Login | Request Account (DAF staff only)

Floral induction in tropical fruit trees: Effects of temperature and water supply

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

Chaikiattiyos, S., Menzel, C. M. and Rasmussen, T. S. (1994) Floral induction in tropical fruit trees: Effects of temperature and water supply. Journal of Horticultural Science, 69 (3). pp. 397-415. ISSN 0022-1589

Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link.

Article Link: https://doi.org/10.1080/14620316.1994.11516469

Abstract

Floral induction in tropical trees generally follows a check in vegetative growth. However, it is not easy to identify the environmental factors involved in flowering, which normally occurs during the dry season when temperatures are also often lower. The separate and combined effects of temperature and water supply on floral induction were investigated in ‘Hass’ avocado (Persea americana), ‘Lisbon’ lemon (Citrus limon). ‘Wai Chee’ litchi (Litchi chinensis) and ‘Sensation’ mango (Mangifera indica). Low temperatures (15°/10°C or 15°/10°C and 20°/15°C compared with 30°/25°C and 25°/20°C) generally decreased vegetative growth and induced flowering in well-watered avocado, litchi and mango. A pre-dawn leaf water potential (ψL) of −1.7 to −3.5 MPa compared with −0.4 to −0.7 MPa in control avocado and litchi, and a pre-dawn relative water content (R.W.C.) of 90-93% compared with 97% or above in control mango plants also reduced or eliminated vegetative growth, but did not induce flowering. Low temperatures (15°/10°C compared with 20°/5°C, 25°/20°C or 30°/25°C) and water stress (pre-dawn ψL of −2.0 to −3.5 MPa compared with −0.7 to −0.8 MPa in controls) reduced or eliminated vegetative growth in lemon. In contrast to the response in avocado, litchi and mango, flowering in lemon was very weak in the absence of water stress at 15°/10°C or outdoors in Brisbane in subtropical Australia (Lat. 28°S), and was greatest after a period of water stress. The number of flowers increased with the severity and duration of water stress (two, four or eight weeks) and was generally greater after constant rather than with cyclic water stress. In lemon and litchi, net photosynthesis declined with increasing water stress reaching zero with a midday ψL of −3.5 to −4.0 MPa. This decline in carbon assimilation appeared to be almost entirely due to stomatal closure. Despite the reduction in midday CO2 assimilation, starch concentration increased during water stress, especially in the branches, trunk and roots of lemon. Leaf starch was uniformly low. The number of flowers per tree in lemon was strongly correlated with starch in the branches (r2=77%, P<0.01) and roots (r2=74%, P<0.001). In litchi, starch was lower than in lemon roots and was not related to flowering.

In separate experiments to test the interaction between temperature and water supply, low day/night temperatures (23°/18° and 18°/15°C compared with 29°/25°C) reduced vegetative growth and induced flowering in avocado, litchi and mango. None of these species flowered at 29°/25°C or as a result of water stress (ψL of −1.5 MPa compared with −0.3 MPa for avocado and −2.0 MPa compared with −0.5 MPa for litchi, and R.W.C, of 90-93% compared with 95-96% in mango). In contrast, in lemon, flowering was very weak (<10 flowers per tree) in the absence of water stress (pre-dawn ψL of −2.0 MPa compared with −0.5 MPa) and was only heavy (>35 flowers per tree) after stressed trees were rewatered. There were slightly more flowers at 18°/15°C than at 23°/18° and 29°/25°C in control plants, but no effect of temperature in stressed plants. Starch concentration in the roots of avocado, lemon, litchi and mango was generally higher at 18°/15°C and 23°/18°C than at 29°/25°C. Water stress increased the starch concentration in the roots of lemon and litchi and decreased it in avocado. There was no effect in mango. There was a weak relation (r2=57%, P<0.05) between the number of flowers per tree in lemon and the concentration of starch in the roots. In contrast, there was no significant relationship between flowering and starch levels under the various temperature and water regimes in the other species. In another experiment, only vegetative growth in litchi and mango occurred at 30°/25°C and only flowering at 15°/10°C. Six weeks of water stress (pre-dawn ψL of −2.5 MPa compared with −1.0 MPa or higher in litchi, and R.W.C, of 90-93% compared with 95% or higher in mango) in a heated glasshouse (30°C days/20°C night minimum) before these temperature treatments did not induce flowering.

Temperatures below 25°C for avocado and below 20°C for litchi and mango are essential for flowering and cannot be replaced by water stress. The control of flowering in lemon over the range of day temperatures from 18°C to 30°C differed from that of the other species in being mainly determined by water stress. Flowering was generally weak in well-watered plants even with days at 18°C. Starch did not appear to control flowering.

Item Type:Article
Corporate Creators:Department of Agriculture and Fisheries, Queensland
Business groups:Horticulture and Forestry Science
Subjects:Agriculture > Agriculture (General) > Agricultural meteorology. Crops and climate
Agriculture > Agriculture (General) > Improvement, reclamation, fertilisation, irrigation etc., of lands (Melioration)
Plant culture > Tree crops
Plant culture > Food crops
Plant culture > Fruit and fruit culture
Live Archive:27 Oct 2023 06:07
Last Modified:27 Oct 2023 06:07

Repository Staff Only: item control page