Integrated disease management of stem end rot of mango in the Southern PhilippinesExport / Share Akem, C., Opina, O., Dalisay, T., Esguerra, E., Ugay, V., Palacio, M., Juruena, M., Fueconcillo, G. and Sagolili, J. (2013) Integrated disease management of stem end rot of mango in the Southern Philippines. ACIAR Proceedings Series (139). pp. 104-110. ISSN 0816-4266 Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link. Article Link: http://www.aciar.gov.au AbstractThis research aimed to develop and evaluate pre- and postharvest management strategies to reduce stem end rot (SER) incidence and extend saleable life of 'Carabao' mango fruits in Southern Philippines. Preharvest management focused on the development and improvement of fungicide spray program, while postharvest management aimed to develop alternative interventions aside from hot water treatment (HWT). Field evaluation of systemic fungicides, namely azoxystrobin ( Amistar 25SC), tebuconazole ( Folicur 25WP), carbendazim ( Goldazim 500SC), difenoconazole ( Score 250SC) and azoxystrobin+difenoconazole ( Amistar Top), reduced blossom blight severity and improved fruit setting and retention, resulting in higher fruit yield but failed to sufficiently suppress SER incidence. Based on these findings, an improved fungicide spray program was developed taking into account the infection process of SER pathogens and fungicide resistance. Timely application of protectant (mancozeb) and systemic fungicides (azoxystrobin, carbendazim and difenoconazole) during the most critical stages of mango flower and fruit development ensured higher harvestable fruit yield and minimally lowered SER incidence. Control of SER was also achieved by employing postharvest treatment such as HWT (52-55°C for 10 min), which significantly prolonged the saleable life of mango fruits. However, extended hot water treatment (EHWT; 46°C pulp temperature for 15 min), rapid heat treatment (RHT; 59°C for 30-60 sec), fungicide dip and promising biological control agents failed to satisfactorily reduce SER and prolong saleable life. In contrast, the integration of the improved spray program as preharvest management practice, and postharvest treatments such as HWT and fungicide dips (azoxystrobin, 150-175 ppm; carbendazim, 312.5 ppm; and tebuconazole, 125-156 ppm), significantly reduced disease and extended marketable life for utmost 8 days.
Repository Staff Only: item control page |