Login | Request Account (DAF staff only)

Growth and yield response of barley and chickpea to water stress under three environments in southeast Queensland. II. Root growth and soil water extraction pattern

View Altmetrics

Thomas, -, Fukai, S. and Hammer, G. L. (1995) Growth and yield response of barley and chickpea to water stress under three environments in southeast Queensland. II. Root growth and soil water extraction pattern. Australian Journal of Agricultural Research, 46 (1). pp. 35-48. ISSN 1836-0947

[img]
Preview
PDF
697kB

Article Link: https://doi.org/10.1071/AR9950035

Abstract

Root growth and water extraction of two barley cultivars, Corvette (early maturing), Triumph (late maturing) and one cultivar of chickpea (Amethyst at Redland Bay and Borwen at Hermitage) were compared under three environments: April sowing and July sowing at Redland Bay and June sowing at Hermitage Research Station, south-east Queensland. This work was designed to explain differences in dry matter production in terms of root growth and water uptake during the crop growth, which relied only on stored soil moisture. In the April sowing where all crops grew well during the early stages of growth, decline in soil water with time for the whole profile was similar among all crops. In the winter sowings (June, July), total water use was less in chickpea than in barley, particularly during early stages when chickpea growth was poor. Water extraction patterns of two barley cultivars were similar in all experiments, though the late-maturing Triumph extracted slightly more water than early maturing Corvette towards maturity. Water extraction front velocities of the three crops were similar in each experiment. At Redland Bay, the water extraction front velocities varied from 1.4 to 1.6 cm day-1 in the April sowing and 2.3 to 2.4 cm day-1 in the July sowing, while they varied from 2.0 to 2.3 cm day-1 at Hermitage. However, descent of the water extraction front commenced later in chickpea than in barley when sown in winter months, and this resulted in lower total water use in chickpea, particularly at Hermitage. In both sowings at Redland Bay total root length increased rapidly to about 60 days after sowing in barley, whereas the increase was slower in chickpea. Root length density was high in the upper soil layers, and this was associated with high extractable soil water. In deeper layers both root length density and extractable soil water decreased. For a given root length density chickpea extracted more water than barley. These results indicate that the differences in root growth and water extraction by the two barley crops were rather small and were unlikely to be the reason for the differences in total dry matter production. Chickpea on the other hand appeared to be susceptible to low temperatures during early stages of growth, and this caused poor growth of both shoots and roots.

Item Type:Article
Keywords:barley; chickpea; root length; density; water extraction pattern; water extraction front velocity; extractable soil water; temperature
Subjects:Agriculture > Agriculture (General) > Agriculture and the environment
Agriculture > Agriculture (General) > Soils. Soil science > Soil and crops. Soil-plant relationships. Soil productivity
Agriculture > Agriculture (General) > Agricultural meteorology. Crops and climate
Plant culture > Food crops
Plant culture > Field crops > Barley
Live Archive:16 Apr 2024 01:51
Last Modified:16 Apr 2024 01:51

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics