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Abstract Hybridization is an important biological phe-
nomenon that can be used to understand the evolutionary
process of speciation of plants and their associated pests
and diseases. Interactions between hybrid plants and the
herbivores of the parental taxa may be used to elucidate the
various cues being used by the pests for host location or
other processes. The chemical composition of plants, and
their physical foliar attributes, including leaf thickness,
trichome density, moisture content and specific leaf weight
were compared between allopatric pure and commercial
hybrid species of Corymbia, an important subtropical
hardwood taxon. The leaf-eating beetle Paropsis atomaria,
to which the pure taxa represented host (C. citriodora
subsp. variegata) and non-host (C. torelliana) plants, was
used to examine patterns of herbivory in relation to these
traits. Hybrid physical foliar traits, chemical profiles, and
field and laboratory beetle feeding preference, while showing
some variability, were generally intermediate to those
exhibited by parent taxa, thus suggesting an additive
inheritance pattern. The hybrid susceptibility hypothesis was
not supported by our field or laboratory studies, and there was
no strong relationship between adult preference and larval
performance. The most-preferred adult host was the sympatric
taxon, although this species supported the lowest larval
survival, while the hybrid produced significantly smaller
pupae than the pure species. The results are discussed in
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relation to plant chemistry and physical characteristics. The
findings suggest a chemical basis for host selection
behavior and indicate that it may be possible to select for
resistance to this insect pest in these commercially important
hardwood trees.
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Introduction

Hybridization occurs in every major plant taxon (Floate and
Whitham 1994) and represents an important process that may
elucidate the evolutionary process of speciation of plants and
their associated herbivores (Strauss 1994). Additionally,
artificial hybridization is a common procedure in agriculture
and silviculture, as it has long been recognized that hybrids
can combine desirable features of parental types, or even
display novel phenotypes as a result of increases or changes
in genetic composition (Strauss 1994).

An important aspect of hybridization is the interactions
between hybrid plants and the pests and diseases of the
parental taxa. The comparison of herbivore preference and
performance on parental plants with that on hybrids can
provide insights into the inheritance of potential resistance
mechanisms (O’Reilly-Wapstra et al. 2005), and host-shift
mechanisms that may in turn explain the distribution of
insect species among plants (Thompson 1988). There are
four generally hypothesized outcomes expressed in hybrids
with respect to herbivory: hybrid susceptibility (arising
either through dominance to a susceptible parent, or a
hybrid that is more susceptible to herbivory than either
parent); hybrid resistance (arising either through dominance
to a resistant parent, or a hybrid that is more resistant than
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either parent); an additive pattern, whereby hybrid traits are
intermediate between the two parental types; or no
difference between hybrids and parental taxa (Fritz et al.
1999). None of these responses dominates in studies
published to date. In 127 studies of susceptibility of plant
species and their hybrids to attack by herbivorous insects,
hybrid susceptibility appears the most common pattern
(39%), and hybrid resistance appears to be reasonably rare
(10%), while 22% of studies identified an additive pattern,
and almost one-third (29%) found no differences between
parents and hybrids (Fritz et al. 1999; Dungey and Potts
2003; Hallgren et al. 2003; O’Reilly-Wapstra et al. 2005).
An additive pattern has been found in interactions between
eucalypt hybrids and mammalian herbivores (Scott et al.
2002).

Development of interspecific eucalypt hybrids for forest
plantations is a silvicultural strategy adopted in many
eucalypt-growing regions worldwide to maximize tree
performance by combining the desirable traits of different
species (de Assis 2000). Eucalypts are known to form
hybrids readily with related species (Griffin et al. 1988).
Traits for improvement through hybridization include
growth rate, coppicing and propagation ability, pulp yield,
wood density, and resistance to frost, drought, salinity (Dale
and Dieters 2007), and pests and diseases (Potts and
Dungey 2004). The eucalypts are a diverse group of trees
and shrubs (> 800 species), generally considered to belong
to the genera Fucalyptus (Brooker 2000), Angophora, and
Corymbia (Ladiges and Udovicic 2000; Ochieng et al.
2007a, b) in the family Myrtaceae. One prominent
characteristic of the group is the high essential oil content
of the leaves, and the oils vary substantially among taxa
(Bignell et al. 1998; Dunlop et al. 1999; Asante et al. 2001;
Keszei et al. 2008), thus affecting feeding preferences of
insect herbivores (Edwards et al. 1993; Steinbauer et al.
2004). An understanding of how characters important to
plant herbivores (e.g., secondary chemicals and physical
leaf characteristics) vary between species and their hybrids
enables an understanding of the mechanisms of host choice
by insect herbivores (Hallgren et al. 2003).

We examined variations in foliar chemical composition,
leaf physical characteristics, and feeding by herbivorous
beetles with three taxa: two allopatric species (Corymbia
citriodora variegata (CCV) and C. torelliana (CT)) and
their hybrid (CT x CCV). All are important in subtropical
hardwood plantation forestry where the hybrids have
significant advantages in growth, and tolerance to disease,
insects, and frost, and also have been successfully vegeta-
tively propagated (Lee 2007; Lee et al. in press). This
tolerance to insects is, however, anecdotal, and needs
quantification. The model pest species chosen to examine
patterns of herbivory was Paropsis atomaria Olivier
(Coleoptera: Chrysomelidae: Paropsina), a major pest of
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the commercially valuable CCV (Carnegie et al. 2008).
Paropsis atomaria is an ideal model for this study, as adults
and larvae feed on the same foliage, and thus allow a test of
linkages between oviposition preference and larval perfor-
mance. In addition, the test taxa represented a known host
(CCV), a novel host (CT), and their F1 hybrid (CT x CCV).

Methods and Materials
Study System

Corymbia citriodora subsp. variegata (CCV) belongs to the
Section Politaria, and recent studies have shown that it is
genetically indistinguishable from C. citriodora subsp.
citriodora and C. henryi (Ochieng et al. 2008; Shepherd
et al. 2008), although the taxa are chemically distinct
(Asante et al. 2001). It has a sympatric distribution with P.
atomaria, although it was recorded only recently as a host
(Nahrung 2006). Corymbia torelliana (CT) occurs naturally
in about a 350x80 km zone in northern Queensland
(Boland et al. 1992), a vicinity to which P. atomaria has
recently expanded its range (Nahrung 2006). Corymbia
torelliana (CT) is not a host for P. atomaria, although
around 20 other eucalypt species are (CAB International
2005). An artificial hybrid between CT and CCV has been
prepared for commercial purposes, and is planted widely
throughout the insect’s range (Lee 2007). All lifestages
(except pupae) of P. atomaria occur on the host plant, with
oviposition by females determining subsequent larval
feeding habitat, and the long-lived adults and all four larval
instars feeding on new growth, removing apical leaves.
This results in a characteristic broom-topped appearance to
trees (Carne 1966).

Foliage Collection

Seed was collected from one open-pollinated tree of each
pure taxon (i.e., CT and CCV), thus ensuring that all
samples had the same mother (were at least half-sibs).
Hybrid (CT x CCV), seed was collected from one CT
mother artificially pollinated from a single CCV father (i.e.,
full sibs). Neither of the hybrid parents were the same trees
(families) as the pure taxon, so as to ensure a more
representative sampling rather than looking only at intra-
familial responses. Plants were sown from seed in potting
mix comprising 50% pine bark fines, 25% peat (Aussie
Peat) composted, and 25% perlite to which Osmocote® and
Ag lime were added each at 4 kg/m’, and gypsum,
Micromax (fertilizer) and Hydroflow (wetting agent) were
added each at 1 kg/m’. Seedlings were raised in the
glasshouse for the first 6 wk under mist, and then put
under shadecloth for 2 wk before being put out into full
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sun. Plants were repotted later into 130 mm diam pots and
housed in a glasshouse (24°C, ambient light) for several
months prior to use in experiments.

Foliage used in all experiments (physical analysis,
chemical analysis, and feeding trials) was sourced from
about 20 individual plants of each taxon. Only the first two—
four fully expanded apical leaves were used for all trials to
standardize the age of foliage during testing.

Foliar Analyses—Physical Analysis

Moisture content and specific leaf weight (SLW) (used as
an indicator of leaf toughness—see Steinbauer 2001) were
determined by measuring the fresh weight (FW) of leaves
(to nearest 0.001 g), drying them in paper envelopes at
ambient temperature for 3 wk, and re-weighing them (DW).
Leaf area (mm?) was estimated by using Compu Eye Leaf
and Symptom Area software (Bakr 2005). Moisture content
was calculated as (FW - DW)/FW, while SLW was
determined as DW/area.

Foliar glabrousness was determined as the mean number
of leaf trichomes in the field of view of a dissecting
microscope (x40). The thickness (width) of the leaf lamina
was measured under a dissecting microscope (x40) by
cutting 4 small strips (~5 mm wide) and averaging the
measurements per leaf (N=12). Data were analyzed using
StatView (V 5.0.1). One-way ANOVA was used to analyze
moisture content (following arcsine-square root transforma-
tion), SLW, and lamina thickness, with Fishers LSD test
used for post-hoc comparisons. Kruskall Wallis test was
used for leaf glabrousness, as data were not normally
distributed. Twelve replicates of each foliage type were
conducted for each parameter.

Foliar Analyses—Chemical Analysis

Replicate samples (N=5) of foliage (2.07+£0.019 g FW)
from 5 randomly chosen plants of each taxon were
collected, and cut into squares (< 1 cm?), and extracted
with hexane (Sigma-Aldrich > 99%) (= 15 ml) for 50 min,
stirring for 1 min, three times within this period. The extract
was filtered through filter paper (Whatman) and stored in
the freezer (—20°C) until analysis (Jones et al. 2002; Rapley
et al. 2004c).

Samples (1 pl) were analyzed with a gas chromatograph
(GC) (Agilent 6890 Series) coupled to a mass spectrometer
MS) (Agilent 5975) and fitted with a silica capillary
column (Agilent, model HP5-MS, 30 mx250 um ID x
0.25 pm film thickness). Data were acquired under the
following GC conditions—inlet temperature: 250°C, carrier
gas: helium at 51 cm.s™', split ratio 13:1, transfer-line
temperature: 280°C, initial temperature: 40°C, initial time:
2 min, rate: 10°C.minfl, final temperature: 260°C, final

time: 6 min. The MS was held at 280°C in the ion source
with a scan rate of 4.45 scans.s .

Peaks that were present in blank hexane (control)
samples were discarded from analysis in test samples.
Tentative identities were assigned to peaks with respect to a
Kovats Retention Index analysis and the National Institute
of Standards and Technology (NIST) mass spectral library.
Mass spectra of peaks from different samples with the same
retention time were compared to ensure that the compounds
were indeed the same.

The presence of peaks in the chromatograms, and their
relative areas were analyzed by nonparametric methods
(Bray-Curtis cluster analysis and multidimensional scaling
(MDS) ordination) (Clarke 1993) to ascertain whether any
differences could be detected among the samples. The use
of relative percentage area for the peaks removes the need
for standardizing concentrations from samples where
slightly different total mass of components has been
extracted from leaf material. Instead, it is the relative
amount of each component that is compared, thus ensuring
that comparisons can be made among samples of unknown
total concentrations.. Each point in the MDS plot represents
an individual plant, and points that are close together
(clumped) correspond to individuals with similar peak
composition (presence and abundance). Since they repre-
sent relative differences among samples, the axes of an
MDS plot are dimensionless. MDS has been used success-
fully in previous studies to analyze chromatographic data
(e.g., Hayes et al. 2006).

To determine whether clusters of individual plants
relating to the taxa investigated were significantly different
from each other, we used an analysis of similarity
(ANOSIM). The ANOSIM tests are a range of Mantel-type
permutations of randomization procedures, which make no
distributional assumptions. These tests depend only upon
rank similarities, and thus are appropriate for this type of
data. We used a similarity percentages (SIMPER) analysis
to determine which peaks were the most important in
contributing to any differences between groups, and to
assess similarity between individuals within each group.
The software used for the multivariate analysis was Primer
5 for Windows (V 5.2.9, Clarke and Gorley 2001).

Herbivory Trials—Field Assessment

Two field sites in Queensland (Site I S 26.595° E 151.915°;
Site II S 26.101° E 151.623°) containing CT, CCV and
CT x CCV were monitored for the incidence (proportion of
trees with damage) of characteristic damage caused by
Paropsis atomaria. Both plantations were established in
March 2004 so were the same age at time of sampling
(January 2008). Site I comprised a single tree plot design
with each family/seedlot represented by one randomly
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allocated individual in each of twenty blocks of 100 trees
each. One half (i.e., 10 blocks) of the entire site was
sampled. Site II comprised 20 lines of 10 trees each. Each
plant type was represented by at least 4 such line-plots,
each representing a different family/seedlot except CCV
which was represented by only one line-plot. Larvae,
beetles, and egg batches were present at both sites when
censuses were conducted. Each tree was scored for its
suitability as a host for P. afomaria by recording the
presence or absence of P atomaria lifestages. y>-pairwise
comparisons were made for each site to compare the beetle
incidence on each taxon.

Herbivory Trials—Laboratory Bioassays

The same plants used in the chemical and physical foliar
attribute studies were used to provide foliage for laboratory
bioassays with P. atomaria.

Herbivory Trials—Larval (No-Choice) Trials

Field-collected egg batches were held in a controlled-
temperature cabinet at 25°C, 16L:8D photoperiod. Unfed
(except on egg chorion) neonate larvae were transferred
with a soft paintbrush, with larvae from different egg
batches divided among treatments to control for possible
maternal effects. Eight larvae were placed directly onto test
foliage for each replicate (N=11 per taxon). The experiment
was conducted in a controlled temperature cabinet at 16°C,
16L:8D. The group size was selected as that above which
mortality was constant (Duffy et al. 2008), while 16°C
represented the temperature at which mortality was lowest
(Nahrung et al. 2008) in previous laboratory studies. A
piece of moist filter paper was provided to slow desiccation
of treatment foliage. Mortality was recorded, old foliage
and filter paper were removed, and fresh filter paper and
foliage were added every 3—4 days. Care was taken to
ensure that larvae were provided an excess of foliage, such
that they never consumed all foliage present. When larvae
reached the fourth instar, the replicate was transferred to a
larger plastic cage (160x110x35 mm), and upon pre-
pupation (dorso-ventral flattening and cessation of feeding)
individuals were transferred to separate, numbered,
sterilized-soil-filled cells of a plastic modular tray (cell
dimensions 20x20 mm). When pupae formed, they were
weighed (to nearest 0.001 g) on an electronic balance, and
returned to their cell until adult emergence. On emergence,
sex was determined under a dissecting microscope (x40),
using tarsal differences of the foreleg as the discriminating
factor (Baly 1862).

Overall larval mortality, development time and pupal
weight were used to assess larval performance on the
different foliage types. One-way ANOVA was used to
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compare foliage type among these performance parameters,
with proportion data arcsine-square root transformed prior
to analysis, and Fisher'’s LSD test used to post-hoc test. A
Kaplan-Meier survival curve (Kaplan and Meier 1958) was
plotted for each foliage type, and non-parametric pairwise
comparisons were made (P<0.05) to compare larval
survival rate on different taxa.

Herbivory Trials—Adult Feeding (Choice) Trials

Field collected beetles were housed in gauze cages and
provided with fresh Eucalyptus cloeziana foliage prior to
use. Twenty-four hours before the start of the trial, beetles
were removed from foliage, their sex determined as above,
and deprived of foliage until the trial began. For each
replicate, one male-female beetle pair was placed into a
plastic arena (160%110x70 mm). An apical branch com-
prising the first 2—4 fully expanded leaves of each foliage
type was inserted through holes in the base of the cage into
water below. Visually-estimated equivalent biomass was
provided of each type in each replicate; twelve replicates
were run simultaneously under ambient laboratory con-
ditions. The experiment ran for 3 d, after which adults were
removed and the remaining area of each leaf was estimated
by placing it under a clear plastic sheet of grid-squares (3 x
3 mm) and counting the number of squares (to nearest 0.25
of a square) of foliage. The amount of foliage eaten was
determined by multiplying the number of grid-squares by
9 mm?. One-way ANOVA was used to detect differences
between treatments, and a Fisher’s LSD test was used to
identify where those differences lay. Data for all herbivory
trials were analyzed with StatView (V 5.0.1).

Results
Foliar Analyses

Moisture content was the only parameter measured not to
differ significantly among different taxa (Table 1). C.
ciriodora subsp. variegata (CCV) had the highest specific
leaf weight and lamina thickness, and no leaf hairs (Table 1).
In almost all cases, results for the hybrid either lay between
that of each parent, or was not different from CT.

The compounds identified in extracts were primarily mono-
and sesquiterpenes, as well as some waxes and long-chain
hydrocarbons that could not be identified unambiguously. The
percentage of individuals in each taxon group from which the
component was identified is shown (Appendix 1). Chromato-
grams produced from hexane extracts of leaves of the three
taxa were distinctly different from each other. The compo-
sition of components was consistent between replicates /
individuals, however, the relative amounts varied among
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Table 1 Moisture content, SLW,

Moisture
content (%)

Specific Leaf

Weight (mg/mm?)

Lamina
thickness (pm)

Leaf surface
glabrousness
(# trichomes)

lamina thickness and glabrous- Taxon

ness of Corymbia citriodora

subsp. variegata (CCV),

Corymbia torelliana (CT) and

their hybrid (CT x CCV). The ccv

final row shows analysis results, CT x CCV

and different letters within CT
columns designate significant

differences between taxa ANOVA/Kruskall-Wallis results

77.241.6 0.098+0.007 a 126.245.4a 0a

74.0+1.9 0.052+0.006 b 102.4+4.3b 87.3425.3b
80.0+0.8 0.054+0.007 b 88.7+3.9¢ 106.9+23.6b
Fa30=23  Fa30=139 Foss =174 H, = 23.79
P=0.12 P<0.001 P<0.001 P=0.03

taxa. The CT samples were highest for the late-eluting
components, the CCV samples highest for the early-eluting
components, and the CT x CCV samples either intermediate
between the two parental species or showing an additive
response (Fig. 1).

In addition to visual chromatographic differences, the
samples were statistically distinguishable, and pairwise
comparisons demonstrated that all taxa differed from each
other (ANOSIM: Global R=0.814, P=0.001; CCV, CT: R=
0.964, P=0.008; CCV, CT x CCV: R=0.834, P=0.008; CT,
CT x CCV: R=1, P=0.008). The MDS output (Fig. 2),
provides a visual representation of the data described by the
ANOSIM. Each point on the figure represents an individual
extract. Points that are close together are more similar, and
those farther away are more different.

The SIMPER analysis is a measure of the similarities of
samples within a defined grouping (in this case taxa
studied). All groups have high levels of similarity, but the
CCV samples are the most dispersed (Fig. 2).
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Fig. 1 Chromatograms produced by hexane extracts of Corymbia
leaves. A typical extract from Corymbia torelliana (CT) is shown on
top (a), a typical extract from Corymbia citriodora subsp. variegata
(CCV) is shown on the bottom (c¢), and a typical extract from the
hybrid (CT x CCV) is shown in the center (b)

The mean percentage area (+ s.e.) under the peak for the
most important peaks used to distinguish between the taxa
are listed (Appendix 2). These peaks account for over 50%
of the total dissimilarity between the groups. The peaks are
listed in the table in order of increasing dissimilarity
between the groups, i.e., the first peak contributes most to
the overall dissimilarity. Retention time is as given in
Appendix 1.

Herbivory Trials

The proportion of trees associated with P. afomaria did not
differ between sites (x> = 3.04, P=0.08) so data from the two
sites were combined for subsequent taxa-level analysis.
Three-quarters (153/204) of CCV trees were damaged by P,
atomaria, while less than 30% (67/232) of CT trees exhibited
damage symptoms. Sixty-five percent (202/313) of hybrid
CT x CCV trees were associated with P. atomaria. Again,
the hybrid was intermediate between the parental taxa. Pair-
wise comparisons (Bonferroni-adjusted, P=0.02) demonstrated
that each taxon differed significantly from the others
(CCV, CT y* =92.4, P<0.001; CCV, CT x CCV ¢*=6.3,
P=0.01; CT, CT x CCV y* = 67.8, P<0.001).

- Stress: 0.05
u 87.7%
64.8% 82.1% 2

A [

A
|
n A0
|

Fig. 2 Two-dimensional MDS ordination of the 15 Corymbia extracts
including SIMPER measures of average similarity. The plot is based
on fourth-root transformed abundances and a Bray-Curtis similarity
matrix. Extracts from each taxon cluster separately. Symbols:
Corymbia citriodora subsp. variegata-CCV (m), Corymbia torelliana-
CT (e), their hybrid-CT x CCV(A)
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Table 2 Mean + s.e. mortality, development time and pupal weights of Paropsis atomaria larvae reared on Corymbia taxa. Different letters within

columns designate significant differences between taxa

Taxon Larval mortality (%) Development time (days) Pupal weight (g)

male female
Cccv 84.1+6.8 a 42.6x1.0 0.12+0.01 a 0.18+0.01 a
CT x CCV 54.5+8.3 b 42.6+0.9 0.10+0.01 b 0.14+0.01 b
CT 51.1+6.4 b 40.9+0.5 0.12+£0.01 a 0.17+£0.01 a

Overall larval mortality (proportion dying before pupation)
was highest on CCV (Table 2) (ANOVA: F,30 = 8.5,
P=0.001), although mortality rate differed significantly only
between the two parent taxa (Fig. 3) (test statistic = 5.1,
P=0.02). Larval development time did not differ according to
rearing host (ANOVA: F, 5, = 1.5, P=0.25), but pupal weight
differed depending on sex (males were smaller than females)
and natal host taxon (ANOVA: sex: F 36 = 70.0, P<0.001;
taxa: [ 36 = 9.2, P=0.00006, sex*taxa: [, 35 = 2.2, P=0.13;
Table 2), with hybrids resulting in significantly smaller adults
than parent taxa for both sexes.

Feeding occurred on CCV in all replicates, whereas only
40% of replicates of CT and CT x CCV sustained adult
feeding damage. The amount (mm?) of foliage eaten
differed among taxa (ANOVA: F,,; = 17.12, P<0.001),
with CCV the most-preferred host (Fig. 4).

Discussion

Although there is some variability in the response, the
hybrid exhibited traits intermediate to the parent species for
several of the foliar characteristics investigated, and the
feeding preference of P. atomaria followed a similar trend
in both the laboratory and field (Table 3). The known host,

number of larvae

0 10 20 30 40 50

time (days)
Fig. 3 Kaplan-Meier survival curve illustrating the mortality rate of
Paropsis atomaria larvae reared on Corymbia citriodora subsp

variegata-CCV (m), Corymbia torelliana-CT (e) or their hybrid-CT
x CCV (A)
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CCYV, recorded the highest field incidence of P. atomaria,
and laboratory trials supported this pattern, with CCV the
most-preferred taxon in adult feeding trials. Almost one-
fifth of the foliar chemical components identified were
detected only in CCV, and it may be one (or many) of
these compounds that are involved in host location and
selection for this species. The one with the greatest
concentration was eclemol, a sesquiterpenoid that has
been reported previously as a dominant component of
CCV leaf chemistry (Asante et al. 2001). Similarly,
limonene was present in CCV and the hybrid, but was
not detectable in CT. Limonene is a well known attractant
for a range of insects, especially beetles (Chenier and
Philogene 1989; Miller 2007). The monoterpene o-pinene
is a common component of eucalypt leaf chemistry
(Asante et al. 2001; Bignell et al. 1998), that varies
among the taxa in this study, with high levels in both the
host plant and the hybrid, and low levels in CT. «-Pinene
is a known kairomone for Colorado potato beetle
(Leptinotarsa decemlineata, Coleoptera: Chrysomelidae),
and attracts the beetle (Panasiuk 1984). The high levels of
both limonene and «-pinene in the host taxon and hybrid,
and its lack of detectibility in extracts of the non-host
plant, may explain some of the variation in behavior
observed in our study.

Only two compounds were detectable in the non-host
parent (CT) alone, and it is possible that these are repellent
to P. atomaria. Ohmart (1991) speculated that adult
paropsine beetles were repelled or unattracted to the volatile

350 - a

300 - ]’

T 2
foliage area (mm®)
- - n n
o a o a
o o o o

(&)
o
L

0 ]

ccv

E——
CTxCCV cT

Fig. 4 Mean + s.e. amount of Corymbia taxa foliage consumed
(mm?) by one male-female pair of Paropsis atomaria adults
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Table 3 Summary of foliar attributes and responses of Paropsis atomaria to different Corymbia taxa: dark grey = highest, white = lowest, light
grey = intermediate, stippled = no differences. These rankings were statistically significant except where otherwise shown

CCV

leaf thickness

specific leaf weight

leaf glabrousness

moisture content

chemical profile

field incidence

adult feeding pref (lab)
larval mortality rate (lab)
overall larval mortality (lab)
larval development time (lab)
pupal weight (lab)

compounds produced by juvenile foliage of shining gum,
since larvae develop just as well on this foliage type as on adult
foliage on which adults feed and oviposit. There often is not a
tight linkage between paropsine oviposition preference and
larval performance (Carne 1966; de Little and Madden 1975;
Baker et al. 2002; Nahrung and Allen 2003), and since larval
habitat is determined principally by the placement of eggs by
females, oviposition preference is probably a more pertinent
indicator of the plant attributes used for host selection.

Assuming that P. atomaria adult feeding preference
reflects oviposition preference, larvae would rarely encounter
CT under field conditions. Larval development time was
unaffected by rearing host in these trials, but subsequent
pupal mass was significantly lower on the hybrid. Increased
pupal weight confers increased adult fecundity in P
atomaria (Carne 1966), suggesting a reduction in herbivore
fitness arising from larvae developing on the hybrid. This
result cannot be attributed to foliar physical characteristics,
since the hybrid displayed intermediate or CT-equivalent
traits, but there were five chemical components detected only
in CT x CCV foliage, including 1,8-cineole, o«-cubebene,
and (3-patchoulene, which may have contributed physiolog-
ically to lower pupal weight. 1,8-Cineole and o-cubebene
were detected in very low amounts in CCV foliage (Asante
et al. 2001), and were probably present in trace amounts in
parental foliage here, representing an additive (sensu Fritz et
al. 1999) effect in the hybrid.

Overall larval mortality was highest on P. atomaria’s
sympatric host, CCV, and we attribute this to the high SLW
and lamina thickness in this species: leaf toughness
impedes feeding establishment of neonate paropsine larvae
(Ohmart et al. 1987; Larsson and Ohmart 1988; Nahrung et
al. 2001); yet, unexpectedly, larvae were able to feed on the
densely hairy CT foliage. Leaf trichomes are a deterrent to
herbivory in many plant species (Kitamura et al. 2007;
Bjorkman et al. 2008). Paropsis atomaria larval growth
rate also appears unaffected by tannins and other phenolic

CT x CCV CT
all equal
ab b
all equal

compounds in host foliage (Fox and Macauley 1977):
larvae absorb terpenoids and probably have a metabolic
detoxification process for dealing with them (e.g., 86% of
ingested 1,8-cineole was absorbed or converted to other
compounds) (Ohmart and Larsson 1989).

Although hybrid susceptibility to herbivores is predicted in
eucalypts (Dungey and Potts 2003; Potts and Dungey 2004),
the hybrid taxon displayed intermediate susceptibility (field
incidence) to P. atomaria in our study, as it did with respect
to possum damage (Scott et al. 2002). Nevertheless, our
results suggest a possible chemical basis for host selection
behavior and that selection for potential resistance may be
possible for this species (see also Henery et al. 2008).
Differential resistance to a number of significant insect pests,
including eucalypt weevil (Dungey and Potts 2003), sawflies
(Jordan et al. 2002), leaf beetles (Raymond 1995; Rapley et
al. 2004a), and autumn gum moth (Jones et al. 2002; Rapley
et al. 2004b) has been found in other eucalypts.

Although we have detected useful chemical character-
istics to distinguish among the taxa in this study, whether
any of these are relevant to the host finding/acceptance
behavior of P. atomaria is unclear. The next step is an
examination of electroantennagraphic (EAG) responses of
the beetle to the plant extracts, as a method of determining
the cues used by beetles. Understanding the preferences of
this insect pest will assist in the choice of parental taxa and
hybrids used for forestry, as these hardwoods become an
ever more important component of the industry.
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Appendix 1

Retention times, kovats retention index and tentative identities of components detected in hexane extracts of Corymbia leaves, and the percentage
of replicates of each taxon in which the component was identified. Unidentified components are designated “?”

Ret. Time (min)
3.566
3.614
4.339
5.064
5.398
5.87
5.93
6.146
6.297
6.349
6.788
7.703
7.974
8.483
9.109
9.589
9.937
11.109
11.232
11.443
11.604
12.12
12.16
12.537
12.846
13.46
13.622
13.737
13.83
13.94
13.975
14.143
14.207
16.042
16.942
17.377
18.517
19.171
20.664
20.713
20.851
20.885
21.92
22.253
22.385
23.252
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Kovats Index
901
905
956
999
1023
1054
1058
1071
1080
1083
1111
1176
1193
1232
1278
1314
1342
1437
1447
1465
1478
1523
1527
1561
1588
1646
1662
1673
1681
1691
1695
1711
1718
1906
2003
2055
2192
2275
2472
2478
2496
2501
2633
2674
2690
2794

Name
(E)-2-hexenal
m-xylene
«-pinene
[3-pinene
1,2,3-trimethyl benzene
?

limonene
3-carene
1,8-cineole

0

B I CRCE

hydrocarbon

methyl naphthalene

cycloisolongifolene
4,11,11-trimethyl-8-methylenebicyclo[7,2,0Jundec-4-ene
alloaromadendrene

«-cubebene

[3-patchoulene

sesquiterpene
1,2,3,4,6,8a-hexahydro-1-isopropyl-4,7-dimethylnaphthalene
elemol

sesquiterpene

1,2,6-hexanetriol

0

?

?

?

sesquiterpene

?

oxygenated hydrocarbon
? (N-containing)
octadecanol

? (N-containing)
?

?

hydrocarbon
hydrocarbon
hydrocarbon

?

hydrocarbon

hydrocarbon
hydrocarbon

CcCcv
0
100
100
80
80
60
80
20
0
60
100
20
40
60
20
20
80
40
100
40
0

0
100
80
100
100
60
80

80

80

100

80

60

80

60

60

20

60

CT x CCV
0
100
100
100
100
0
100
100
60
0
20
40
0

100
100
80
100
60
60
20
40
80

100
80
40
20
40
40

80
100
100
20
40
20
40
100
100
20
100
100
100
100

100
100

100

100
100
80

100
80

100
100
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23.315 2802 hydrocarbon 40 80 100
23.524 2826 hydrocarbon 80 100 100
23.74 2851 ? 0 20 80
23.834 2862 ? 40 0 0
24.519 2939 hydrocarbon 100 100 100
24.833 2974 ? 20 0 0
24.868 2978 ? 20 0 0
25.006 2993 ? 20 20 0
26.149 3115 eicosane 100 100 100
28.568 3357 ? 0 0 20
28.896 3388 ? 20 0 0
28.916 3390 ? 20 0 0
Appendix 2

Mean + s.e. percentage area under the peak for compounds (identified by retention time) used to distinguish between pairs of taxa (A) CCV vs.
CT; (B) CCV vs. CT x CCV; (C) CT vs. CT x CCV

a
Retention time
12.846
3.566
23.252
14.143
5.93
24.519
26.149
3.614
22.385
23.524
4.339
13.46
17.377
21.920
19.171
6.146
b
Retention time
12.846
14.143
23.252
5.93
6.146
20.851
24.519
20.713
22.385
21.923
19.171
22.253

Mean % area-CCV

32.3+7.89
0

1.30+1.10
4.34+1.07
12.7+5.54
3.37+£2.07
1.50+0.61
1.93+1.14
0

0.43+0.19
22.5+8.18
5.60£1.20
0

0

1.14+0.72
1.14+1.14

Mean % area-CCV

32.3+7.89
4.34+1.07
1.30+1.10
12.7+5.54
1.14+1.14
0.15+0.06
3.37+£2.07
0.17+0.07
0

0

1.14+0.72
0.06+0.06

Mean % area-CT
0
5.51£1.07
16.6+£1.62
0

0
33.8+2.47
25.0+2.02
0
1.03+£0.18
5.14+0.75
3.33+1.24
0.21+0.05
0.44+0.10
0.38+0.03
0.01£0.01
0.34+0.11

Mean % area-CT x CCV
0

0
10.5+0.65
0.56+0.03
1.49+0.38
3.02+0.35
18.1+1.70
2.75+0.28
0.53+0.14
0.45+0.16
0.04+0.04
0.57+£0.08

% contribution to group dissimilarity

6.68
434
4.17
4.02
3.81
3.59
3.47
2.98
2.87
2.49
242
2.39
2.28
2.25
2.18
2.15

% contribution to group dissimilarity

7.70
4.64
4.07
3.29
3.17
3.01
2.97
2.86
2.76
2.71
2.45
243

@ Springer



1052 J Chem Ecol (2009) 35:1043-1053
26.149 1.50+0.61 9.34+0.53 2.40

23.524 0.43+0.19 3.32+0.31 2.36

6.788 0.53+0.13 0.03+0.03 2.37

8.483 1.24+0.53 0 2.28

c

Retention time Mean % area-CT

Mean % area-CT x CCV

% contribution to group dissimilarity

3.566 5.51+1.07 0 7.72
3.614 0 4.08+0.59 7.18
4.339 3.33+1.24 30.5+1.24 5.46
5.93 0 0.56+0.03 4.42
13.46 0.21+0.05 4.94+0.75 4.14
17.377 0.44+0.10 0.11+0.11 3.37
23.74 0.39+0.17 0.14+0.14 2.89
12.537 0 0.21+0.07 2.84
20.851 0.38+0.09 3.02+0.35 2.76
20.885 0.24+0.07 0.13+0.13 2.70
20.713 0.39+0.11 2.75+0.28 2.63
11.109 0 0.13+0.05 2.51
26.149 25.04+2.02 9.34+0.53 2.48
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