Lead time and skill of Australian wheat yield forecasts based on ENSO-analogue or GCM-derived seasonal climate forecasts – A comparative analysisExport / Share PlumX View Altmetrics View AltmetricsPotgieter, A. B., Schepen, A., Brider, J. and Hammer, G. L. (2022) Lead time and skill of Australian wheat yield forecasts based on ENSO-analogue or GCM-derived seasonal climate forecasts – A comparative analysis. Agricultural and Forest Meteorology, 324 . p. 109116. ISSN 0168-1923 Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link. Article Link: https://doi.org/10.1016/j.agrformet.2022.109116 Publisher URL: https://www.sciencedirect.com/science/article/pii/S0168192322003033 AbstractForesight of crop yield is fundamental to producers and industry to better manage climate risks and mitigate ebbs and troughs in crop production. Rain-fed grain production in Australia is highly volatile and producers and industry are progressively confronted with projected uncertainties due to climate variability and change, input costs and market prices. Thus, having advance knowledge of the likely impact of the coming season's climate on crop yield and production is critical for decisions across the supply chain. Here we explore and analyse the lead time and skill of a wheat yield forecasting system using a biophysical crop yield simulation model connected to either a statistical ENSO-analogue climate forecasting system or a dynamic general circulation model (GCM) derived climate forecasting system. The comparative skill was investigated for 16 wheat producing districts (shires) of the broad Australian winter cropping region, each containing 9–35 irregularly-spaced simulation points associated with climate stations. Both the ENSO-analogue and GCM-derived systems produced reliable wheat yield forecasts with the GCM-based approach having general improved skill, and particularly during the early months of the season (March to May) before sowing. The shift in the forecast yield distributions relative to the climatology-based yield distribution were dependent on location and time in the season, with the GCM-derived forecast shifts more widespread and earlier in the season. Overall, the GCM-based climate/crop forecasting system showed a significant improvement in lead time (greater than two months before the normal planting time of wheat), across the Australian wheat belt. This result demonstrates an avenue for improved efficacy in future commodity forecasting frameworks via likely enhanced relevance and utility to industry associated with the use of GCM-derived approaches.
Repository Staff Only: item control page |