Login | Request Account (DAF staff only)

Spatial distribution of deepwater seagrass in the inter-reef lagoon of the Great Barrier Reef World Heritage Area

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

Coles, R., McKenzie, L., De’ath, G., Roelofs, A. and Long, W. L. (2009) Spatial distribution of deepwater seagrass in the inter-reef lagoon of the Great Barrier Reef World Heritage Area. Marine Ecology Progress Series, 392 . pp. 57-68. ISSN 0171-8630

[img]
Preview
PDF
645kB

Abstract

Seagrasses in waters deeper than 15 m in the Great Barrier Reef World Heritage Area (adjacent to the Queensland coast) were surveyed using a camera and dredge (towed for a period of 4 to 6 min); 1426 sites were surveyed, spanning from 10 to 25°S, and from inshore to the edge of the reef (out to 120 nautical miles from the coast). At each site seagrass presence, species, and biomass were recorded; together with depth, sediment, secchi, algae presence, epibenthos, and proximity to reefs. Seagrasses in the study area extend down to water depths of 61 m, and are difficult to map other than by generating distributions from point source data. Statistical modeling of the seagrass distribution suggests 40000 km2 of the sea bottom has a probability of some seagrass being present. There is strong spatial variation driven in part by the constraint of the Great Barrier Reef’s long, thin shape, and by physical processes associated with the land and ocean. All seagrass species found were from the genus Halophila. Probability distributions were mapped for the 4 most common species: Halophila ovalis, H. spinulosa, H. decipiens, and H. tricostata. Distributions of H. ovalis and H. spinulosa show strong depth and sediment effects, whereas H. decipiens and H. tricostata are only weakly correlated with environmental variables, but show strong spatial patterns. Distributions of all species are correlated most closely with water depth, the proportion of medium-sized sediment, and visibility measured by Secchi depth. These 3 simple characteristics of the environment correctly predict the presence of seagrass 74% of the time. The results are discussed in terms of environmental dynamics, management of the Great Barrier Reef province, and the potential for using surrogates to predict the presence of seagrass habitats.

Item Type:Article
Business groups:Animal Science
Subjects:Aquaculture and Fisheries > Fisheries > By region or country > Australia > Great Barrier Reef
Aquaculture and Fisheries > Fisheries > Seagrasses
Live Archive:03 Feb 2022 02:55
Last Modified:03 Feb 2022 02:55

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics