Login | Request Account (DAF staff only)

Strong population structure deduced from genetics, otolith chemistry and parasite abundances explains vulnerability to localized fishery collapse in a large Sciaenid fish, Protonibea diacanthus

View Altmetrics

Taillebois, L., Barton, D. P., Crook, D. A., Saunders, T., Taylor, J., Hearnden, M., Saunders, R. J., Newman, S. J., Travers, M. J., Welch, D. J., Greig, A., Dudgeon, C., Maher, S. and Ovenden, J. R. (2017) Strong population structure deduced from genetics, otolith chemistry and parasite abundances explains vulnerability to localized fishery collapse in a large Sciaenid fish, Protonibea diacanthus. Evolutionary Applications, 10 (10). pp. 978-993. ISSN 17524571

[img]
Preview
PDF
2MB

Article Link: https://doi.org/10.1111/eva.12499

Abstract

As pressure on coastal marine resources is increasing globally, the need to quantitatively assess vulnerable fish stocks is crucial in order to avoid the ecological consequences of stock depletions. Species of Sciaenidae (croakers, drums) are important components of tropical and temperate fisheries and are especially vulnerable to exploitation. The black-spotted croaker, Protonibea diacanthus, is the only large sciaenid in coastal waters of northern Australia where it is targeted by commercial, recreational and indigenous fishers due to its food value and predictable aggregating behaviour. Localised declines in the abundance of this species have been observed, highlighting the urgent requirement by managers for information on fine and broad-scale population connectivity. This study examined the population structure of P. diacanthus across northwestern Australia using three complementary methods: genetic variation in microsatellite markers, otolith elemental composition and parasite assemblage composition. The genetic analyses demonstrated that there were at least five genetically distinct populations across the study region, with gene flow most likely restricted by inshore biogeographic barriers such as the Dampier Peninsula. The otolith chemistry and parasite analyses also revealed strong spatial variation among locations within broad-scale regions, suggesting fine-scale location fidelity within the lifetimes of individual fish. The complementarity of the three techniques elucidated patterns of connectivity over a range of spatial and temporal scales. We conclude that fisheries stock assessments and management are required at fine scales (100's km) to account for the restricted exchange among populations (stocks) and to prevent localised extirpations of this species. Realistic management arrangements may involve the successive closure and opening of fishing areas to reduce fishing pressure.

Item Type:Article
Business groups:Animal Science
Additional Information:Open Access
Keywords:croaker population genetics otolith chemistry parasites stock discrimination fisheries management
Subjects:Aquaculture and Fisheries > Fisheries > Fishery conservation
Aquaculture and Fisheries > Fisheries > Fishery management. Fishery policy
Aquaculture and Fisheries > Fisheries > Fishery research
Live Archive:28 Sep 2017 03:33
Last Modified:03 Sep 2021 16:51

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics