A core metabolic enzyme mediates resistance to phosphine gasExport / Share PlumX View Altmetrics View AltmetricsSchlipalius, D. I., Valmas, N., Tuck, A. G., Jagadeesan, R., Maddock, L., Kaur, R., Goldinger, A., Anderson, C., Kuang, J., Zuryn, S., Mau, Y.S., Cheng, Q., Collins, P. J., Nayak, M. K., Schirra, H. J., Hilliard, M. A. and Ebert, P. R. (2012) A core metabolic enzyme mediates resistance to phosphine gas. Science, 338 (6108). pp. 807-810. ISSN 1095-9203 (Electronic)0036-8075 (Linking) Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link. Article Link: http://dx.doi.org/10.1126/science.1224951 Publisher URL: http://www.sciencemag.org/content/338/6108/807.full AbstractPhosphine is a small redox-active gas that is used to protect global grain reserves, which are threatened by the emergence of phosphine resistance in pest insects. We find that polymorphisms responsible for genetic resistance cluster around the redox-active catalytic disulfide or the dimerization interface of dihydrolipoamide dehydrogenase (DLD) in insects (Rhyzopertha dominica and Tribolium castaneum) and nematodes (Caenorhabditis elegans). DLD is a core metabolic enzyme representing a new class of resistance factor for a redox-active metabolic toxin. It participates in four key steps of core metabolism, and metabolite profiles indicate that phosphine exposure in mutant and wild-type animals affects these steps differently. Mutation of DLD in C. elegans increases arsenite sensitivity. This specific vulnerability may be exploited to control phosphine-resistant insects and safeguard food security.
Repository Staff Only: item control page |