Login | Request Account (DAF staff only)

A new data source for fisheries resource assessment: genetic estimates of the effective number of spawners. Final Report to the Fisheries Research and Development Corporation.

Ovenden, J., Street, R., Peel, D., Peel, S., Courtney, T., Podlich, H., Basford, K. and Dichmont, C. (2004) A new data source for fisheries resource assessment: genetic estimates of the effective number of spawners. Final Report to the Fisheries Research and Development Corporation. Project Report. QO 04010. Department of Primary Industries & Fisheries. Queensland..


Organisation URL: http://www.frdc.com.au/


The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals.

The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to
1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by
a. conducting comprehensive computer simulations, and by
b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus).
2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF).
3. Produce software for the calculation of Ne, and to make it widely available.

The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population.

Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species.

The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number.

We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future.

Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work.

During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF).

Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.

Item Type:Monograph (Project Report)
Corporate Creators:Animal Science
Additional Information:© Fisheries Research and Development Corporation. © The State of Queensland, Department of Primary Industries and Fisheries. This work is copyright. Except as permitted under the Copyright Act 1968, no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission.
Keywords:Final report ; Penaeus esculentus; genetic effective population size; stock recruitment; simulation; Moreton Bay.
Subjects:Science > Statistics > Experimental design
Science > Mathematics > Computer software
Science > Statistics > Simulation modelling
Science > Statistics > Statistical software
Science > Biology > Genetics
Live Archive:16 Oct 2007
Last Modified:03 Sep 2021 16:47

Repository Staff Only: item control page


Downloads per month over past year

View more statistics