DISEASE NOTES OR NEW RECORDS
First report of aphytaeid disease in capiscum, celery and chicory in Queensland, Australia
L. T. T. Tran-Nguyen, D. M. Persley and K. S. Gibb

Abstract. Tomato big bud phytoplasma (16SrII-B group), a widely distributed phytoplasma in Australia, was detected in celery, capiscum and chicory plants from southern Queensland.

Celery (Apium graveolens) and capiscum (Capsicum annuum) are important vegetable crops in Queensland, Australia. Celery is grown in south-east Queensland. Production during summer is in the cooler Granite Belt area (approximately 900 m elevation) whereas winter production is centred in the Lockyer Valley region. Capiscums are grown throughout the vegetable production areas of coastal and sub-coastal Queensland. Stunner production is in the Granite Belt and the Lockyer Valley. Autumn and winter cropping at Bundaberg in south Queensland and in the Bowen/Gumlu area of north Queensland provide most of the winter production for Australia. Experimental plantings of chicory (Cichorium intybus) have been grown at Bundaberg as a part of feasibility study on the potential of chicory as an industrial crop for the region.

In February 2002, 12 celery plants showing stunting, chlorosis and reddening of the leaf tips were collected from Balletteneau in the Granite Belt. Seven capiscum plants (Fig. 1) with little leaf, chlorosis and phyllophyte were collected from Childers, Stanthorpe and Gatton in south Queensland. One chicory plant with little leaf and phyllophyte was collected at Bundaberg. Samples were tested for phytoplasma with the polymerase chain reaction (PCR) method using universal primer pairs, f1 (5' AAG AAG TTT GAT TGC CTO CTO CTO CTT GAG GT 3') (Deng and Hiruki 1999) and r9T (5' CTT GCT TCA TCG CCT CTT 3') (Schneider et al. 1995) that amplified parts of the ribosomal operon comprising the 16S rRNA gene, the spacer region (8S) and the start of the 23S rRNA gene. To determine pathovars, the 800-bp PCR products were digested with two restriction enzymes, HpaI and AflII (Promega, Madison, USA) following the manufacturer's instructions. The restriction digestion patterns were compared with those of reference samples and the phytoplasma associated with the diseases in the three hosts was indistinguishable from the tomato big bud phytoplasma. Although the incidence of the phytoplasma disease in celery and capiscum crops was low in the crops examined, the pathogen has the potential to cause economic losses given the wide host range of the TBB phytoplasma (Davis et al. 1997; Schneider et al. 1999) which can be transmitted by the leafhopper vector Orosius argentatus (Hill 1943). The disease was found in capiscum crops in both south and north Queensland (Persley, unpublished data). The detection of the pathogen in chicory contributed to information on possible problems associated with the development of a new industry in the Bundaberg region.

Fig. 1. A diseased capiscum plant with little leaf and phyllophyte symptoms sampled from Gatton, Queensland, Australia.

© Australasian Plant Pathology Society 2003

10.1071/AP0355 0815-3598/03/040559

CSIRO PUBLISHING
www.publish.csiro.au/journals/app
Australiaan Plant Pathology, 2003, 32, 559–560
Acknowledgement

We thank Claire Stowen, Northern Territory University, for the initial collection and testing of celery plants. This project was funded by the Co-operative Research Centre for Tropical Plant Protection.

References


Accepted 9 July 2003