Login | Create Account (DAF staff only)

Migration of green turtles (Chelonia mydas) from Australasian feeding grounds inferred from genetic analyses

Dethmers, K.E.M. and Jensen, M.P. and Broderick, D. and Fitzsimmons, N.N. and Limpus, C.J. and Moritiz, C. (2010) Migration of green turtles (Chelonia mydas) from Australasian feeding grounds inferred from genetic analyses. Marine and Freshwater Research, 61 (12). pp. 1376-1387.

Full text not currently attached. Access may be available via the Publisher's website or OpenAccess link.

Article Link(s): http://dx.doi.org/10.1071/MF10084

Publisher URL: http://www.publish.csiro.au

Abstract

Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.

Item Type:Article
Corporate Creators:University of Canberra, DEEDI, EPA, Radboud University, University of California
Additional Information: © CSIRO
Keywords:Dispersal; Indo-Pacific; migratory connectivity; mixed-stock analysis; mtDNA.
Subjects:Science > Zoology > Chordates. Vertebrates > Reptiles and amphibians
Science > Biology > Genetics
Aquaculture and Fisheries > Fisheries > By region or country
Deposited On:28 Apr 2011 06:54
Last Modified:15 Jun 2011 23:19

Repository Staff Only: item control page