Login | Request Account (DAF staff only)

Suppressive subtractive hybridization analysis of Rhipicephalus (Boophilus) microplus larval and adult transcript expression during attachment and feeding

View Altmetrics

Lew-Tabor, A., Moolhuijzen, P.M., Vance, M. E., Kurscheid, S., Valle, M.R., Jarrett, S. J., Minchin, C. M., Jackson, L. A., Jonsson, N.N., Bellgard, M.I. and Guerrero, F.D. (2010) Suppressive subtractive hybridization analysis of Rhipicephalus (Boophilus) microplus larval and adult transcript expression during attachment and feeding. Veterinary Parasitology, 167 (2-4). pp. 304-320. ISSN 03044017 (ISSN)

[img]
Preview
PDF
1MB

Article Link: https://doi.org/10.1016/j.vetpar.2009.09.033

Abstract

Ticks, as blood-feeding ectoparasites, affect their hosts both directly and as vectors of viral, bacterial and protozoal diseases. The tick's mode of feeding means it must maintain intimate contact with the host in the face of host defensive responses for a prolonged time. The parasite-host interactions are characterized by the host response and parasite counter-response which result in a highly complex biological system that is barely understood. We conducted transcriptomic analyses utilizing suppressive subtractive hybridization (SSH) to identify transcripts associated with host attachment and feeding of larval, adult female and adult male ticks. Five SSH libraries resulted in 511 clones (assembled into 36 contigs and 90 singletons) from differentially expressed transcripts isolated from unattached frustrated larvae (95), feeding larvae (159), unattached frustrated adult female ticks (68), feeding adult female ticks (95) and male adult ticks (94 clones). Unattached 'frustrated' ticks were held in fabric bags affixed to cattle for up to 24 h to identify genes up-regulated prior to host penetration. Sequence analysis was based on BLAST, Panther, KOG and domain (CDD) analyses to assign functional groups for proteins including: cuticle proteins, enzymes (ATPases), ligand binding (histamine binding), molecular chaperone (prefoldin), nucleic acid binding (ribosomal proteins), putative salivary proteins, serine proteases, stress response (heat shock, glycine rich) and transporters. An additional 63% of all contigs and singletons were novel R. microplus transcripts or predicted proteins of unknown function. Expression was confirmed using quantitative real time PCR analysis of selected transcripts. This is the first comprehensive analysis of the R. microplus transcriptome from multiple stages of ticks and assists to elucidate the molecular events during tick attachment and development. Crown Copyright © 2009.

Item Type:Article
Business groups:Animal Science
Additional Information:Crown copyright
Keywords:Cattle-arthropoda Gene expression Larvae Rhipicephalus (Boophilus) microplus RNA Subtractive hybridization adenosine triphosphatase carrier protein chaperone cuticle protein protein saliva protein serine proteinase transcriptome unclassified drug animal experiment animal model arthropod larva article Boophilus microplus cattle controlled study developmental stage female gene expression regulation gene isolation genetic transcription host parasite interaction ligand binding male nonhuman nucleotide sequence parasite attachment parasite development parasite phenomena and functions real time polymerase chain reaction RNA binding sequence analysis stress suppression subtractive hybridization Animals Cloning, Molecular Feeding Behavior Gene Expression Profiling Larva Rhipicephalus Arthropoda Bacteria (microorganisms) Boophilus Bos Ixodida
Subjects:Animal culture > Cattle
Veterinary medicine > Veterinary parasitology
Live Archive:21 Feb 2023 05:16
Last Modified:10 Jul 2023 02:00

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics