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ABSTRACT: This paper summarises parts of the research outcomes of a university-government collaborative project 
aiming at determining the capacity and reliability of veneer-based structural products manufactured from early to mid-
rotation (juvenile) hardwood plantations logs. Two species planted for solid timber end-products (Eucalyptus cloeziana 
and Corymbia citriodora) and one species traditionally grown for pulpwood (Eucalyptus globulus) were studied for the 
manufacture of the new products. Focus of this paper is on LVL beams. To cost-effectively determine the nominal 
design bending strengths of the new beams, a numerical model was developed. The model was found to accurately 
predict the strength of LVL beams with an average predicted to experimental ratio of 1.00 with a low coefficient of 
variation of 0.10. Using an established probabilistic database of the material properties of the veneered resources as 
model input, Monte-Carlo simulations were then performed. The design strength of the new LVL beams was 
established and found to be comparable to, and in some cases up to 2.5 times higher than, the ones of commercially 
available softwood products. Recommendations are also made in the paper on the appropriate capacity factors to be 
used for various service categories of structures. The proposed capacity factors were found to be 5% to 12% lower than 
the ones currently used in Australia for beams manufactured from mature softwood logs. 
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1 INTRODUCTION 123 

When a manufacturer introduces new veneer-based timber 
structural products on the market, a costly experimental 
program must be undertaken. This aims at accurately 
measuring the strength and stiffness variations of the new 
products and ultimately determining their design 
properties. To reach a specific final product, an inefficient 
trail-and-error approach may be needed.  
Nevertheless, expected strength and stiffness distributions 
of new products can be cost-effectively predicted if a 
methodology is developed that combines classical 
elastoplastic constitutive equations with a probabilistic 
strength prediction model of the wood veneers [1]. The 
veneer strength prediction model is based on 
characteristics which can be measured in line and the size 
of the veneers. This approach is followed by the authors to 
determine the expected structural properties of veneer-
based products manufactured from early to mid-rotation 
(juvenile) subtropical hardwood plantation logs [2-4]. 
These small diameter logs currently have little to no 
commercial value in Australia. Nevertheless, it has been 
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proven that they result in high grade veneer-based 
structural products [5, 6]. However, actual design 
properties were not evaluated, and because of the high 
proportion of defects in the resource (knots, gum veins, 
grain deviation ...), the new products are expected to have 
larger variability in their mechanical properties than 
commercially available products.  
This paper quantifies the capacity and reliability of 
Laminated Veneer Lumber (LVL) beams manufactured 
from veneers recovered from early to mid-rotation 
hardwood plantation logs of two species planted for solid 
timber end-products (Gympie messmate (GMS) - 
Eucalyptus cloeziana and spotted gum (SPG) - Corymbia 
citriodora) and one species traditionally grown for 
pulpwood (southern blue gum (SBG) - Eucalyptus 
globulus). The principles behind a numerical model 
developed to predict the bending strength of LVL beams 
are introduced. Using an established probabilistic database 
of the tensile and compressive properties of the GMS, 
SPG and SBG veneers [2] as model input, Monte-Carlo 
simulations were performed. The design strengths of 
various LVL beans manufactured from juvenile hardwood 
plantation logs of the three species were then predicted. 
Appropriate capacity factors to be used for various service 
categories of structures are also discussed in the paper. 
 
2 MODEL FRAMEWORK 

The models for sawn timber and Glulam beams described 
in Buchanan [7] and Foschi and Barrett [8], respectively, 



were adapted by the authors to LVL beams [3]. These 
models were chosen for (i) their simplicity to implement 
without the need of using finite element analysis (FEA) 
software, (ii) accuracy and (iii) rational failure criteria 
which reflects the actual behaviour of timber structural 
members for which the bending strength is higher than 
the tensile one [9]. The model is combined with a 
probability strength prediction model of the wood veneers. 
The main characteristics of the model are summarised 
below while the full model implementation is detailed in 
[3] 
 
2.1 PROBABILITY STRENGTH PREDICTION 

OF INDIVIDUAL VENEERS 

2.1.1 General 
Manufacturers typically predict the strength of timber 
elements from characteristics which can be measured in 
line, such as density, Modulus of Elasticity (MOE) or 
knot locations. The expected strength Rd,predicted of the 
element is calculated from a best fitted equation f as,  

 ( ), 1 2, ,...,d predicted kR f c c c=  (1) 

where ci is the i th measured characteristic and k is the 
total number of measured characteristics. Due to wood 
being a natural material, a variation exists between the 
actual (or measured) strength of the element and its 
predicted value from Eq. (1). For a given resource, this 
variation is expressed in term of the probability 
distribution function (PDF) h (or cumulative distribution 
function (CDF) H) for the random variable 
corresponding to the actual to predicted strength ratio 
(Rd,actual/Rd,predicted). The mean of the random variable is 
expected to be 1.0. The strength of a timber element can 
then be probabilistically determined from its measured 
characteristics as,  

 ( ) ( )1
, 1 2, ,...,d actual kR f c c c H P−=  (2) 

where H-1 is the inverse CDF (also referred to as 
“quantile function”) and P a random number in [0, 1]. 
 
2.1.2 Characteristics ci and veneer grading 
All or parts of in line measured characteristics c1 to ck 
are typically used to grade timber elements and sort them 
into bins. For veneer-based products, veneers are 
randomly taken from one or more bins to manufacture a 
given grade of final product. For a given resource, the 
distributions of c1 to ck are known from accumulated past 
data. Let’s term gi the PDF of characteristic ci and let’s 
assume that in the j th bin ci ranges in [Cij,L, Cij,U[. The 
PDF gij of ci in Bin j is given by the conditional PDF of 
gi as, 
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The value of characteristic ci of a veneer randomly taken 
from Bin j can then be obtained from the inverse CDF 
Gij

-1 as, 

 ( )1
i ijc G P−=  (4) 

where P is a random number in [0, 1]. 
 

2.1.3 Size effect 
The strength of a timber element is well known to be 
sensitive to its size [10]. This phenomenon is commonly 
referred to as “size effect” [11] and is most noticeable 
for tensile and bending brittle failure modes [1]. Yet, 
timber elements failing in a ductile compressive mode 
are also known to be sensitive to size effects, but to a 
lower degree [10, 12]. Therefore, the strength of wood 
veneers predicted in Eq. (1) is only valid for the tested 
volume from which it was determined [1] and must be 
adjusted to reflect the volume of the veneer in a final 
veneer-based product. The weakest link theory [13] is 
well accepted in timber structures to perform this 
adjustment [11, 14] in both tension and compression 
loading [14].  
Let’s assume that the strength Rd1 of a veneer predicted 
by Eqs. (1, 2) was obtained at a volume V1 = L1 × W1 × 
H1 (with the grain parallel to the longitudinal direction 
L), the strength Rd2 of the same veneer at volume V2 = L2 
× W2 × H2 can be deduced from the weakest link theory 
as [11], 
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where k// and k⊥ are the shape factors related to the 
dimension(s) parallel and perpendicular to the grain, 
respectively.  
The shape factors used for each species analysed herein 
were determined from experimental testing [2] and the 
literature (see [3] for more details). Value of k// and k⊥ 

for all analysed species are given in Table 1. 

Table 1: Shape factors for all species 

Species Tension Compression 
 kspecies k// k⊥ kspecies k// k⊥ 

SPG 7.4 7.4 3.7 15.6 15.6 7.8 
SBG 6.5 6.5 3.2 11.7 11.7 5.9 
GMS 8.5 8.5 4.2 16.1 16.1 8.1 

 
2.1.4 Load effect 
The dimensions L2 × W2 × H2 of each ply to be used in 
Eq. (5) must also consider the actual stress distribution in 
the beam [11]. Let’s consider a beam of dimensions Lb × 
Wb × Hb and loaded in four-point bending, as shown in 
Figure 1, where Lb1 is the distance between the supports 
and the points of application of the loads and Lb2 the 
distance between loads. The length L2 of the ply to be 
used in Eq. (5) is calculated from the Weibull weakest 
link theory [13] and is equal to [7], 
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For the width and as the stress in the plies does not vary 
along the beam width, the width W2 of each ply in Eq. 
(5) is equal to Wb for flat bending and the ply thickness 
for edge bending.  
For the height and while the stress in the plies varies 
with the beam height, this variation is not considered in 
Eq. (5) but in the failure criteria, as detailed in Section 
2.3. In Eq. (5), the height of each ply H2 is therefore 



taken as the ply thickness for flat bending and Hb for 
edge bending. 

 

Figure 1: LVL beam in four-point bending 

2.2 STRESS-STRAIN MODELS 

The model makes use of tri-linear and linear stress-strain 
curves in compression and tension, respectively. The tri-
linear curve in compression is given in [3] and is based on 
experimental material testing. This curve includes a strain 
softening branch with a slope equal to 7% of the MOE. 
The Euler-Bernoulli beam theory is used in the model, 
with plane sections remaining plane. Assuming a LVL 
beam in pure bending, the strain profile is considered 
linear and the stress profile non-linear with the stress in 
each ply calculated from the strain profile, the ply 
individual MOE and the Hooke’s law. The shift in neutral 
axis after yielding occurring in the compression zone is 
considered in the model. See [3] for more details. 
 
2.3 FAILURE CRITERIA 

Timber beams typically fail when brittle failure occurs in 
the tension zone [7]. In extreme cases, when the tensile 
strength is significantly higher than the compressive one, 
the maximum bending moment is purely reached by the 
formation of a plastic hinge. Both cases are considered in 
the model: the latter case with the non-linear 
compressive stress-strain curve and the former by 
correctly considering the relationship between the 
bending stress distribution in the plies and their tensile 
strength [9] as developed hereafter.  
 
2.3.1 Tensile failure in flat bending 
In flat bending, and based on the Weibull weakest link 
theory, in which the probability of failure of the non-
uniformly stressed ply is equal to the one of the 
uniformly stressed ply in tension, tensile failure occurs 
when the stress at the ply bottom extreme fibre σbottom 
(see Figure 2 (a)) reaches the ply tensile strength Rd2 
(obtained from Eq. (5) in reference to Section 2.1.4) 
multiplied by the factor Sbending given as [3], 
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where σtop is the stress at the ply top extreme fibre.  
 
2.3.2 Tensile failure in edge bending 
In edge bending, the non-uniform tensile stress 
distribution in a ply on edge bending is shown in Figure 
2 (b). The factor Sbending is derived in [7] and expressed 
as, 
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where Dneutral is the distance from the bottom of the beam 
to the neutral axis. 
 

 
 (a) (b) 
Figure 2: (a) non-linear stress profile on flat and (b) non-
linear stress profile on edge 

2.3.3 Limitation of tensile strength 
For small LVL beams, the tensile strength calculated 
from Eqs. (5, 7) or Eqs. (5, 8) reaches unrealistic high 
values, while in quasi-brittle materials, when the volume 
V→0, the strength should be finite [15]. For wood, the 
tensile strength can be limited, to the extreme case, to the 
tensile capacity of the cell walls. Especially considering 
that while woods differ in their mechanical properties, 
the properties of the cell walls are roughly similar for all 
types of wood [16], in the order of 200 to 400 MPa  [16, 
17].  
In this study, through model calibration on LVL 
manufactured from SPG, it was found that the tensile 
strength at the extreme fibre of a ply (calculated from 
Eq. (5, 7) or Eq. (5, 8)) cannot be higher than twice the 
tensile strength of the SPG veneers obtained in [2] at a 
nominal reference volume Vref = 500 mm × 150 mm × 
7.5 mm (see also Section 3) [3]. 
As detailed in [3] and assuming there exists a minimum 
volume Vmin for which the tensile strength of the veneer 
is equal to the tensile strength of the cell walls, the 
limiting factor LFSpecies of any analysed species can then 
be deduced from the limitation factor LFSPG = 2.0 of the 
SPG species as,  

  ( ) SpeciesSPG kk
SPGSpecies LFLF =  (9) 

where kSPG and kSpecies are the volume shape factors of the 
SPG and other analysed species calculated from the tests 
performed in [2] and Table 1. The limiting factors are 
found to be equal to 1.83 and 2.39 for the GMS and SBG 
species, respectively. 
 
2.4 MODEL LIMITATIONS 

The veneers are assumed to be as long as the LVL beams 
in the study and the size effects are consequently 
calculated considering the entire length of the beam. The 
effect of the joints between veneers on the bending 
strength will need to be incorporated in the model. 
 
3 VENEER PROPERTIES 

3.1 STRENGTH PREDICTION 

The compressive strength of the GMS, SPG and SBG 
veneers was determined in [2] from two characteristics 
c1 and c2 which can be measured in line during 



manufacturing, namely the veneer dynamic MOE and its 
total knot area ratio (tKAR) [18]. The general strength 
best fit prediction in Eq. (1) is expressed in the form [2], 

 ( ), 1d predictedR MOE tKARβα γ= ⋅ − ⋅  (10) 

where coefficients α, β and γ are given in Table 2 for 
each species. Note that for each species, Eq. (10) was 
determined from tests performed on 90 veneer sheets. 
Each sheet was cut into three strips which were glued 
together to manufacture 3-ply LVL test samples. 
Samples of nominal dimensions L1 = 630 mm × W1 = 
100 mm × H1 = 7.5 mm and L1 = 500 mm × W1 = 150 
mm × H1 = 7.5 mm were used for compressive and 
tensile testing, respectively. A two-parameter Weibull 
distribution was found to best fit the CDF H of the 
random variable corresponding to the actual to predicted 
strength ratio (Rd,actual/Rd,predicted) in the form, 

 

,

,,

,

1

kspecies
d actual

d predicted

R

Rd actual

d predicted

R
H e

R

λ
 

− 
 
 

 
= −  

 
 (11) 

where the shape factors kspecies are given in Table 1 and 
the scale parameters λ in [2].  

Table 2: Shape factors for all species 

Species Tension Compression 
 α β γ α β γ 

SPG 0.025 0.842 1.110 0.490 0.506 0.437 
SBG 0.117 0.694 1.575 0.810 0.437 0.246 
GMS 0.013 0.896 1.211 0.680 0.474 0.388 

 
3.2 GRADING AND CHARACTERISTICS  

Three different veneer grades, defined in [2], are used 
herein. The grades only use the veneer MOE value as the 
sole grading indicator. The MOE cut-off values between 
each grade are given in [2] and are based on the expected 
distributions of MOE encountered in a mill [19]. The 
grades divide veneers into three bins, each with an equal 
number of veneers, and mimic a simple way a 
manufacturer could divide the veneers. The grades are 
referred to as “Low” (L), “Medium” (M) and “High” 
(H), in increasing value of the MOE. 
The distribution of the dynamic veneer MOE 
(characteristic c1) has been quantified in [19] for the 
resources analysed. This characteristic is modelled in 
this paper through a Weibull distribution and its overall 
CDF G1 is in the form, 
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where k1 and λ1 are given in [4] for all species.  
The distribution of the expected tKAR value of a veneer 
of length L (characteristic c2) is defined in [2]. For each 
grade, a Weibull distribution was also found to best fit 
the distribution of the tKAR values. The CDF G2j for 
characteristic c2 in Bin j (j = [L, M, H]) is in the form 
(see [2] for more details), 

 ( )
2

2

1

2 1 1

k j

ref j

L tKAR

L
jG tKAR e

λ
 −
 −
 
 − = −  (13) 

where Lref = 150 mm. k2j and λ2j are given in [2] for all 
species and grades. 

4 MODEL CALIBRATION AND 
VALIDATION 

The model was calibrated in [3] against four-point flat 
and edge bending tests performed on five different 7- and 
8-ply LVL samples, all manufactured from SPG veneers. 
The model was then validated against the four-point flat 
and edge bending tests performed in [5] on (i) eight 13-
ply LVL samples manufactured from SPG veneers and 
(ii) eight 13-ply LVL samples manufactured from GMS 
veneers. The details of the experimental tests and 
construction strategies for all panels are given in [3, 5]. 
Note that in [3], the MOE, tensile strength and 
compressive strength of each veneer within the 
manufactured LVL were experimentally assessed. In [5], 
only the veneer MOE of each ply was measured prior to 
the LVL manufacture.  
 

 

Figure 3: Strength comparison experimental versus numerical 

Figure 3 shows the experimental versus predicted results 
for all test performed, both on flat and edge bending. The 
average predicted to experimental ratios are equal to 0.98 
and 1.01 for flat and edge bending, respectively. Both flat 
and edge bending have an associated Coefficient of 
Variation (CoV) of 0.10. See [3] for more details on the 
results and obtaining the average predicted to 
experimental ratios and CoV. 
The model is also able to well reproduce the non-linear 
response of the beams. Figure 4 compares the flat bending 
experimental to predicted responses of two different 
samples. 
 

 

Figure 4: Response comparison experimental versus numerical 



5 CAPACITY OF THE NEW PRODUCTS 

5.1 General 

The expected bending strength distributions of six 
commercially available LVL beam sizes, manufactured 
from early to mid-rotation GMS, SPG and SBG 
hardwood plantation veneers, were investigated using 
the validated numerical model. The beams are 
manufactured from 3.0 mm thick veneers and are (i) 15-
ply (45 mm thick) of height of 200 mm, 300 mm and 
400 mm, and (ii) 21-ply (63 mm thick) of height of 240 
mm, 400 mm and 600 mm. Four different construction 
strategies are investigated: 
• Low (L): the beams are solely manufactured from the 

“Low” grade veneers (refer to Section 2.1.2 for grade 
definition). 

• Medium (M): the beams are solely manufactured 
from the “Medium” grade veneers. 

• High (H): the beams are solely manufactured from 
the “High” grade veneers. 

• All (A): the beams are manufactured with an equal 
number of veneers from each grade, using the “Low” 
for the middle veneers, the “Medium” for the 
adjacent veneers and the “High” for the external 
veneers.  

The expected distribution of MOE encountered for the 
studied veneered resources in a mill (Eq. (12)), the 
expected tKAR value of the veneers (Eq. (13)) and the 
veneer strength (Eq. (11)) were used as random model 
input. The detailed flowchart is given in [3]. Per studied 
configuration, 10,000 Monte-Carlo simulations were run. 
Four-point bending tests were simulated on both flat and 
edge following the recommendations in the 
Australian/New-Zealand standard AS/NZS 4357.2 [20].  
The uncertainty in the numerical model in predicting the 
actual bending strength of the LVL beams was also 
considered in this parametric study. An average 
predicted to actual strength ratio (Mean/Nominal) of 
1.00 and a CoV of 0.10 were used with an assumed 
normal distribution. More details can be found in [3].  
 
5.2 Results 

Figure 5 gives the strength distribution of the 200×45 
LVL beams on flat bending for all strategies and species. 
The simulations for all remaining beams show a similar 
trend to the ones presented in Figure 5. The strength 
variability in edge bending is less than on flat bending. 
Table 3 shows the bending design strength, defined as 
the 5th percentile strength, of selected beams. Edge 
bending generally gives higher bending strength than flat 
bending for the same configuration. Using all the 
veneered resources in the construction strategy allows 
reaching bending strength (i) between the “Medium” and 
“High” construction strategies on flat bending and (ii) 
very similar to the “Medium” strategy on edge bending.  
Softwood LVL beams available in Australia [21, 22] 
have design bending strength of about 42 to 44 MPa and 
38 MPa for 200 mm and 600 mm deep beams, 
respectively, on edge and 42 MPa on flat. Within the 
limitation of the model, design bending strengths, 
superior to the previous commercialised softwood LVL 

beams, are reported in Table 3. Only the SPG beams 
manufactured from low grade veneers have similar or 
lower bending strengths to the ones of the 
commercialised softwood beams. For all analysed 
species and configurations, the LVL beams 
manufactured from the high grade veneers have design 
bending strengths 1.5 to 2.5 greater than the 
commercialised softwood beams. On edge bending, 
using all veneer grades in the manufacturing gives 
design bending strengths ranging from 48.1 MPa for the 
600×63 SPG beams to 79.2 MPa for the 200×45 GMS 
beams. For all flat and edge studied cases, the highest 
design values of 83.9 and 97.2 MPa, respectively, are 
both found for the 200×45 GMS beams. 

Table 3: Flat and edge bending design bending strength (5th 
percentile of simulations) for selected beams – in MPa 

Beam Grade SPG SBG GMS 
  Flat  Edge  Flat  Edge  Flat  Edge  

200 
×45 

L 43.2 52.2 53.1 61.0 47.6 58.6 
M 62.6 73.8 68.4 74.2 67.9 81.1 
H 81.6 92.6 81.7 84.2 83.9 97.2 
A 75.2 73.0 75.7 73.2 77.6 79.2 

400 
×45 

L 37.0 38.7 43.7 46.5 40.7 46.3 
M 53.1 56.6 56.6 58.6 57.9 65.9 
H 68.5 73.5 68.4 69.0 72.3 80.7 
A 63.7 56.4 63.4 58.9 66.2 64.6 

600 
×63 

L 33.7 32.3 38.2 39.4 37.1 40.4 
M 49.9 48.4 50.7 50.7 54.1 58.1 
H 62.5 63.5 59.8 60.5 65.9 71.8 
A 56.1 48.1 54.0 50.5 59.3 56.7 

 
In general, the SPG and GMS beams have the lowest and 
highest design bending strength of all three analysed 
species.  
 

 

Figure 5: Predicted strength distribution of 200×45 LVL beams 

6 RELIABILITY ANALYSIS 

6.1 Framework 

The relationship between the reliability index and the 
capacity factors, also referred to as “resistance factors”, 
to be used in limit state design of LVL beams 
manufactured from early to mid-rotation subtropical 
GMS, SPG and SBG plantation veneers, in both edge 
bending and flat bending, were investigated in [23]. The 
analyses were conducted on the six different beam sizes 



and the four grades mentioned previously. Four main 
load combinations (combinations of dead, live and wind 
loads) specified  in the Australian New Zealand Standard 
AS/NZS 1170.0 [24] were considered as: 
• LC1: 1.35 Gn (Dead loads only) and k = 0.57 
• LC2: 1.2 Gn + 1.5 Ln (Dead + Sustained and 

Extraordinary live loads) and k = 0.80 
• LC3: 1.2 Gn + 1.5×0.4 Ln (Dead + Sustained live 

loads) and k = 0.57 
• LC4: 1.2 Gn + Wn + 0.4 Ln (Dead + Wind + Sustained 

live loads) and k = 1.00 
where k represents the load duration factor which 
depends on the duration of the load combination of 
interest. 
The load duration effects (damage accumulation) were 
considered in the study over the assumed 50 years life 
time of the structure. The model developed by Gerhards 
[25, 26] was used. The evolution of the degree of 
damage α relative to the time t is therefore given as,   

 0

( )f t
a b

fd
e

dt

α − +
=  (14) 

where a and b are two constants found through 
experimental tests, f(t) is the stress at time t and fo is the 
short-term strength. α = 0 means no damage and α = 1 
means total damage (failure) of the timber element. 
Values of coefficients a and b for structural lumbers 
found in the literature at temperature and relative 
humidity close to the ambient ones are reported in [34] 
[42]. The smaller the values of a and b are, the more 
sensitive the timber is to creep deformation and the 
faster the structural element fails under a sustained load. 
The existing researches on reliability of timber structures 
typically use values of a and b around a = 38-40 ln(day) 
and b = 46-50.  
To analyse the reliability of the new products in [23], 
three rates of damage accumulation, based on the data 
available in the literature, were considered.  
 

 

Figure 6: Example of a stochastic Sustained and Extraordinary 
live loads  

The live loads were treated as a stochastic process and 
were broken down into two components, as in design 
specifications, (i) a sustained (or “arbitrary point-in-
time”) component Ls representing the live load due to 
normal use of the structure (weight of  people, furniture, 
moveable equipment…etc.) and (ii) an extraordinary 
component Le that simulates shorter events such as 
crowd gathering, temporary storage during remodelling 
or emergencies [27]. Details on the stochastic process is 

given in [23]. Figure 6 shows an example of live load 
generated in [23]. Other load models used are detailed in 
[23]. 
 
6.2 Recommendations 

Based on Monte-Carlo simulations and using the targeted 
reliability indices βT (i) specified in [28] for the different 
service categories of structures in the Australian standard 
AS 1720.1 [29] for LC1 to LC3 and (ii) of 2.5 [30] for 
all service categories for LC4 due to the reliability index 
when designing for wind load being historically lower 
than when designing for gravity load [30, 31], 
recommendations were made on the appropriate capacity 
factors to be used. Results show that LC2 and LC4 
typically govern the choice of the capacity factor.  
Table 4 gives the proposed φ factors for all structural 
service categories in the AS 1720.1 [29] following the 
observations presented in [23]. Contrary to international 
design specifications [24, 32, 33], where no difference is 
made between edge and flat bending in the choice of φ, 
two sets of capacity factors were proposed due the 
different edge and flat bending strength distributions. 
The reliability factors of the proposed LVL products are 
5% to 12% lower than the ones specified in the 
Australian standard AS 1720.1 [29] for commercialised 
LVL beams (typically manufactured from mature 
softwood logs). However, (i) stochastic load processes 
combined with a proper load damage accumulation 
model was likely not considered in the calibration of the 
AS 1720.1 and (ii) a different mean to nominal ratio was 
also likely used for the wind load [23, 34]. Ellingwood et 
al. [27, 35] showed that the former approach is unsafe 
and overestimates the reliability index β. The difference 
in β between the present study and the AS 1720.1 may 
therefore be less significant if similar reliability analysis 
framework were adopted. Further investigations are 
needed to evaluate this difference.  

Table 4: Proposed capacity factors for the LVL beams 
manufactured from early to mid-rotation hardwood plantation 
logs (Governing load combination showed in bracket) 

Product Category 1 
Houses and 
secondary 
structures 

Category 2 
Primary structures 
other than houses 

Category 3 
Primary structures 
intended to full and 
essential service or 

post disaster function 

LVL in AS 
1720.1 [29] 

0.95 0.90 0.80 

Proposed LVL 
– Edge bending 

0.85 
(LC4) 

0.85 
(LC4) 

0.80 (LC2 
& LC4) 

Proposed LVL 
– Flat bending 

0.85 
(LC4) 

0.80 
(LC2) 

0.70 
(LC2) 

 
7 CONCLUSION 

The paper presented a numerical model to predict the 
strength of LVL beams. The statistical distributions of the 
strength of LVL beams manufactured from early to mid-
rotation (juvenile) hardwood plantations logs were 
presented. Capacity factors to be used in limit state design 
equations for the new products were also proposed and 
found to be lower than those currently used for LVL 
beams manufactured from mature softwood logs. 
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