Application of sustainability indicators, soil organic matter and electrical conductivity, to resource management in the northern grains regionExport / Share PlumX View Altmetrics View AltmetricsDalal, R.C., Eberhard, R., Grantham, T. and Mayer, D.G. (2003) Application of sustainability indicators, soil organic matter and electrical conductivity, to resource management in the northern grains region. Australian Journal of Experimental Agriculture, 43 (3). pp. 253-259.
Article Link: http://dx.doi.org/10.1071/EA00186 Publisher URL: http://www.publish.csiro.au AbstractSustainability is a multifaceted concept. It is expressed here as 'to ensure that the past and current management and use of natural resources does not diminish their capacity to meet economic, environmental, social and aesthetic needs and opportunities of the present and future generations'. Sustainability indicators can be used to monitor responses in condition and trend as a result of natural resource management. We report here 2 case studies that demonstrate the significance of sustainability indicators in discerning trends in land and water resources in the southern Brigalow (Acacia harpophylla) Belt, a major region of the Queensland Murray–Darling Basin. First, soil organic matter was used as a sustainability indicator of soil productivity, soil aggregation, and its association with soil sodicity since these soil attributes affect infiltration rates, runoff and drainage. The second study involved comparing the trends in stream salinity (electrical conductivity) over 35 years and sustainability indicators for a dominant Vertosol in a region used for cereal cropping. Groundwater level and electrical conductivity of a long-term monitoring bore in the Dalby–Chinchilla region, were also analysed to discern trends in salinity and association of the groundwater with soil and stream salinity. Soil organic matter declined exponentially as the cultivation period for cereal cropping increased. This resulted in a reduction in soil nitrogen supply, and lower grain protein and cereal grain yields. The associated effects were reduced soil aggregation and increased soil sodicity. Electrical conductivity of the soil as well as stream water showed weak but declining trends with time. Groundwater level from the long-term monitoring bore near the stream and groundwater salinity showed significantly declining trends over the 35 years sampling period. Groundwater salinity was similar to the Vertosol electrical conductivity at 240–300 cm depths, suggesting groundwater connectivity to the overlaying soil. Thus, use of sustainability indicators provided a strong association among the various attributes of the landscape. However, it is still a challenge to integrate the various sustainability indicators in a landscape context, integrated over space (spatial and geographical distribution), attributes (quality characteristics) and time (trend).
Repository Staff Only: item control page Download Statistics DownloadsDownloads per month over past year |