Influence of Wood’s Anatomical and Resin Traits on the Radial Permeability of the Hybrid Pine (Pinus elliottii× Pinus caribaea) Wood in AustraliaExport / Share Leggate, W., Shirmohammadi, M., McGavin, R. L., Chandra, K. A., Knackstedt, M., Knuefing, L. and Turner, M. (2020) Influence of Wood’s Anatomical and Resin Traits on the Radial Permeability of the Hybrid Pine (Pinus elliottii× Pinus caribaea) Wood in Australia. BioResources, 15 (3). pp. 6851-6873. ISSN 1930-2126
AbstractWood permeability has a major effect on industrial wood processing and utilization. Wood anatomy and resin influence the permeability of wood. Understanding and manipulating these influences is important to optimize the manufacture and use of forest products. This study investigated the relationships between wood anatomical traits, radial permeability, and resin content of samples collected from 19-year-old hybrid pines (Pinus elliottii var. elliottii × Pinus caribaea var. hondurensis) from Queensland, Australia. The earlywood tracheid tangential lumen diameter and axial resin canal diameter were statistically positively correlated with radial permeability. The heartwood proportion and the frequency of axial resin canals were statistically negatively correlated with radial permeability and positively correlated with resin content. The axial resin canal diameter, sapwood proportion, latewood content, ray frequency, and earlywood tracheid lumen diameter increased from pith to bark, whereas the axial resin canal frequency decreased. Resin was found distributed throughout the wood microstructure, from pith to bark in many samples, and in both heartwood and sapwood. However, there was a much greater quantity of resin in heartwood and wood from the middle (inner radius) of the tree, with widespread occurrence of resin impregnation in the axial tracheids.
Repository Staff Only: item control page Download Statistics DownloadsDownloads per month over past year |