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A B S T R A C T   

Tree nuts are a convenient and nutritious food source and recently considerable attention has been placed on 
quality assessment to provide high quality nuts and improve consumer satisfaction. Moisture is a critical 
parameter for tree nut quality and is routinely monitored throughout post-harvest processing. However, current 
direct methods to assess nut moisture are based on using limited numbers of representative sub-sets and are 
destructive. This study aimed to use hyperspectral imaging and machine learning (ML) to predict moisture of 
individual macadamia nuts during post-harvest processing. Specifically, we aimed to compare data extraction 
methods (automatic vs. manual) and nut orientation (base-up, base-down and combined orientations) during 
imaging in predicting moisture for nut-in-shell and kernels. We also explored minimum wavelength numbers to 
predict moisture. Spectra were obtained from images of nuts in two orientations and extracted using manual and 
automatic methods prior to development of partial least squares (PLSR), artificial neural network (ANN), support 
vector machine (SVM) and Gaussian process regression (GPR) models. Kernel moisture prediction was more 
accurate using automatically extracted spectra, whereas nut-in-shell moisture prediction accuracy was similar for 
either method. For kernels, combining the spectra from two images of nuts in base-up and base-down orienta-
tions provided similar prediction accuracy (RMSET = 0.308 %), compared with spectra from one image (RMSET 
≥ 0.341 %), and for nut-in-shell, using spectra from one image also provided similar accuracy (RMSET ≈ 1.2 %) 
as using both images combined. PLSR models predicted moisture with very high accuracy for both nut-in-shell 
(R2

T = 0.96, RMSET = 1.20 %, RPD = 5.15) and kernels (R2
T = 0.99, RMSET = 0.308 %, RPD = 11.05) following 

selection of ten important wavelength bands between 760 and 967 nm. ANN and GPR also achieved equivalent 
(R2

T = 0.99) highest accuracy predictions for kernels, however, all wavelengths were required, which would 
increase computational processing time for high volume applications. The important wavelength bands required 
to develop accurate models for macadamia moisture prediction are consistent with other food and nut products 
and prediction accuracies are possible for process control applications using only 10 wavelength bands. Several 
ML models including PLSR, ANN and GPR are suitable for use with Vis/NIR hyperspectral images to predict 
macadamia moisture, however, for industrial applications where high volume through-put is required, using 
PLSR with limited selected wavelength bands is recommended. Overall, hyperspectral imaging combined with 
computer vision software and ML models showed significant potential to predict moisture concentration of 
macadamia during post-harvest processing.   

1. Introduction 

Tree nuts are a food source high in protein, nutrients, fibre and 

healthy fats (Maestri, 2023; Ros, 2010). Tree nuts contain unsaturated 
fats and antioxidants giving them wide-ranging metabolic and cardio-
vascular benefits when consumed as food (Buthelezi et al., 2019; 
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Maestri, 2023; Ros, 2010; Yang et al., 2009). However, tree nuts are 
susceptible to a range of quality defects and effective post-harvest pro-
cessing and handling is critical to maximise shelf life and nutritional 
quality for consumers (Gama et al., 2018). For example, high moisture 
concentration and humidity can induce mould and microbial growth, 
rancidity and internal discoloration of nuts and decrease nutrients over- 
time leading to lower quality product and consumer dissatisfaction 
(Gama et al., 2018; Kowitz and Mason, 2003; Walton et al., 2013). Nut 
moisture varies among batches collected at different farms and nuts can 
also reabsorb moisture from the atmosphere, therefore, moisture must 
be continually monitored throughout the post-harvest supply chain to 
maintain high quality product (Walton and Wallace, 2008). Commonly 
used direct methods to quantify nut moisture include gravimetric, 
coulometric or chemical such as the Karl Fisher titration (Zambrano 
et al., 2019). However, direct methods are destructive, and therefore, 
the same samples cannot be used for further analysis, sale or con-
sumption (Zambrano et al., 2019). Moreover, current direct methods are 
only suitable for testing a small number of samples that forms an 
assessment of a representative sub-set of any given batch and is therefore 
subject to sampling biases (Buthelezi et al., 2019; Zambrano et al., 
2019). Hence, rapid and non-destructive assessment methods are being 
sought. 

Hyperspectral imaging (HSI) is emerging as a versatile and effective 
tool to non-destructively determine a wide range of physical and 
chemical parameters in food and agricultural applications (Dung et al., 
2023; Farrar et al., 2021; Farrar et al., 2023; Hapuarachchi et al., 2023; 
Malmir et al., 2020). Most commonly, the visible and near-infrared (Vis/ 
NIR) and short-wave infrared (SWIR) are being investigated for plant 
and food applications because shorter NIR wavelengths afford increased 
penetration depth for object analysis (Adebayo et al., 2016; Manley, 
2014). The Vis/NIR spectral range between 400 and 1000 nm contains 
wavelength bands recorded by common red, green, blue (RGB) vision 
systems (Manley, 2014). However, in addition to RGB wavelength 
bands, hyperspectral images contain additional information from the 
infrared region (Manley, 2014). Hyperspectral images have been used to 
assess moisture concentration of complex and heterogeneous food ma-
terials such as red meats, prawns, soybeans and leaves (Huang et al., 
2014; Kamruzzaman et al., 2016; Sun et al., 2019; Wei et al., 2019; Wu 
et al., 2012). However, moisture concentration of macadamia tree nuts 
has not been previously determined using HSI a system. 

Hyperspectral images must be processed prior to predictive model 
development to differentiate and separate objects with varying shapes 
from the image background. This process may be done manually in 
scoping studies but needs to be automated using computer vision for real 
world applications (Ma et al., 2021; Wu et al., 2012). Generally, many 
nuts are presented in a single hyperspectral image that includes both 
target nuts and the background (Wu et al., 2012). Moreover, the shape of 
nuts is irregular, their chemical composition is heterogeneous and 
different parts of a given nut may have diverse chemical compositions 
(Wallace and Walton, 2011). For example, using spectra extracted from 
different spatial regions of interest (ROI), and the orientation of tree 
fruits, such as avocado, during imaging can affect the prediction accu-
racy of developed models (Kämper et al., 2020). However, object 
orientation and extraction method must still be examined for macad-
amia nuts which are much smaller than tree fruits like avocado. Spectral 
data can be extracted from images manually (handcrafted) or using 
computer vision software to automatically identify nuts using image 
processing tools including boundary detection (Ma et al., 2021; Wu 
et al., 2012). For example, boundary detection can effectively outline 
and detect objects in hyperspectral images by exploiting the near- 
infrared or short-wave infrared spectrum (Al-Khafaji et al., 2021). 
Currently, there is no definitive agreement within the literature 
regarding the optimal way to image and extract hyperspectral data from 
tree nuts for use in moisture prediction. 

Hyperspectral imaging systems generate very large datasets that 
often contain highly related and analogous spectral information making 

their interpretation difficult using traditional statistical methods 
(ElMasry et al., 2013). Machine learning (ML) techniques are suitable 
for processing large and complex datasets and have also been shown to 
improve prediction accuracy for some datasets (Saha and Manick-
avasagan, 2021). Until recently, ML techniques were considered too 
computationally demanding for high throughput systems (Saha and 
Manickavasagan, 2021), however, rapid advancement in computer 
processing efficiency increased the potential for ML to be deployed in 
agricultural and food processing applications (Saha and Manick-
avasagan, 2021). Machine learning includes algorithms that can learn 
from data without relying on explicit programming (Saha and Manick-
avasagan, 2021). Supervised learning is the process of training a model 
on labelled training data (reference data) to make classification or 
prediction about the future (independent test) data (Saha and Manick-
avasagan, 2021). Supervised methods include, amongst other, Artificial 
Neural Networks (ANN), Gaussian Process Regression (GPR), Partial 
Least Square Regression (PLSR) and Support Vector Machines (SVM) 
(Saha and Manickavasagan, 2021). Additionally, the large quantity of 
data captured within hyperspectral images can be pre-processed to 
reduce spectral noise and unimportant information and post-processing 
may also be implemented for selection of key wavelength bands to 
reduce redundancy of data and improve processing speed (Liu et al., 
2014; Saha and Manickavasagan, 2021). Different hyperspectral sensors 
operate within different spectral regions and because the structure of 
each target object varies, each specific application must also be sys-
tematically investigated to find the appropriate wavelengths for optical 
assessment (Adebayo et al., 2016). Important wavelength bands can be 
selected with a variety of methods including selection of large regression 
coefficients and selection of variables to minimise redundancy in the 
dataset (Liu et al., 2014; Peng et al., 2005). The capability of a range of 
supervised ML models in combination with a variety of pre- and post- 
processing techniques is required to be examined to predict moisture 
concentration of macadamia tree nuts. 

Macadamia is a rapidly expanding tree nut crop and global produc-
tion and consumption have more than doubled during the last decade 
(INC, 2023). Macadamia industries are now well established in South 
Africa, Australia, China, Brazil and Kenya and industries are developing 
in Guatemala, Vietnam, Malawi and India (INC, 2023). Like other tree 
nuts, macadamia nuts can be stored and exported as nut-in-shell or 
kernel and this decision can affect their shelf life and quality for end 
consumers (Gama et al., 2018). Moisture is a critical parameter during 
macadamia harvesting and processing, and quantitation is required at 
several points during post-harvest processing (Walton et al., 2013). 
Firstly, nuts fall to the ground and are de-husked on-farm at approxi-
mately 25 % moisture concentration (Walton and Wallace, 2011). Sec-
ondly, growers are paid based on sound kernel recovery (not including 
shell) adjusted by moisture of nut-in-shell at time of delivery, and 
therefore, moisture must be determined for each consignment on arrival 
to a processor (Guthrie et al., 2004). Nut-in-shell is then dried to ≈3% 
moisture prior to cracking, and therefore, regular assessment of mois-
ture for each drying bin is necessary to inform decisions about when to 
crack. Finally, kernels are packaged at ≈1.5 % moisture and are tested 
again prior to packaging to ensure quality control (Walton and Wallace, 
2011). The current gravimetric laboratory method for determining nut- 
in-shell and kernel moisture involves oven drying nuts for 24 hrs, and 
therefore, moisture data for decision making lags sample collection by at 
least one day (AMS, 2022). Development of a method using HSI that can 
rapidly determine moisture concentration will facilitate real-time sort-
ing based on moisture during post-harvest processing allowing for agile 
decision making to improve efficiency. 

This study aimed to develop a tool for accurate assessment of mac-
adamia nut-in-shell and kernel moisture concentration for use during 
post-harvest processing to enable more timely management decisions. 
Macadamia kernels generally display two distinct hemispheres: 1) a 
flattened/spherical shaped ‘base’ that forms within the hilum end of the 
shell, and 2) a pronounced ‘peak’, ‘crest’ or ‘shoulder’ that forms on the 
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micropylar half adjacent to the attachment point (micropyle) with the 
shell (AMS, 2021; Wallace and Walton, 2011; Walton and Wallace, 
2008; Walton and Wallace, 2012). Dropped kernels often settle on a flat 
surface in two orientations: 1) on their crest with the base facing upward 
(base-up); or 2) on their base with the crest facing upward (crest-up). It 
remains uncertain how collecting spectral data from nuts imaged in 
different orientations and how that data is extracted will affect predic-
tion accuracy of various ML models. Therefore, we investigated the: 1) 
efficacy of using computer vision to automatically extract hyperspectral 
data from images for use in model development, 2) effect of object 
orientation during imaging on prediction accuracy and using a pooled 
dataset combined from multiple image orientations, and 3) most effec-
tive machine learning models and selection of important wavelengths 
for predicting moisture concentration of macadamia nut-in-shell and 
kernels. Development of a rapid method that can assess nut moisture 

non-destructively and for individual nuts would represent a significant 
step forward for quality control in post-harvest processing. 

2. Methods 

2.1. Experimental design and sample collection 

Macadamia nut-in-shell and whole kernel samples were collected 
from commercial processors located in two states, Queensland and New 
South Wales, Australia. We aimed to collect samples to represent a wide 
range of varieties, growing conditions, and moisture concentrations 
(Farrar et al., 2021). Therefore, samples were collected in May, July and 
September during the 2022 season to ensure representation of early, 
middle and late harvest varieties and variation introduced by different 
grower practices and locations. Firstly, nut-in-shell samples were 

Fig. 1. Flowchart depicting the experimental design and process of model development and evaluation.  
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collected from drying hoppers at different drying stages where approx-
imate moisture concentration varied between 1 % and 25 % (Fig. 1). In 
total, thirty ≈1 kg bags of nut-in-shell macadamias were collected, and 
15 individual nuts were randomly sub-sampled from these bags for 
imaging. 

Kernel samples were collected in two stages. The first stage involved 
collecting kernels directly from processing lines following mechanical 
cracking by laboratory staff at the processing facility and at < 3 % 
moisture. In total, thirty ≈150 g bags of kernels were collected, and 15 
individual kernels were randomly sub-sampled from these bags. The 
second stage involved manually cracking kernels from collected nut-in- 
shell samples (described earlier) with moisture concentration between 3 
% and 25 % immediately prior to imaging (Fig. 1). The second stage of 
kernel sampling was performed to deliberately obtain kernels with 
moisture concentration > 3 %. All samples were double bagged during 
transport and stored at room temperature (≈25 ◦C) to minimise mois-
ture exchange with the atmosphere or between bags of nuts with 
different moistures prior to hyperspectral imaging and moisture deter-
mination within two weeks of collection. In total, 485 nut-in-shell and 
529 kernels were imaged and analysed for moisture concentration (%) in 
this study (Supplementary Table S1). 

2.2. Hyperspectral imaging, image processing, and analysis of macadamia 
reflectance spectra 

2.2.1. Acquisition of hyperspectral images 
Hyperspectral images were taken using a line scanning hyperspectral 

camera (Resonon Pika XC2, Bozeman, MT, USA). The hyperspectral 
camera had a 23.1◦ field of view, and spectral range of 400–1000 nm 
with 1.3 nm spectral sampling intervals to total 462 spectral wavelength 
bands. Calibration of the instrument was completed prior to image 
acquisition. Dark (D) current noise was obtained by taking an image 
with the lens cap on and white (W) correction was obtained by taking an 
image of highly reflective Lambertian material providing 99 % reflec-
tance. Reflectance (R) was calculated from raw spectral reflectance (I0) 
using Eq. (1): 

R = (I0 − D)/(W − D) (1)  

Two unique images of nut-in-shell and kernel samples were obtained 
during image acquisition. Samples were placed on a custom-made 
plywood tray to eliminate movement during imaging. The tray had re-
cesses (≈10 mm × 5 mm) drilled to locate macadamia samples and was 
painted black with silicone-based paint to reduce light scattering (White 
Knight, Hi temp paint). First, nut-in-shell samples were placed in a 
random position on the tray and imaged (Fig. 2a,b), then rotated ≈180◦

and re-imaged. For kernel samples, images were acquired with the nut 
placed on the tray in two unique orientations: 1) base-up (Fig. 3a,b) and 
2) base-down (Fig. 3c,d) orientations. Instrument calibration and image 
acquisition were conducted using SpectrononPro™ software (v3.4.6, 
Resonon, Bozeman, MT, USA). 

2.2.2. Selection of regions of interest (ROIs) using manual and automatic 
methods 

Spectral data pertaining to each individual nut sample were extrac-
ted from hyperspectral images using two methods: 1) manual; and 2) 
automatic using computer vision software. Firstly, spectral data was 
extracted manually (handcrafted) using the rectangle tool to highlight 
individual nut ROIs within the SpectrononPro™ software developed by 
the instrument manufacturer (Fig. 2a; Fig. 3a,c) (v3.4.6, Resonon, 
Bozeman, MT, USA). Secondly, spectral data was extracted from nut 
ROIs using a computer vision algorithm developed with OpenCV (v4.7.0) 
library in Python language for performing image analysis (Fig. 2b; 
Fig. 3b, d) (Bradski, 2000). In this work, we adapted the contour 
detection image processing algorithm to detect the nut boundary and 
retrieve the nuts’ centre point features. Contour detection encodes the 
boundaries of an object contained within an image, and is useful for 
various applications in image processing, including segmentation and 
object detection (Park et al., 2022). Contour detection was applied using 
one selected wavelength (900 nm wavelength for nut-in-shell and 
518.98 nm for kernels, respectively) to detect all nuts in any given image 
(Fig. 2b; Fig. 3b,d). First, the image wavelength was converted to a 
greyscale image, and then binary thresholding followed by dilation was 
used to clear the image background and remove noise (small holes). 
Second, we applied the contour detection algorithm to identify the 
boundaries of the foreground nuts, then the area of the contour was 

Fig. 2. (a) Pseudo RGB hyperspectral image of macadamia nut-in-shell, the red box represents an example of a manually selected region of interest (ROI) for an 
individual nut-in-shell containing the pixels from which mean spectral data were extracted and used in model development; (b) greyscale image of the same nuts 
depicted in (a) selected using computer vision, the black circles represent the inner and outer contours detected and the inner circle represents the ROI containing the 
pixels from which mean spectra were extracted and used in model development. 
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extracted as an ROI. Then, we calculate the average of the spatial points 
of each detected area (nut) at each spectral wavelength to produce one 
spectral vector of length B, where B is the number of wavelengths (462). 
As a result, a spectral matrix of dimension N × B were obtained, where N 
is the number of the nuts extracted from the image, and B is the number 
of spectral wavelengths in the hyperspectral image. For samples that 
were not detected, or incorrectly detected using computer vision, an 
elliptical ROI representative of the contour detection algorithm was 
manually handcrafted and the extracted spectral data was used to sub-
stitute the automatically extracted for that given sample (Table S1, 
Supplementary Fig. S1). Substitution of spectra for problematic samples 
was undertaken to balance the datasets prior to model development and 
ensure representation of problematic samples in both the manual and 
automatically extracted datasets allowing for future comparison of 
models developed during the study. 

Finally, mean reflectance for both hyperspectral image datasets of 

nut-in-shell and kernels was calculated using data extracted from the 
two unique images and used as combined image data in further model 
development. In total, we extracted spectral reflectance data from 485 
nut-in-shell and 529 kernel samples for use in model development and 
evaluation during this study, and spectral data substitution occurred in 
3.8 % of total cases for samples that presented with surface irregularities 
that were problematic for automatic detection (Supplementary 
Table S1). 

2.3. Determination of macadamia moisture concentration 

Moisture concentration of nut-in-shell and kernel samples was 
determined using the Australian Macadamia Society (AMS) drying 
method for kernel recovery determination (AMS, 2022). Specifically, 
samples were weighed and then dried at 105 ◦C for 24 hrs in individual 
tin foil trays placed in a dehydrating laboratory oven (TO-150G, 

Fig. 3. (a) Pseudo RGB hyperspectral image of macadamia kernels in base-up orientation; (b) greyscale image of the same nuts depicted in (a) selected using 
computer vision; (c) pseudo RGB hyperspectral image of macadamia kernels in base-down orientation. The red boxes in (a) and (c) represent examples of manually 
selected regions of interest (ROIs) for the individual kernels containing the pixels from which mean spectra were extracted and used in model development; and the 
black circles in (b) and (d) represent the contours detected using computer vision for each individual kernel and the inner circle represents the ROI from which mean 
spectra were extracted and used in model development. 

M.B. Farrar et al.                                                                                                                                                                                                                               



Computers and Electronics in Agriculture 224 (2024) 109209

6

Thermoline, Australia). After drying for 24 hrs, samples were reweighed 
within 10 min of removal from the oven and moisture content MC (%) 
was determined by weight loss using Eq. (2): 

MC % =

(
(w − d)

w

)

× 100 (2)  

where w is sample wet weight and d is sample dry weight after drying. 
Five nut-in-shell samples with moisture concentration greater than 25 % 
were manually cracked and inspected. In these cases, the kernel had 
turned black indicating burnt oil due to kernel immaturity or disease, 
These samples were discarded and removed from both the manual and 
the automatic datasets. Five kernel samples with moisture concentration 
greater than 25 % were also removed from both the manual and auto-
matic datasets. 

2.4. Spectral analysis using principal component analysis, dataset 
assignment and spectral pre-processing 

Spectral outliers were identified and removed using principal 
component analysis (PCA) of all original wavelengths (n = 462) in the 
combined image orientation, and for nut-in-shell and kernel samples, 
respectively. Individual samples greater than Hotelling’s T2 0.1 % ellipse 
(99.9 % level of confidence) were classified as outlying and removed 
from both the manual and automatic datasets prior to model calibration. 

In total, two nut-in-shell samples were identified as spectral outliers and 
removed. PCA was conducted in Unscrambler software (Version 11, 
CAMO Software Inc., Trondheim, Norway). The remaining samples were 
randomly assigned (80:20) to calibration and external test datasets 
(Table 1). Initially PLSR models were developed to correlate moisture 
values with reflectance using all available untransformed wavelength 
bands (n = 462) from the full spectral range (400–1000 nm), and for 
each extraction method and image orientation, respectively (Malmir 
et al., 2019; Wold et al., 2001). Then a variety of ad hoc transformations 
were applied to spectral data to improve signal to noise ratio and pre-
diction accuracy of the resultant models (Rinnan et al., 2009; Tahmas-
bian et al., 2017). The pre-processing techniques explored included 
standard normal variate (SNV), multiplicative scatter correction (MSC) 
and Savitzky-Golay (SG) first to third order derivatives with varying 
symmetrical smoothing point magnitudes (Fearn 2000; Kamruzzaman 
et al., 2016; Li et al., 2006; Rinnan et al., 2009). PLSR models were 
developed using Scikit-learn in Python 3.10 and the optimal number of 
latent variables were selected based on minimal mean square error 
(MSE) during calibration using 10-fold cross-validation (Pedregosa 
et al., 2011; Pelliccia, 2018). 

2.5. Wavelength selection and model development 

The hyperspectral images in this study contained 462 contiguous 

Fig. 3. (continued). 
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wavelengths with high correlation between adjacent bands (Fig. 4a,e). 
Therefore, wavelength selection was used to reduce the number of input 
variables, reduce redundancy, and improve model prediction accuracy 
(Zhu and Li, 2019). We employed two techniques to identify important 
wavelengths and aimed to reduce the number of wavelength bands from 
462 to 10 to ensure our results could inform the development of mul-
tispectral systems and maximise the potential for industrial application 
in post-harvest processing (Bendel et al., 2020; Kamruzzaman et al., 
2016). Initially and for models developed using PLSR only, we used a 
filter method to select wavelengths based on the magnitude of their 
respective β-coefficients calculated during initial PLSR model develop-
ment and using all 462 wavelength bands (Mehmood et al., 2012; Pel-
liccia, 2018). The β-coefficients are the regression coefficients uniquely 
quantifying the influence of each wavelength band with the response 
variable (moisture concentration, in our case) for a given PLSR model 
(Kamruzzaman et al., 2016). Wavelength bands with large magnitude 
(positive or negative values) β-coefficients are considered important in 
the regression model and consequently selected for inclusion (Kamruz-
zaman et al., 2016). Wavelength filtering was implemented in Python by 
extracting regression β-coefficients from the initial PLSR model, dis-
carding wavelengths with lowest coefficients and refitting the model 
(Pedregosa et al., 2011; Pelliccia, 2018). The process was repeated with 
the next lowest wavelength coefficient until the MSE of 10-fold cross- 
validation during calibration was minimised, and at this point the se-
lection process was stopped (Pelliccia, 2018). The best-fitting models for 
both nut-in-shell and kernels developed in Python were then re- 
developed using Unscrambler software (Version 11, CAMO Software 
Inc., Trondheim, Norway) following selection of 10 wavelengths cor-
responding to the largest coefficients identified during the first step in 
Python. Re-developing models in Unscrambler was undertaken to vali-
date the models developed using Python, avoid overfitting by selecting 
the optimal number of latent variables at the minimum predicted re-
sidual error sum of squares (PRESS), and to perform full leave-one-out 
cross validation by systematically removing one sample from the data 
set and re-fitting the model using the remaining samples (Farrar et al., 
2023). 

The second wavelength selection technique we used was the mini-
mum redundancy maximum relevance (MRMR) algorithm in MATLAB 
(MathWorks Inc., MATLAB Version: 9.14.0.2206163 R2023a, Natick, 
MA) to identify important wavelengths for models developed using 
ANN, GPR and SVM (Peng et al., 2005; Zhu and Li, 2019). MRMR is also 
a type of filtering method to select wavelengths and identifies an optimal 
set of specified size that are mutually and maximally dissimilar, and can 
represent the response variable effectively (Ding and Peng, 2005; Peng 
et al., 2005). More specifically, MRMR quantifies the importance of a 
wavelength using a heuristic algorithm and returns a score. A large score 
value indicates that the corresponding predictor is important and 
wavelengths with the largest scores and both nonzero relevance and 
redundancy are selected up to the required number of wavelengths 
(MathWorks Robotics System Toolbox User’s Guide, 2024). We defined 
the MRMR algorithm to select a subset of 10 wavelengths from the 
original 462 for use in subsequent model development to ensure our 

results were realistic for use in the development of multispectral systems 
(Bendel et al., 2020). 

2.6. Model evaluation and selection 

Best-fit calibration models were selected using the highest coefficient 
of determination for calibration (R2

C) and cross-validation (R2
CV) and 

lowest root mean square error for calibration (RMSEc) and cross- 
validation (RMSEcv) (Farrar et al., 2023). We compared the prediction 
accuracy and ratio of prediction deviation (RPD) of the best-fit cali-
bration models developed for each fitting method and image orienta-
tion. Calibration models were used to predict moisture concentration for 
samples in the external test dataset and model performance was evalu-
ated by inspecting the coefficient of determination (R2

T) and root mean 
square error (RMSET) for samples in the external test dataset and ratio of 
prediction deviation (RPD) calculated using Eq. (3): 

RPD = SDy/RMSEPT , (3)  

where SDy is the standard deviation for moisture reference values in the 
external test dataset and RMSEPT is the root mean square error of pre-
diction (Rossel and Webster, 2012). Using this metric to evaluate models 
developed for an RPD between 2.5 and 2.9 is ‘fair’ and may be used for 
screening applications; a value between 3.0 and 3.4 is ‘good’ and may be 
used for quality control applications; a value between 3.5 and 4.0 is 
‘very good’ and may be used for process control applications; and a 
value above 4.1 is ‘excellent’ and suitable for any application (Williams, 
2014). 

3. Results 

3.1. Efficiency of computer vision to extract spectral data and principal 
component analysis of different image orientations 

Using computer vision software to automatically detect nut objects 
and regions of interest (ROIs) in images of nut-in-shell was possible for 
97.5 % and 96.5 % of samples in image 1 and 2 orientations, respectively 
(Supplementary Fig. S1; Supplementary Table S1). Mean reflectance 
signatures for nut-in-shell imaged in the two different orientations and 
when combined were identical (Fig. 4a). Combining spectral data from 
the two image orientations resulted in marginally greater explained 
variance in the first principal component (91.12 %), compared with 
single images alone (91 % and 90.42 %, respectively) (Fig. 4b,c,d) which 
may be within the margins of uncertainty. Automatic extraction of 
spectra from images of macadamia kernels was possible for 96.8 % of 
samples imaged in base-up orientation and 93.9 % in base-down 
orientation (Fig. 2 and Supplementary Table S1). Mean spectral reflec-
tance of kernels in base-up orientation was greater in the NIR region 
(800–1000 nm) and lower in the visible region (400–650 nm) compared 
with base-down orientation (Fig. 4e). This trend reversed for base-down 
orientation, and unexpectedly, this effect was averaged for both orien-
tations combined (Fig. 4e). Spectra extracted from images of kernels in 
base-down orientation resulted in marginally greater explained variance 

Table 1 
Descriptive statistics for macadamia moisture concentration (%) for all samples used during model development and in the training and external test datasets.   

Nut-in-shell moisture % Kernel moisture %  

All samples Training dataset External test dataset All Samples Training dataset External test dataset 

n 480 384 96 524 419 105 
Mean 13.02 12.86 13.65 3.39 3.47 3.08 
SD 5.55 5.39 6.16 4.17 4.34 3.40 
Median 11.98 11.94 12.88 1.70 1.70 1.64 
IQR 9.37 8.97 10.95 0.91 0.93 0.83 
Skewness 0.07 0.09 − 0.06 2.22 2.17 2.20 
Kurtosis − 1.16 − 1.09 − 1.38 4.20 3.90 3.84 

n: Number of samples; SD: Standard deviation; IQR: Interquartile range. 
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Fig. 4. (a) Mean reflectance collected from macadamia nut-in-shell image 1 (yellow) and image 2 (red) orientations, and image 1 and 2 combined (black) by 
averaging; principal component analysis scores plot for nut-in-shell in (b) image 1; (c) image 2; and (d) images 1 and 2 combined; (e) Mean reflectance collected 
from macadamia kernels in base-up (yellow) and base-down (red) orientations, and base-up and base-down images combined (black) by averaging; principal 
component analysis scores plot for kernels imaged in (f) base-up; (g) base-down; and (h) base-up and base-down images combined. Mean relative reflectance was 
scaled to 10,000 (integers) by default. Due to similarity, reflectance data in panel (a) for nut-in-shell image 2 and images 1 and 2 combined have been scaled by 
adding 200 and 400 relative reflectance integers, respectively. 
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in the first principal component (92.84 %), compared with base-up or 
combined images (90.28 % and 92.22 %, respectively) (Fig. 4f,g,h). 

3.2. Prediction of moisture concentrations using spectra extracted 
manually and automatically with computer vision 

Nut-in-shell moisture concentrations were predicted with similar 
accuracy using either manually or automatically extracted data and 
PLSR comparing all nut orientations R2

C > 0.90 and R2
T > 0.89, respec-

tively (Table 2). The largest difference in prediction accuracy comparing 
manual to automatically extracted data and PLSR occurred when a 
single image orientation was used with a Δ R2

T ± 0.03 (Table 2). Nut-in- 
shell moisture prediction accuracy was similar using manual or auto-
matically extracted spectra to develop models with GPR and SVM, 
however, when models were developed with ANN using automatically 
extracted spectra increased RPD from 2.54 to 3.05 (Table 3). 

Kernel moisture concentrations were predicted with similar accuracy 
using manually or automatically extracted spectra and PLSR comparing 
all nut orientations R2

C > 0.97 and R2
T > 0.92, respectively (Table 4). 

Comparing our best-fitting models developed using PLSR, automatically 
extracted data provided higher reliability RPD = 11.05 compared with 
manually extracted data RPD = 8.24 (Table 4). Kernel moisture pre-
diction accuracy was similar for models developed using manual or 
automatically extracted spectra with ANN, GPR and SVM (Table 5). 
However, RPD increased from > 6 to > 8 for models developed using 
automatically extracted spectra in combination with ANN and GPR 
(Table 5). 

3.3. Prediction of moisture concentrations using spectra extracted from 
different nut orientations and both images combined 

Nut-in-shell moisture concentrations were predicted with R2
T > 0.90 

using data extracted from either nut orientation (Table 2). Combining 
the data from two images improved nut-in-shell prediction accuracy and 
reliability compared with using data from a single image only. For 

example, models developed using all transformed spectra combined 
from the two different images with PLSR increased R2

T from 0.88 to 0.92 
and RPD from 2.9 to 3.5 compared with using data from a single image 
only (Table 2). 

Kernel moisture concentrations were predicted with R2
T > 0.92 and 

RPD > 3.5 using data extracted from images of kernels in either base-up 
or base-down orientations or when combining data from both orienta-
tions with PLSR (Table 4). However, models developed using combined 
data from both orientations had higher prediction accuracy R2

T = 0.99 
and RPD > 11 compared with either base-up or base-down image ori-
entations (Table 4). 

3.4. Important and overlapping wavelengths corresponding to prediction 
of macadamia moisture concentration 

Spectral regions with highest absolute weighted β-coefficients for 
prediction of nut-in-shell moisture were located at approximately 
400–420, 450–500, 520–570, 750–775, 815, 850–920 and 950–990 nm 
(Supplementary Table S2). However, the most parsimonious model was 
developed using 10 wavelength bands located at approximately 760, 
880, and between 950 and 970 nm (Fig. 5; Supplementary Table S2). 
The PLSR model re-developed using only 10 wavelengths transformed 
with Savitsky-Golay 2nd derivative reduced the number of required 
latent variables to 3 (from 12 that were required using the entire 
wavelength range) while maintaining calibration accuracy R2

C = 0.87, 
prediction accuracy R2

T = 0.88, RMSET = 2.14 %, and test reliability 
RPD = 2.88 (Fig. 5). 

Spectral regions with highest absolute weighted β-coefficients for 
prediction of kernel moisture were located at approximately 400, 
450–570, 650, 750–770, 780, 860–870 and 900–1000 nm (Supple-
mentary Table S2). However, the most parsimonious model was devel-
oped using 10 wavelengths located at approximately 780 and between 
950 and 970 nm (Fig. 6; Supplementary Table S2). The best PLSR model 
re-developed using only 10 wavelengths transformed with Savitsky- 
Golay 2nd derivative reduced the number of required latent variables 

Table 2 
Performance of PLSR models developed using two different Vis/NIR hyperspectral image orientations and combined images of macadamia nut-in-shell to predict 
moisture concentration (%) using raw spectral data, data transformed with Savitsky-Golay smoothing and following selection of important wavelengths.  

Orientation Transformation WLS WL LV R2
C R2

cv RMSEC RMSECV R2
T RMSET RPD 

Manual extraction of spectral data 
First image Raw spectra All 462 16  0.90  0.87  1.67  1.92  0.89  2.00  3.08 

Selected 172 15  0.90  0.88  1.67  1.87  0.95  1.34  4.59 
SG 2nd 

17pt All 462 11  0.91  0.88  1.62  1.91  0.91  1.81  3.41 
Selected 118 11  0.91  0.89  1.58  1.79  0.96  1.22  5.04 

Rotated image Raw spectra All 462 15  0.90  0.87  1.69  1.93  0.90  1.95  3.17 
Selected 125 15  0.90  0.88  1.69  1.87  0.95  1.41  4.37 

SG 2nd 
17pt All 462 8  0.90  0.87  1.72  1.92  0.90  1.91  3.23 

Selected 146 8  0.90  0.88  1.70  1.90  0.95  1.37  4.49 
Combined images Raw spectra All 462 17  0.91  0.88  1.61  1.85  0.92  1.77  3.49 

Selected 106 15  0.91  0.89  1.64  1.80  0.95  1.32  4.67 
SG 2nd 

17pt All 462 12  0.92  0.88  1.57  1.84  0.91  1.79  3.44 
Selected 90 12  0.92  0.90  1.54  1.73  0.96  1.20  5.15  

Automatic extraction of spectral data 
First image Raw spectra All 462 15  0.90  0.88  1.665  1.888  0.89  1.93  3.19 

Selected 102 15  0.91  0.88  1.642  1.849  0.95  1.37  4.50 
SG 2nd 

17pt All 462 11  0.91  0.88  1.582  1.853  0.88  2.11  2.93 
Selected 97 11  0.92  0.90  1.553  1.742  0.95  1.36  4.54 

Rotated image Raw spectra All 462 16  0.91  0.88  1.629  1.876  0.90  1.91  3.23 
Selected 263 16  0.91  0.89  1.607  1.828  0.96  1.19  5.16 

SG 2nd 
17pt All 462 9  0.91  0.88  1.650  1.871  0.88  2.15  2.86 

Selected 153 9  0.91  0.89  1.579  1.811  0.96  1.30  4.75 
Combined images Raw spectra All 462 16  0.91  0.89  1.583  1.801  0.92  1.74  3.53 

Selected 120 15  0.91  0.89  1.580  1.758  0.96  1.21  5.10 
SG 2nd 

17pt All 462 12  0.92  0.89  1.541  1.788  0.92  1.75  3.53 
Selected 85 12  0.92  0.90  1.513  1.696  0.96  1.21  5.11 

WL: Number of wavelengths used in model calibration; LV: Optimal number of latent variables used in the model; SG: Savitzky-Golay derivative transformation with 
polynomial order and smoothing range described by super and subscript respectively; OSC: Orthogonal signal correction; RPD: Ratio of prediction to deviation. 
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to 1 (from 18) while maintaining calibration accuracy R2
C = 0.93, pre-

diction accuracy R2
T = 0.92, RMSET = 0.92 %, and test reliability RPD =

4.26 (Fig. 6). All wavelengths selected during model development and 
corresponding to prediction of moisture for nut-in-shell and kernel 
samples are presented in (Supplementary Table S2). 

3.5. Comparison of machine learning models to predict macadamia nut- 
in-shell and kernel moisture concentration 

The best model we developed to predict nut-in-shell moisture 

concentration was developed using PLSR with data extracted from both 
images combined and following selection of 90 wavelengths (R2

T = 0.96, 
RMSET = 1.21 %, and RPD = 5.11) (Table 2). Models developed using 
ANN and GPR and all wavelengths also resulted in high accuracy (R2

T >

0.85, RMSET < 2.1 %) moisture prediction using data either manually or 
automatically extracted (Table 3). However, re-developing the ANN, 
GPR and SVM models using ten wavelengths selected by MRMR, and 
again using the same ten wavelengths identified during PLSR (Supple-
mentary Table S2), prediction accuracy was reduced R2

T ≤ 0.75, RMSET 
≥ 2.80 % and RPD < 2 (Table 3). The best model calibrated using SVM 
predicted moisture with R2

T = 0.78, RMSET = 2.58 % and required all 
available wavelengths (Table 3). 

The best model to predict kernel moisture was developed using PLSR 
and with data extracted from both images combined and following se-
lection of 140 wavelengths (R2

T = 0.99, RMSET = 0.31 % and RPD =
11.05) (Table 4). Models developed using ANN, GPR and SVM and all 
wavelengths also resulted in high accuracy (R2

T ≥ 0.96, RMSET ≤ 1.03 %) 
prediction of kernel moisture (Table 5). However, re-developing the 
ANN, GPR and SVM models using ten wavelengths selected by MRMR, 
and again using the same ten wavelengths identified during PLSR 
(Supplementary Table S2), did not significantly reduce prediction ac-
curacy R2

T > 0.79, RMSET ≤ 2.09 % and RPD > 2.2 (Table 5). Addi-
tionally, the ANN model developed using the most important 
wavelengths identified during PLSR by combining β-coefficient filtering 
and selection of wavelengths with large magnitude were comparable to 
the model developed using all available wavelengths (Table 5). 

3.6. Important and overlapping wavelengths corresponding to prediction 
of macadamia moisture concentration 

Spectral regions with highest absolute weighted β-coefficients for 
prediction of nut-in-shell moisture were located at approximately 
400–420, 450–500, 520–570, 750–775, 815, 850–920 and 950–990 nm 
(Supplementary Table S2). However, the most parsimonious model was 
developed using 10 wavelength bands located at approximately 760, 
880, and between 950 and 970 nm (Fig. 5; Supplementary Table S2). 
The PLSR model re-developed using only 10 wavelengths transformed 
with Savitsky-Golay 2nd derivative reduced the number of required 
latent variables to 3 (from 12 that were required using the entire 
wavelength range) while maintaining calibration accuracy R2

C = 0.87, 
prediction accuracy R2

T = 0.88, RMSET = 2.14 %, and test reliability 
RPD = 2.88 (Fig. 5). 

Spectral regions with highest absolute weighted β-coefficients for 
prediction of kernel moisture were located at approximately 400, 
450–570, 650, 750–770, 780, 860–870 and 900–1000 nm (Supple-
mentary Table S2). However, the most parsimonious model was devel-
oped using 10 wavelengths located at approximately 780 and between 
950 and 970 nm (Fig. 6; Supplementary Table S2). The best PLSR model 
re-developed using only 10 wavelengths transformed with Savitsky- 
Golay 2nd derivative reduced the number of required latent variables 
to 1 (from 18) while maintaining calibration accuracy R2

C = 0.93, pre-
diction accuracy R2

T = 0.92, RMSET = 0.92 %, and test reliability RPD =
4.26 (Fig. 6). All wavelengths selected during model development and 
corresponding to prediction of moisture for nut-in-shell and kernel 
samples are presented in (Supplementary Table S1). 

4. Discussion 

4.1. Moisture prediction for macadamia nut-in-shell and kernels 

Hyperspectral imaging successfully predicted moisture concentra-
tion in both macadamia nut-in-shell and kernel samples. Macadamia 
fruit consist of an outer husk that encloses the nut-in-shell with a kernel 
located inside (Trueman, 2013). We predicted both nut-in-shell and 
kernel moisture concentration with high prediction accuracy. In general, 
selecting important wavelengths improved model accuracy and the 

Table 3 
Comparison of machine learning models developed using data manually and 
automatically extracted and combined from two separate hyperspectral images 
to predict macadamia nut-in-shell moisture concentration (%) using all wave-
lengths (n = 462) and following selection of ten important wavelengths using 
MRMR and β-coefficient filtering methods.  

Model Details WL R2
cv RMSECV R2

T RMSET RPD 

Manual extraction of spectral data 
ANN Narrow ANN (1 

layer, 10 nodes, 
ReLU activation, 
λ = 0) 

462 0.86 2.13 0.84 2.07 2.54 

MRMR 10 0.64 3.67 0.54 3.56 1.48 
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10 0.73 2.95 0.64 3.16 1.67 

GPR Matérn 5/2 
(isotropic kernel) 

462 0.90 1.82 0.90 1.66 3.18 

MRMR 10 0.69 3.14 0.70 2.89 1.83 
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10 0.73 2.92 0.68 2.98 1.77 

SVM Quadratic 462 0.76 2.75 0.77 2.51 2.10 
MRMR 10 0.54 3.81 0.52 3.61 1.46 
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10 0.66 3.29 0.58 3.41 1.55  

Automatic extraction of spectral data 
ANN Narrow ANN (1 

layer, 10 nodes, 
ReLU activation, 
λ = 0) 

462 0.88 1.92 0.89 1.82 3.05 

MRMR 10 0.73 2.92 0.73 2.86 1.94 
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10 0.72 2.96 0.72 2.90 1.92 

GPR Matérn 5/2 
(isotropic) 

462 0.90 1.79 0.91 1.63 3.41 

MRMR 10 0.75 2.80 0.71 2.96 1.88 
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10 0.73 2.88 0.74 2.80 1.99 

SVM Quadratic 462 0.77 2.67 0.78 2.58 2.15 
MRMR 10 0.65 3.29 0.49 3.96 1.40 
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10 0.65 3.32 0.69 3.09 1.80 

ANN: Artificial neural network; GPR: Gaussian process regression; MRMR: 
Minimum redundancy maximum relevance; ReLU: Rectified linear unit; SVM: 
Support vector machine; WL: Wavelengths. 
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models developed using only 10 wavelength bands had marginally 
lower prediction accuracy but were still acceptable for use in ‘screening 
applications’ of nut-in-shell and ‘process control applications’ for mac-
adamia kernels (Williams, 2014). 

Macadamia moisture concentration was predicted with high accu-
racy using only ten selected wavelength bands. Successful prediction of 
moisture can be explained by the important wavelengths that were 
identified in the region related to NIR absorption due to O–H bonds 
present in water molecules. In this study, the most important wave-
lengths used to predict macadamia moisture were located between 950 
and 970 nm and at 760 nm for nut-in-shell and 780 for kernels. Wave-
lengths in the 950–970 nm region are associated with water absorption 
and have been widely utilised in the prediction of water content and 
moisture in various soils and crops (ElMasry et al., 2007; Huang et al., 
2014; Wei et al., 2019; Wu et al., 2012; Yi et al., 2013). Bending/stretch 
vibration of hydroxy (O–H) bonds in water molecules has been related to 
absorption bands at 970 nm in shelled almond kernels (Panda et al., 
2022), 940 nm in soil (Qi et al., 2017), and in fruit between 930 and 
1080 nm (Qing et al., 2007). Furthermore, wavelengths at 958 nm and 
760 nm were identified as two of 12 optimum wavelengths selected to 
predict moisture content of prawns (Wu et al., 2012). Our results are also 
consistent with high accuracy prediction of moisture concentrations in 
almonds and soybeans using PLSR and mean reflectance of selected 
wavelengths around 960–970 nm (Huang et al., 2014, Panda et al., 
2022). Future development of hyperspectral to predict macadamia 
moisture method should exploit the wavelengths we identified in this 
study. 

4.2. Efficacy of computer vision to automatically detect macadamia nuts 
and extract spectral data 

Using a computer vision method based on contour detection led to 
successful automatic feature extraction of macadamia nut-in-shell and 
kernels from within hyperspectral images, and the models we developed 
using automatically extracted spectra generally predicted nut moisture 

with comparable accuracy to using data extracted manually. Manual 
feature extraction is the process of selecting features using an images’ 
information and involved the user manually selecting (handcrafted) a 
rectangular/square ROI shape within the kernel boundary of the digital 
image. Conversely, the automatic method identified circular/elliptical 
shapes between the nuts and the image background based on captured 
local contrasts by applying contour detection (Ma et al., 2021). Both 
extraction methods led to comparable moisture prediction for macad-
amia nut-in-shell because they are generally close to spherical. We 
suggest that using spectral data automatically extracted in a circle/el-
lipse shape is more reliable for nut moisture prediction than using data 
from rectangle/square ROIs manually selected by a human operator. We 
also found that for kernels with a morphologically flatter base and 
pointed crest/shoulder, the automatic method led to higher prediction 
accuracy when the extracted spectral data from both images were 
combined by averaging. This indicates that adopting automatic com-
puter vision systems to extract spectral data during macadamia pro-
cessing will not limit model prediction accuracy. Further improvement 
in model accuracy may be possible by implementing more sophisticated 
spectral-spatial boundary detection algorithms rather than using con-
tour detection during data extraction (Al-Khafaji et al., 2021). 

4.3. The effect of nut orientation during imaging on moisture prediction 

Moisture prediction accuracy for nut-in-shell was similar using the 
spectral data extracted from a single nut image or two images combined, 
however for kernels, prediction accuracy was higher using images of 
base-up kernels compared with base-down. Macadamia nut-in-shells are 
round, and kernels are also generally round, however, one side of each 
kernel has a defined and pointed crest/shoulder that develops at the 
micropylar surface, and the opposite basal side has a flatter ovoid shape 
(Trueman, 2013; Walton and Wallace, 2008). Therefore, similar pre-
diction accuracy for the two nut-in-shell images was expected given the 
regular rounded shape and similar reflectance scattering for both ori-
entations. Whereas higher prediction accuracy using images of kernels 

Table 4 
Performance of PLSR models developed using two different Vis/NIR hyperspectral image orientations and combined images of macadamia kernels to predict moisture 
(%) concentration using raw spectral data, data transformed with Savitsky-Golay smoothing and following selection of important wavelengths.  

Orientation Transformation WLS WL LV R2
C R2

cv RMSEC RMSECV R2
T RMSET RPD 

Manual extraction of spectral data 
Base-up Raw spectra All 462 20  0.98  0.97  0.585  0.723  0.97  0.629  5.41 

Selected 138 14  0.98  0.97  0.641  0.711  0.98  0.471  7.22 
SG 2nd 

17pt All 462 13  0.99  0.97  0.536  0.784  0.95  0.731  4.66 
Selected 139 13  0.98  0.97  0.578  0.704  0.99  0.341  9.98 

Base-down Raw spectra All 462 16  0.97  0.96  0.799  0.902  0.92  0.958  3.55 
Selected 141 14  0.97  0.96  0.793  0.870  0.97  0.575  5.92 

SG 2nd 
17pt All 462 12  0.97  0.96  0.737  0.899  0.93  0.881  3.86 

Selected 101 11  0.97  0.96  0.740  0.841  0.98  0.494  6.89 
Combined Raw spectra All 462 19  0.98  0.97  0.584  0.702  0.96  0.690  4.93 

Selected 32 19  0.98  0.98  0.605  0.673  0.98  0.452  7.53 
SG 2nd 

17pt All 462 14  0.98  0.97  0.554  0.704  0.96  0.696  4.89 
Selected 65 13  0.98  0.98  0.575  0.650  0.99  0.413  8.24  

Automatic extraction of spectral data 
Base-up Raw spectra All 462 19  0.98  0.97  0.600  0.747  0.96  0.647  5.26 

Selected 115 19  0.98  0.97  0.564  0.700  0.99  0.366  9.30 
SG 2nd 

17pt All 462 15  0.98  0.97  0.567  0.787  0.97  0.610  5.58 
Selected 129 14  0.98  0.97  0.565  0.696  0.99  0.341  9.98 

Base-down Raw spectra All 462 19  0.97  0.96  0.776  0.916  0.93  0.930  3.66 
Selected 216 18  0.97  0.96  0.772  0.883  0.98  0.496  6.86 

SG 2nd 
17pt All 462 12  0.97  0.96  0.745  0.916  0.93  0.902  3.77 

Selected 135 7  0.97  0.96  0.779  0.877  0.97  0.577  5.90 
Combined Raw spectra All 462 20  0.98  0.97  0.581  0.701  0.96  0.706  4.82 

Selected 113 20  0.98  0.98  0.556  0.666  0.99  0.354  9.61 
SG 2nd 

17pt All 462 18  0.99  0.97  0.524  0.710  0.95  0.757  4.50 
Selected 140 18  0.99  0.98  0.522  0.641  0.99  0.308  11.05 

WL: Number of wavelengths used in model calibration; LV: Optimal number of latent variables used in the model; SG: Savitzky-Golay derivative transformation with 
polynomial order and smoothing range described by super and subscript respectively; OSC: Orthogonal signal correction; RPD: Ratio of prediction to deviation. 
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in base-up orientation is most likely due to the flatter and more regular 
base-up surface resulting in a similar optical path compared with a 
pointed crest scattering light away from the hyperspectral sensor. 
Hyperspectral imaging has previously been developed to assess the 
moisture concentration and distribution in several other foods including 
almond nuts (Panda et al., 2022), prawns (Wu et al., 2012), red meat 
(Kamruzzaman et al., 2012), nuts and grains (Mohammadi-Moghaddam 
et al., 2018) whose shapes are also irregular or spherical. Therefore, our 
results are consistent with reliable moisture prediction in food products. 

4.4. Comparison of machine learning models and important wavelength 
bands for predicting macadamia moisture concentration 

In general, PLSR provided higher or comparable moisture prediction 
accuracy than the respective ANN. However, ANN developed using the 
ten important wavelengths identified during PLSR development pro-
vided higher prediction accuracy than the PLSR counterpart for kernel 
samples only. This was unexpected given that the method used to select 
wavelengths during PLSR calibration was based on filtering β-co-
efficients and decomposition of spectra into latent variables, and is 
native to PLSR not ANN. However, the PLSR method and decomposition 
of spectra into latent variables is well suited to reduce collinearity and is 
robust against a reduction in wavelengths, and therefore, may be useful 
to identify important wavelengths prior to development models that so 
not utilise latent variables or β-coefficients natively such as ANN. 

Our best-fit PLSR models provided R2 values between 0.87 and 0.99, 
for predicting nut-in-shell and kernel moisture concentrations. R2 values 
between 0.83 and 0.98, are potentially useful for quality assurance and 
research purpose applications with caution (Williams et al., 2019). PLSR 
and ANN are two commonly used algorithms for modelling hyper-
spectral data. PLSR is especially useful when spectral data and chemical 
reference values are related in a linear fashion and when the size of 
image datasets are small (Rossel, 2008). On the other hand, ANNs can 
handle non-linear relations between spectra and reference values, but 
require larger image datasets for robust performance, and decreasing 

Table 5 
Comparison of machine learning models developed using data manually and 
automatically extracted and combined from two separate hyperspectral images 
to predict macadamia kernel moisture concentration (%) using all wavelengths 
(n = 462) and following selection of ten important wavelengths using MRMR 
and β-coefficient filtering methods.  

Model Details (layers, 
size, activation, 
lambda) 

WL R2
cv RMSECV R2

T RMSET RPD 

Manual extraction of spectral data 
ANN Bi-layered (2, 10, 

10, ReLU, 0) 
462  0.96  0.82  0.97  0.73  6.28 

MRMR 10  0.77  1.96  0.89  1.50  3.03  
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10  0.98  0.64  0.97  0.78  5.87 

GPR Matérn 5/2 
(isotropic) 

462  0.98  0.56  0.97  0.74  6.19 

MRMR 10  0.84  1.61  0.92  1.26  3.63  
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10  0.92  1.17  0.94  1.08  4.24 

SVM Quadratic 462  0.95  0.91  0.97  0.74  6.18 
MRMR 10  0.64  2.45  0.79  2.09  2.19  
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10  0.91  1.21  0.95  0.97  4.69  

Automatic extraction of spectral data 
ANN Narrow (1, 10, 

ReLU, 0) 
462  0.97  0.71  0.99  0.56  8.81 

MRMR 10  0.90  1.33  0.93  1.14  3.78 
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10  0.95  0.85  0.98  0.72  6.81 

GPR Squared 
exponential 
(isotropic kernel) 

462  0.97  0.69  0.99  0.57  8.69 

MRMR 10  0.51  2.90  0.91  1.26  3.41 
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10  0.85  1.52  0.95  1.12  4.41 

SVM Quadratic 462  0.95  0.91  0.96  1.03  4.79 
MRMR 10  0.94  0.99  0.95  0.93  4.64 
β-coefficient 
filtering during 
PLSR + select 10 
with largest 
magnitude 

10  0.93  1.08  0.95  1.12  4.39 

ANN: Artificial neural network; GPR: Gaussian process regression; MRMR: 
Minimum redundancy maximum relevance; ReLU: Rectified linear unit; SVM: 
Support vector machine; WL: Wavelengths. 

Fig. 5. (a) Best-fitting PLSR model developed using images of macadamia nut- 
in-shell following selection of 10 wavelengths and showing measured vs. pre-
dicted moisture (%) concentration in the calibration data (Calibration): upright 
blue triangle; validation data (Validation): upside-down yellow triangle; and 
external test data sets: closed brown circle (External test) respectively; and (b) 
weighted β-coefficients for wavelengths selected from all 462 wavelengths 
available and prior to development of best-fitting PLSR model depicted in (a). 
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dataset size can also reduce model prediction reliability (Bian et al., 
2012; Habibi et al., 2020). In our study, PLSR provided higher moisture 
prediction accuracy than ANN models suggesting that a linear relation 
between water absorption features of the spectra and moisture con-
centration does exist in our current dataset. 

4.5. Implications and limitation of this scoping study and future 
recommendations 

Prediction accuracy for models developed with data automatically 

extracted from hyperspectral images using computer vision were similar 
compared to models developed with manually extracted data. Auto-
mated sorting and grading systems that operate using RGB bands only 
are already widely used in food and nut processing industries around the 
world to improve processing efficiency. Colour sorting machines can 
identify physical defects such as mould, insect damage and to separate 
shell from kernel following cracking (MM, 2024). Therefore, the suc-
cessful development of hyperspectral imaging systems that can assess 
other quality parameters, such as moisture concentration, in addition to 
physical defects would represent a significant advancement and a sen-
sible option to retrofit to existing infrastructure. One of the challenges of 
image processing is to fast-track data processing and a critical step 
during model calibration is to identify the most important wavelengths 
for predicting the optical property of interest (Adebayo et al., 2016). 
Therefore, this study determined the optimum 10 wavelengths to 
remove spectral redundancy, reduce model complexity and in-turn de-
mand on computational resources (ElMasry et al., 2012; Kamruzzaman 
et al., 2013). By successfully identifying 10 wavelength bands only, our 
results inform future development of simpler and more cost-effective 
multispectral systems and fast-track data processing when the technol-
ogy is developed for conveyor belts in nut processing factories (Bandara 
et al., 2020; ElMasry et al., 2012; Mohammadi-Moghaddam et al., 
2018). Additionally, future studies should also investigate using models 
to predict individual pixels within images and thereby mapping the 
intra-kernel moisture distribution allowing for identification of corre-
lations between moisture distribution and initiation of other quality 
defects such as oxidative rancidity and/or brown centre disorder (Panda 
et al., 2022). 

Currently, macadamia moisture is assessed using two methods: 1) the 
thermogravimetric (oven-drying) method for nut-in-shell, and 2) pur-
pose made moisture meters that are based in a laboratory for analysis of 
kernels (AMS, 2021; Guthrie et al., 2004). Neither of these methods can 
be used on a sorting line. The oven-drying method involves drying a 
representative sample of nut-in-shell or kernel for 24 hrs at 105 ◦C and 
calculating loss of weight (water) and benchtop moisture meters analyse 
a 1 kg representative sample of macadamia nut-in-shell or kernel and 
report moisture values between 2–10 % and 1–8 %, respectively (AMS, 
2022; GmbH, 2023). A new method that can accurately determine 
moisture for each individual nut, and in real-time, would represent a 
significant step forward for the precision of macadamia post-harvest 
processing. In this study, the sampling strategy was designed to cap-
ture as much variation in macadamia nut samples as possible because 
moisture is a critical parameter during all post-harvest processing stages. 
Freshly harvested nuts can have moisture concentrations > 20 % and 
may range up to 30 % when wet (Mason, 2000; O’Hare et al., 2004). 
Furthermore, nuts are partially dried on-farm and delivered to pro-
cessors at various moisture concentrations, therefore, it is critical that a 
representative sample of delivered nuts are assessed for moisture to 
inform grower payment calculations that are adjusted for 10 % moisture 
(Walton and Wallace, 2011). This study indicates that nut-in-shell 
moisture assessment in real-time on receipt of delivery to a processor 
may be possible, and therefore, future adoption will help inform process 
control decisions such as consolidating deliveries based on moisture 
concentration and grower payments. However, several physical condi-
tions were identified to be problematic for automatic detection using 
machine vision (Supplementary Fig. S1). Accordingly, any real-world 
application of the automatic detection method would result in nuts 
passing through non-detected or detected poorly and continuing down a 
processing line without a reliable moisture concentration assessment. 
Therefore, a need may arise to identify and filter any problematic 
samples prior to moisture determination for manual assessment 
depending on the point during processing and the importance for an 
accurate moisture assessment. 

Fig. 6. Best-fitting PLSR model developed using images of macadamia kernels 
following selection of 10 wavelengths and showing measured vs. predicted 
moisture (%) concentration in the calibration data (Calibration): upright blue 
triangle; validation data (Validation): upside-down yellow triangle; and 
external test data sets: closed brown circle (External test) respectively, (a) 
showing the entire data range between 0 and 25% moisture; (b) showing a 
reduced and scaled range between 0 and 4% moisture only; and (c) weighted 
β-coefficients for wavelengths selected from all 462 wavelengths available and 
prior to development of best-fitting PLSR model depicted in (a). 
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5. Conclusion 

Hyperspectral imaging combined with regression methods predicted 
the moisture concentration of nut-in-shell and kernels. This study 
demonstrates that reflectance values can be automatically extracted 
from hyperspectral images using computer vision and utilised to develop 
regression models to predict macadamia nut moisture concentration. 
Using data extracted from two images combined provided more reliable 
results, however, one image only of nut-in-shell may also be used, which 
is key for in-line sorting applications. Our results indicate that data from 
images of nuts in mixed orientations can still provide high prediction 
accuracy, and therefore, this technology can be applied to mechanised 
processing where nuts are transited on conveyor belts. A PLSR model 
developed using only 10 wavelength bands provided prediction accu-
racy levels that were usable with caution while reducing model 
complexity and computational demand. This research indicates that 
hyperspectral reflectance Vis/NIR spectral range can be used to quantify 
moisture concentration of macadamia at various points during post- 
harvest processing. 
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