Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kitExport / Share PlumX View Altmetrics View AltmetricsAgrafioti, P., Athanassiou, C. G. and Nayak, M. K. (2019) Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. Journal of Stored Products Research, 82 . pp. 40-47. ISSN 0022-474X Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link. Article Link: https://doi.org/10.1016/j.jspr.2019.02.004 Publisher URL: http://www.sciencedirect.com/science/article/pii/S0022474X18304533 AbstractThe use of phosphine has been effective against a wide range of stored-product pests in different types of commodities and facilities. However, its continuous and improper use has led to resistance development in -several major insect species. Although phosphine resistance has been reported from many countries across the globe, reports from Europe have been very limited. In the present study, we determined phosphine resistance in insect populations that had been collected from a range of storages across Greece, using two different diagnostic protocols. Apart from the traditional Food and Agriculture Organization (FAO) protocol, a field test kit (known as the Detia Degesch Tolerance Test Kit, DDTTPK) was utilized, for “same day” determination of the resistance status of field collected insects. In total, 53 populations belonging to Rhyzopertha dominica, Sitophilus oryzae, Sitophilus granarius, Cryptolestes ferrugineus, Tribolium confusum, Tribolium castaneum and Oryzaephilus surinamensis were tested. For the majority of the species and populations tested, both FAO and DDPTTK provided similar results, for the susceptibility to phosphine and thus, the quick test could be used with success for an initial same day screening of phosphine resistance. Among the tested species, the populations recorded with the most frequent survival at the FAO testing dose of phosphine was that of R. dominica. The dissimilar evaluation and characterization of resistance to phosphine between diagnostic protocols is particularly important, as it poses risks in the over or underestimation of the resistance status of a given population. Our data indicate that the DDPTTK could be used to determine resistance to phosphine in the field, before the initiation of fumigations to disinfest stored commodities.
Repository Staff Only: item control page |