Season, nitrogen rate, and plant type affect nitrogen uptake and nitrogen use efficiency in riceExport / Share PlumX View Altmetrics View AltmetricsBorrell, A.K., Garside, A.L., Fukai, S. and Reid, D.J. (1998) Season, nitrogen rate, and plant type affect nitrogen uptake and nitrogen use efficiency in rice. Australian Journal of Agricultural Research, 49 (5). pp. 829-844. ISSN 1836-0947
Article Link: https://doi.org/10.1071/A97057 AbstractStudies were undertaken in the Burdekin River Irrigation Area of northern Australia to improve the efficiency of nitrogen (N) use for rice (Oryza sativa L.) production. The aim was to maximise grain yield by optimising its functional components: N uptake, efficiency of N use for dry matter production (NUEdm), and harvest index (HI). The effiects of season (wet and dry), N rate (0, 70, 140, 210, and 280 kg/ha), and plant type (maturity and stature) on N uptake, NUEdm, and HI were examined in 2 wet and 2 dry seasons. Seasonal differences in N uptake, NUEdm, and HI were observed. Seasonal variation in the response of grain yield to N uptake was found. There was a trend for higher N uptake in the absence of fertiliser application in the wet than the dry season, and the recovery fraction was less for N rates >140 kg/ha in all seasons, i.e. fertiliser N uptake efficiency declined with increasing N rate. Nitrogen was used more effectively by the rice crop to produce grain compared with non-grain parts when average daily mean temperatures were lower during the period between panicle initiation and anthesis. Genotypic variation was found in N uptake, NUEdm, and HI. The ability to capture these components in crop improvement programs depends on the extent to which genetic linkages between N uptake and both NUEdm and HI can be broken. While our data suggest that N uptake is generally negatively correlated with both NUEdm and HI, there is some evidence that these linkages can be broken. For example, the fact that HIdid not change with increasing N uptake in Lemont and, to a lesser extent, in Newbonnet suggests that HI does not always decline with increasing N uptake. The example of Newbonnet suggests that, to some extent, it is possible to increase yield by increasing each of the functional components independently within a specific genotype.
Repository Staff Only: item control page Download Statistics DownloadsDownloads per month over past year |