it will be interesting
to compare model outputs from the two sources of data.
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