Login | Request Account (DAF staff only)

Dynamics of productivity in pigeonpea [Cajanus cajan (L.) Millsp.] in subtropical Australia

Share this record

Add to FacebookAdd to LinkedinAdd to XAdd to WechatAdd to Microsoft_teamsAdd to WhatsappAdd to Any

Export this record

View Altmetrics

Mahendraraj, S., Collins, M., Chauhan, Y. S., Mellor, V. and Rachaputi, R. C. N. (2024) Dynamics of productivity in pigeonpea [Cajanus cajan (L.) Millsp.] in subtropical Australia. Agronomy Journal, n/a (n/a). ISSN 0002-1962

[img]
Preview
PDF
802kB

Article Link: https://doi.org/10.1002/agj2.21667

Publisher URL: https://acsess.onlinelibrary.wiley.com/doi/abs/10.1002/agj2.21667

Abstract

Pigeonpea productivity can be enhanced by optimally matching the physiology of genotypes to environmental conditions. Information on crop responses to the environment has been lacking for the short-duration pigeonpea genotypes, which are being trialed to develop the Australian pigeonpea industry. The objective of this study was to examine the dynamics of productivity in relation to radiation use efficiency (RUE) and its influence on yield partitioning. Seven field trials, employing three pigeonpea [Cajanus cajan (L.). Millsp.] genotypes, were established at the Gatton Campus, the University of Queensland, Australia, in 2017/2018 and 2018/2019 summer seasons. The study reveals that leaf area development, influenced by growing environment, genotypes, and their interactions, were the key factors for the differences in leaf area duration and RUE. Pigeonpea planted in December had higher seasonal (1.11 g MJ−1) as well as reproductive (0.71 g MJ−1) RUE, resulting in significant differences in total dry matter (TDM) and grain yield (GY). GY was positively associated with seasonal RUE (R2 = 0.62), and the relationship was stronger (R2 = 0.83) for the reproductive phase (RUE(R)). The positive association between GY and RUE(R) suggested that maintaining optimum leaf area during the grain filling period is crucial to achieve higher productivity. Variations in GY were related to amount and rate of TDM accumulation before flowering (R2 = 0.51 and R2 = 0.53, respectively). Hence, achieving greater TDM before flowering was determinant for achieving higher productivity. The present study provided updated information on dynamics of productivity that will enable more comprehensive modelling of pigeonpea adaptation under subtropical conditions.

Item Type:Article
Corporate Creators:Department of Agriculture and Fisheries, Queensland
Subjects:Science > Botany > Genetics
Agriculture > Agriculture (General) > Agricultural meteorology. Crops and climate
Agriculture > Agriculture (General) > Methods and systems of culture. Cropping systems
Plant culture > Field crops
Agriculture > By region or country > Australia
Agriculture > By region or country > Australia > Queensland
Live Archive:24 Sep 2024 23:06
Last Modified:24 Sep 2024 23:06

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics